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Basic assumptions

Let q be a prime power and let t ≥ 2 be an integer.

The field with qt elements is denoted by Fqt and its unique
subfield of order q is written as Fq.
The vector space F2

qt over Fqt determines the projective
line PG(1,qt ). Its points have the form

〈(u, v)〉qt with (0,0) 6= (u, v) ∈ F2
qt .

The vector space F2
qt over Fq determines the projective

space PG(2t − 1,q). Its points have the form

〈(u, v)〉q with (0,0) 6= (u, v) ∈ F2
qt .

G denotes the Grassmannian of (t − 1)-dimensional
subspaces of PG(2t − 1,q).
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Field reduction map F : PG(1,qt)→ G
PG(1,qt ) PG(2t − 1,q)

〈(a,b)〉qt

〈(a,b)〉qt

F−→

The field reduction map F assigns to each point 〈(a,b)〉qt that
element of the Grassmannian G which is given by 〈(a,b)〉qt

(considered as subspace of the vector space F2
qt over Fq).

The image of F is a Desarguesian spread, say D.

The map F is injective.



Linear Sets The projective line over E References

Field reduction map F : PG(1,qt)→ G
PG(1,qt ) PG(2t − 1,q)

〈(a,b)〉qt

〈(a,b)〉qt

D
F−→

The field reduction map F assigns to each point 〈(a,b)〉qt that
element of the Grassmannian G which is given by 〈(a,b)〉qt

(considered as subspace of the vector space F2
qt over Fq).

The image of F is a Desarguesian spread, say D.

The map F is injective.



Linear Sets The projective line over E References

Field reduction map F : PG(1,qt)→ G
PG(1,qt ) PG(2t − 1,q)

〈(a,b)〉qt

〈(a,b)〉qt

D
F−→

The field reduction map F assigns to each point 〈(a,b)〉qt that
element of the Grassmannian G which is given by 〈(a,b)〉qt

(considered as subspace of the vector space F2
qt over Fq).

The image of F is a Desarguesian spread, say D.

The map F is injective.



Linear Sets The projective line over E References

Blow up map B : PG(2t − 1,q)→ PG(1,qt)

PG(1,qt ) PG(2t − 1,q)

〈(a,b)〉qt

〈(a,b)〉q

B←−

The blow up map B assigns to each point 〈(a,b)〉q the point
〈(a,b)〉qt .

The product BF : PG(2t − 1,q) → G takes 〈(a,b)〉q to the only
element of the spread D containing 〈(a,b)〉q.

The map B is not injective (due to t ≥ 2).
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Linear sets

PG(1,qt ) PG(2t − 1,q)

TB

T

B←−

By blowing up all points of an element T ∈ G we obtain a subset
TB of PG(1,qt ), which is called an Fq-linear set of rank t .

The set TBF comprises those elements of the spread D which
intersect T non-trivially.
An element T ∈ G and its corresponding linear set TB are said
to be scattered if the restriction of B to T is injective.
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Scattered linear sets – Two families

PG(1,qt ) PG(2t − 1,q)

TB

T

Th

F−→

B←−

Let T be scattered and write Th := {〈(ah,bh)〉q | 〈(a,b)〉q ∈ T},
where h ∈ Fqt \ {0} =: F∗qt .

Then the families

U(T ) := TBF and U ′(T ) := {Th | h ∈ F∗qt},

constitute two partitions (by elements of G) of the same hyper-
surface of degree t in PG(2t − 1,q).
See M. Lavrauw, J. Sheekey, C. Zanella [15, Prop. 2].
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The projective line over E

We consider the endomorphism ring

E := Endq(Fqt ).

An element (α, β) ∈ E2 is called admissible if it can be
extended to a basis of the left E-module E2.
The projective line over E is the set PG(1,E) of all cyclic
submodules E(α, β) of E2, where (α, β) ∈ E2 is
admissible. The elements of PG(1,E) are called points.
The map

Ψ : PG(1,E)→ G : E(α, β) 7→
{
〈(uα,uβ)〉q | u ∈ F∗qt

}
is a bijection (X. Hubaut [11], Z.-X. Wan [24], and others).
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The distant relation

Let P = E(α, β) and Q = E(γ, δ) be points of PG(1,E).

P and Q are called distant, in symbols P MQ, if
((α, β), (γ, δ)) is a basis of E2.

P MQ if, and only if, the subspaces PΨ and QΨ are skew
(see, among others, A. Blunck [1, Thm. 2.4]).
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Embedding of PG(1,qt) in PG(1,E)

The mapping

Fqt → E : a 7→ (ρa : x 7→ xa)

is a monomorphism of rings taking 1 ∈ Fqt to the identity
1 ∈ E .

This allows us to define an embedding

ι : PG(1,qt )→ PG(1,E) : 〈(a,b)〉qt 7→ E(ρa, ρb).
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Projectivities

Given a matrix (
α β
γ δ

)
∈ GL2(E)

we obtain a projectivity of PG(1,E) by letting

E(ξ, η) 7→ E
(

(ξ, η) ·
(
α β
γ δ

))
and a projectivity of PG(2t − 1,q) by letting

〈(u, v)〉q 7→ 〈(uα + vγ ,uβ + vδ)〉q.

All projectivities of PG(1,E) and PG(2t − 1,q) can be
obtained in this way (S. Lang [13, 642–643]).
The actions of GL2(E) on PG(1,E) and G are isomorphic.
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Dictionary

PG(1,E) Grassmannian G

point T subspace TΨ ∈ G

subline PG(1,qt )ι spread D

LT :=
{

X ∈ PG(1,qt )ι | X 6MT
}

U(TΨ) = (TΨ)BF

L′T =
{

T · diag(ρh, ρh) | h ∈ F∗qt

}
U ′(TΨ)

The sets LT , with T varying in PG(1,E), are precisely the

images under ι of the Fq-linear sets of rank t in PG(1,qt ).
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Linear sets of pseudoregulus type

Let τ be a generator of the Galois group Gal(Fqt/Fq) and write
T0 := E(1, τ). Then LT0 corresponds to a scattered linear set.

A linear set of PG(1,qt ) is said to be of pseudoregulus type if it

is projectively equivalent to the linear set corresponding to T0.

Cf. B. Czajbók, C. Zanella [4],
G. Donati, N. Durante [6],
M. Lavrauw, J. Sheekey, C. Zanella [15],
G. Lunardon, G. Marino, O. Polverino, R. Trombetti [20].
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Main result

Theorem (H. H., C. Zanella [9])

A scattered linear set of PG(1,qt ), t ≥ 3, arising from
T ∈ PG(1,E) is of pseudoregulus type if, and only if, there
exists a projectivity ϕ of PG(1,E) such that LϕT = L′T .

Proof.

“⇐” See M. Lavrauw, J. Sheekey, C. Zanella [15, Cor. 18] or [9].

“⇒” For the most part, the proof can be done neatly in PG(1,E)
using the representation of projectivities in terms of GL2(E) . . .

Essence: We establish the existence of a cyclic group of
projectivities of PG(1,E) acting regularly on LT and fixing L′T
pointwise.
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