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Basic assumptions

@ Let g be a prime power and let t > 2 be an integer.

@ The field with g' elements is denoted by Fq and its unique
subfield of order q is written as IFg.

@ The vector space Fg, over I« determines the projective
line PG(1, g'). Its points have the form

(U, v))q with (0,0) # (u,v) € 2.

@ The vector space Fgr over Iy determines the projective
space PG(2t — 1, q). Its points have the form

(U, v))q with (0,0) # (u,v) € F&.

@ G denotes the Grassmannian of (f — 1)-dimensional
subspaces of PG(2t — 1, q).
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Field reduction map F: PG(1,q) — G

The field reduction map F assigns to each pomt ((a, b)) gt that
element of the Grassmannian G which is given by ((a, b)) 4

(considered as subspace of the vector space Fg, over [Fyg).
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Field reduction map F: PG(1,q) — G

The field reduction map F assigns to each pomt ((a, b)) gt that
element of the Grassmannian G which is given by ((a, b)) 4

(considered as subspace of the vector space Ff], over [Fyg).

The image of F is a Desarguesian spread, say D.
The map F is injective.
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Blow up map B: PG(2t - 1,q) — PG(1,q")
PG(2t - 1,q)

The blow up map B assigns to each point ((a, b))q the point
((a,b))qt-

The product BF: PG(2t — 1,q) — G takes ((a, b))q to the only
element of the spread D containing ((a, b))q.

The map B is not injective (due to t > 2).
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Linear sets

PG(1.q) G2t —1.9)
B 4 4

By blowing up all points of an element T € G we obtain a subset
T5 of PG(1, @'), which is called an F4-linear set of rank t.
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Linear sets

/1// ! ’PG(2t1 .q)

By blowing up all points of an element T € G we obtain a subset
T5 of PG(1, @'), which is called an F4-linear set of rank t.

The set T/ comprises those elements of the spread D which
intersect T non-trivially.

An element T € G and its corresponding linear set T? are said
to be scattered if the restriction of B to T is injective.
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Scattered linear sets — Two families

PG(1. q) v PG(2t - 1,9)
Th

7

B
T8 B
].'
s

Let T be scattered and write Th := {((ah, bh))q | ((a,b))q € T},
where h € Fge \ {0} =: F,.
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Scattered linear sets — Two families

PG(1.q') v PG(2t - 1,9)
Th

7

B
T8 B
f
s

Let T be scattered and write Th := {((ah, bh))q | ((a,b))q € T},
where h € Fge \ {0} =: Ff,. Then the families
U(T):= T and U/(T):={Th| he F},

constitute two partitions (by elements of G) of the same hyper-
surface of degree t in PG(2t — 1, q).
See M. Lavrauw, J. Sheekey, C. Zanella [15, Prop. 2].



@ We consider the endomorphism ring

E := Endg(Fy).



Linear Sets The projective line over E References

The projective line over E

@ We consider the endomorphism ring
E := Endg(F ).

@ An element (o, 8) € E? is called admissible if it can be
extended to a basis of the left E-module E2.



Linear Sets The projective line over E References

The projective line over E

@ We consider the endomorphism ring
E := Endg(F ).

@ An element (o, 8) € E? is called admissible if it can be
extended to a basis of the left E-module E2.

@ The projective line over E is the set PG(1, E) of all cyclic
submodules E(«, 3) of E2, where (a, 5) € E? is
admissible. The elements of PG(1, E) are called points.



Linear Sets The projective line over E References

The projective line over E

@ We consider the endomorphism ring
E := Endg(F ).

@ An element (o, 8) € E? is called admissible if it can be
extended to a basis of the left E-module E2.

@ The projective line over E is the set PG(1, E) of all cyclic
submodules E(«, 3) of E2, where (a, 5) € E? is
admissible. The elements of PG(1, E) are called points.

@ The map
VPG, E) = G : E(a,f) = {<(ua, UP))g | ue Fg,}

is a bijection (X. Hubaut [11], Z.-X. Wan [24], and others).



Let P = E(a, 8) and Q = E(~, ¢) be points of PG(1, E).
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Let P = E(a,3) and Q = E(v, ) be points of PG(1, E).

@ Pand Q are called distant, in symbols P A Q, if
(o, B), (7,9)) is a basis of E2.
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The distant relation

Let P = E(a,3) and Q = E(v, ) be points of PG(1, E).

@ Pand Q are called distant, in symbols P A Q, if
(o, B), (7,9)) is a basis of E2.

@ P Qif, and only if, the subspaces PY and Q¥ are skew
(see, among others, A. Blunck [1, Thm. 2.4]).
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Embedding of PG(1, @) in PG(1, E)

@ The mapping
Fg — E:aw (pa: X — xa)

is @ monomorphism of rings taking 1 € F to the identity
1eE.
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Embedding of PG(1, @) in PG(1, E)

@ The mapping
Fg — E:aw (pa: X — xa)

is @ monomorphism of rings taking 1 € F to the identity
1eE.

@ This allows us to define an embedding

1 :PG(1,q9") — PG(1,E) : ((a, b))t — E(pa, pb)-
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Projectivities

@ Given a matrix

(f’; ?) € GLo(E)

we obtain a projectivity of PG(1, E) by letting

e~ E(€n- (2 5))

and a projectivity of PG(2t — 1, q) by letting

(U V)q = (U™ + V7, 07+ V0))g.
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@ The actions of GLy(E) on PG(1, E) and G are isomorphic.
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Dictionary
PG(1,E) Grassmannian g
point T subspace TV € G

subline PG(1, g!)*

spread D

Ly = {X e PG(1,q") | X4 T}

U(TW) — (T\II)B]-'

Ly = {T - diag(pn, pn) | h € Fiy}

u'(Tv)
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Dictionary
PG(1,E) Grassmannian g
point T subspace TV € G

subline PG(1, g!)*

spread D

Ly = {X e PG(1,q") | X4 T}

U(TW) — (T\II)B]-'

Ly = {T - diag(pn, pn) | h € Fiy}

u'(Tv)

The sets Ly, with T varying in PG(1, E), are precisely the

images under ¢ of the F4-linear sets of rank t in PG(1, g').
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Let 7 be a generator of the Galois group Gal(F4/Fq) and write
To := E(1, 7). Then Ly, corresponds to a scattered linear set.
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Linear sets of pseudoregulus type

Let 7 be a generator of the Galois group Gal(F4/Fq) and write
To := E(1, 7). Then Ly, corresponds to a scattered linear set.

A linear set of PG(1, g') is said to be of pseudoregulus type if it

is projectively equivalent to the linear set corresponding to Ty.

Cf. B. Czajbdk, C. Zanella [4],

G. Donati, N. Durante [6],

M. Lavrauw, J. Sheekey, C. Zanella [15],

G. Lunardon, G. Marino, O. Polverino, R. Trombetti [20].
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Main result

Theorem (H. H., C. Zanella [9])

A scattered linear set of PG(1, q'), t > 3, arising from
T € PG(1, E) is of pseudoregulus type if, and only if, there
exists a projectivity o of PG(1, E) such that L} = L.
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Main result

Theorem (H. H., C. Zanella [9])

A scattered linear set of PG(1, q'), t > 3, arising from
T € PG(1, E) is of pseudoregulus type if, and only if, there
exists a projectivity o of PG(1, E) such that L} = L.

Proof.
“<”" See M. Lavrauw, J. Sheekey, C. Zanella [15, Cor. 18] or [9].

“=" For the most part, the proof can be done neatly in PG(1, E)
using the representation of projectivities in terms of GLo(E) ...

Essence: We establish the existence of a cyclic group of
projectivities of PG(1, E) acting regularly on Ly and fixing L’
pointwise.
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