Strongly Regular Graphs Related to Polar Spaces

Ferdinand Ihringer

Hebrew University of Jerusalem, Jerusalem, Israel

14 September 2017 Fifth Irsee Conference

Definition

A **strongly regular graph** (SRG) with parameters (v, k, λ, μ) is a k-regular graph on ν vertices s.t. two adjacent vertices have λ common neighbours and two non-adjacent vertices have μ common neighbours.

Example $(K_4 \times K_4)$

$$v = 16, k = 6, \lambda = 2, \mu = 2.$$

A New Technique for New SRGs

The Spectrum

Strongly Regular Graphs

000

Definition

A strongly regular graph (SRG) with parameters (v, k, λ, μ) is a k-regular graph on ν vertices s.t. two adjacent vertices have λ common neighbours and two non-adjacent vertices have μ common neighbours.

Lemma

The adjacency matrix of a strongly regular graph has three different eigenvalues k, e^+, e^- , where $k > e^+ > 0 > e^-$.

Given (v, k, λ) one can calculate (k, e^+, e^-) and vice versa.

Godsil-McKay Switching

Question

Strongly Regular Graphs

Is a strongly regular graph uniquely determined by its parameters/spectrum?

A New Technique for New SRGs

Godsil-McKay Switching

Question

Is a strongly regular graph uniquely determined by its parameters/spectrum?

Lemma (Godsil-McKay Switching (simplified))

Let G be a graph. Let $\{X, Y\}$ be a partition of the vertex set of G such that

- each $z \in Y$ is adjacent to 0, |X|/2 or |X| vertices in X,
- each $z \in X$ has the same number of neighbours in X.

Godsil-McKay Switching

Question

Strongly Regular Graphs

Is a strongly regular graph uniquely determined by its parameters/spectrum?

Lemma (Godsil-McKay Switching (simplified))

Let G be a graph. Let $\{X, Y\}$ be a partition of the vertex set of G such that

- each $z \in Y$ is adjacent to 0, |X|/2 or |X| vertices in X,
- each $z \in X$ has the same number of neighbours in X.

Change the adjacencies of $z \in Y$ with |X|/2 neighbours in X:

- Old neighbourhood: N(z).
- New neighbourhood: $N(z) \triangle X$.

The new graph has same spectrum as G. If G is a SRG, then the new graph is an SRG with the same parameters.

Godsil-McKay Switching Example

Example

Strongly Regular Graphs

- The graph $G = K_4 \times K_4$ has v = 16, k = 6, $\lambda = 2$, $\mu = 2$.
- Let X be a coclique of size 4. Then G' is the (strongly regular) Shrikhande graph with $\nu = 16$, k = 6, $\lambda = 2$, $\mu = 2$.

Example (From $K_4 \times K_4$ to the Shrikhande graph)

The Symplectic Polar Space

- Vector space: \mathbb{F}_q^6 .
- Symplectic form: $\sigma(x, y) = x_1y_2 x_2y_1 + x_3y_4 x_4y_3 + x_5y_6 x_6y_5$.

A New Technique for New SRGs

Define Sp(6, q) as follows:

- The **vertices** are the 1-dimensional subspaces of \mathbb{F}_a^6 .
- Two vertices $\langle x \rangle$ and $\langle y \rangle$ are **adjacent** if $\sigma(x,y) = 0$.
- Parameters for q = 2: v = 63, k = 30, $\lambda = 13$, $\mu = 15$.

The Symplectic Polar Space

- Vector space: \mathbb{F}_q^6 .
- Symplectic form: $\sigma(x, y) = x_1y_2 x_2y_1 + x_3y_4 x_4y_3 + x_5y_6 x_6y_5$.

A New Technique for New SRGs

Define Sp(6, q) as follows:

- The **vertices** are the 1-dimensional subspaces of \mathbb{F}_a^6 .
- Two vertices $\langle x \rangle$ and $\langle y \rangle$ are **adjacent** if $\sigma(x,y) = 0$.
- Parameters for q = 2: v = 63, k = 30, $\lambda = 13$, $\mu = 15$.

Theorem (Abiad & Haemers (2015))

The SRG Sp(2d, 2), d > 2, is not determined by (v, k, λ, μ) .

Proof idea for d = 3.

A switching set of size 4 yields a non-isomorphic graph.

To understand this, let's look at Sp(6,2) ...

The following is based on Barwick, Jackson, Penttila (2016).

- Take a 2-space ℓ of Sp(6, 2) (3 vertices).
- There is a 3-space S of Sp(6,2) containing ℓ .

A New Technique for New SRGs

Strongly Regular Graphs

The following is based on Barwick, Jackson, Penttila (2016).

- Take a 2-space ℓ of Sp(6, 2) (3 vertices).
- There is a 3-space S of Sp(6,2) containing ℓ .

A New Technique for New SRGs

- The switching set X consists of the 4 **vertices** of $S \setminus \ell$.
- A vertex x not in S is adjacent to a 2-space ℓ' of S:
 - If $\ell' = \ell$, then x has 0 neighbours in X.
 - If $\ell' \neq \ell$, then x has 2 = |X|/2 neighbours in X.

Godsil-McKay switching applicable!

A New Technique for New SRGs

Strongly Regular Graphs

What about Sp(6, q), q > 2?

The following is based on Barwick, Jackson, Penttila (2016).

- Take a 2-space ℓ of Sp(6, q) (q+1 vertices).
- There is a 3-space S of Sp(6, q) containing ℓ .

- The switching set X consists of the q^2 vertices of $S \setminus \ell$.
- A vertex x not in S is adjacent to a 2-space ℓ' of S:
 - If $\ell' = \ell$, then x has 0 neighbours in X.
 - If $\ell' \neq \ell$, then x has $q \neq q^2/2 = |X|/2$ neighbours in X.

Godsil-McKay switching not applicable!

More Polar Spaces

Strongly Regular Graphs

Finite classical polar spaces are geometries embedded in \mathbb{F}_a^n : 1-spaces (points), 2-spaces (lines), 3-spaces (planes), ..., d-spaces.

- $\Omega^-(2d+2,q)$: Elliptic quadric.
- $\Omega(2d+1,q)$: Parabolic quadric.
- $\Omega^+(2d,q)$: Hyperbolic quadric.
- Sp(2d, q): Symplectic polar space.
- $U(2d, q^2)$: Hermitian polar space.
- $U(2d+1,q^2)$: Hermitian polar space.

(In this talk I usually identify a polar space with its collinearity graph.)

More Results for Polar Spaces

The following results were obtained by Godsil-McKay switching:

Theorem (Kubota (2016))

More non-isomorphic graphs with the same parameters as Sp(2d, 2).

Theorem (Barwick, Jackson, Penttila (2016))

Non-isomorphic graphs with the same parameters as $\Omega^{-}(2d+2,2)$, $\Omega(2d+1,2), \Omega^{+}(2d,2).$

Hui, Rodrigues (2016) have a similar result for related graphs.

More Results for Polar Spaces

The following results were obtained by Godsil-McKay switching:

Theorem (Kubota (2016))

More non-isomorphic graphs with the same parameters as Sp(2d, 2).

Theorem (Barwick, Jackson, Penttila (2016))

Non-isomorphic graphs with the same parameters as $\Omega^{-}(2d+2,2)$, $\Omega(2d+1,2), \Omega^{+}(2d,2).$

Hui, Rodrigues (2016) have a similar result for related graphs.

For all polar spaces and for all q (no switching):

Theorem (Kantor (1982))

Constructs a possibly new SRG with the same parameters as the collinearity graph if there is a partition into d-spaces (spread).

Problem: existence of partitions and non-isomorphy.

A New Technique for New SRGs

A Geometric Construction

Define a SRG as follows:

- The **vertices** are the 2-dimensional subspaces of \mathbb{F}_a^4 .
- Two vertices x and y are **adjacent** if $\dim(x \cap y) = 1$.

Theorem (Jungnickel (1984))

There are many SRGs with the same parameters.

A Geometric Construction

Strongly Regular Graphs

Define a SRG as follows:

- The **vertices** are the 2-dimensional subspaces of \mathbb{F}_a^4 .
- Two vertices x and y are **adjacent** if $\dim(x \cap y) = 1$.

Theorem (Jungnickel (1984))

There are many SRGs with the same parameters.

Idea (ad libitum): Permute the 2-spaces of an affine space while preserving parallel classes.

Vaguely similar ideas: Wallis (1971), Fon-Der-Flaass (2002), Muzychuk (2006), Jungnickel-Tonchev (2009), and surely many more.

Pointed out to me by: Klaus Metsch for a different project (on the MMS conjecture¹ with Karen Meagher).

¹Which I am interested in thanks to Simeon Ball.

Solution for q = 3

S: 3-space.

 ℓ : 2-space in S.

Blue: ℓ . Black: $S \setminus \ell$.

A New Technique for New SRGs

•000

• Consider one of the "problematic" vertices x outside of S.

S: 3-space.

Strongly Regular Graphs

 ℓ : 2-space in S.

Blue: ℓ . Black: $S \setminus \ell$.

•000

- Consider one of the "problematic" vertices x outside of S.
- x is adjacent to a 2-space ℓ' with 3 vertices in S.

Solution for q = 3

S: 3-space.

 ℓ : 2-space in S.

Blue: ℓ . Black: $S \setminus \ell$.

A New Technique for New SRGs

•000

- Consider one of the "problematic" vertices x outside of S.
- x is adjacent to a 2-space ℓ' with 3 vertices in S.
- The complement of ℓ' has too many vertices.

Solution for q = 3

S: 3-space.

 ℓ : 2-space in S.

Blue: ℓ . Black: $S \setminus \ell$.

A New Technique for New SRGs

•000

- Consider one of the "problematic" vertices x outside of S.
- x is adjacent to a 2-space ℓ' with 3 vertices in S.
- The complement of ℓ' has too many vertices.

S: 3-space.

 ℓ : 2-space in S.

Blue: ℓ . Black: $S \setminus \ell$.

A New Technique for New SRGs

•000

- Consider one of the "problematic" vertices x outside of S.
- x is adjacent to a 2-space ℓ' with 3 vertices in S.
- The complement of ℓ' has too many vertices.
- Better: take a 2-space parallel to ℓ' instead of the complement.

Solution: permute parallel classes of subspaces to change adjacency.

New Strongly Regular Graphs

The sketched construction works for ...

- All finite classical polar spaces: Ω^- , Ω , Ω^+ , Sp, U.
- All finite fields \mathbb{F}_a .
- All ranks d > 2 (the dimension of the maximal subspaces, in the examples usually 3).

A New Technique for New SRGs

0000

Theorem (I. (2017))

No collinearity graph of a finite classical polar space with rank at least 3 is **determined** by its parameters (v, k, λ, μ) .

What about non-isomorphy?

A New Technique for New SRGs

0000

Are These New Graphs?

How to distinguish graphs?

- p-ranks (Abiad, Haemers)
- automorphism groups (Barwick, Jackson, Penttila)
- common neighbours of triples ($K_4 \times K_4$ vs Shrikhande graph)

A New Technique for New SRGs

How to distinguish graphs?

- p-ranks (Abiad, Haemers)
- automorphism groups (Barwick, Jackson, Penttila)
- common neighbours of triples ($K_4 \times K_4$ vs Shrikhande graph)

Lemma

Strongly Regular Graphs

A clique of size 3 of Sp(6, q) has $q^3 + q^2 + q - 2$ or $q^2 + q - 2$ neighbours.

Lemma

If the permutation switches exactly two 2-spaces, then the modified graph has a clique of size 3 with $q^3 + q^2 + q - 3$ common neighbours.

0000

What changes?

Strongly Regular Graphs

Take three points such that their (common) neighbours in the affine subspace are as follows:

- Classical Case: Three vertices have one common neighbour in the affine plane.
- Switched Case: Three vertices have **no common neighbour** in the affine plane.

Strongly Regular Graphs

Take three points such that their (common) neighbours in the affine subspace are as follows:

0000

- Classical Case: Three vertices have one common neighbour in the affine plane.
- Switched Case: Three vertices have **no common neighbour** in the affine plane.

What changes?

Take three points such that their (common) neighbours in the affine subspace are as follows:

0000

- Classical Case: Three vertices have one common neighbour in the affine plane.
- Switched Case: Three vertices have **no common neighbour** in the affine plane.

Open Problems

Strongly Regular Graphs

There other strongly regular graphs from finite geometries, e.g. one can use polarities of subgeometries to obtain cospectral graphs:

Theorem (Cossidente, Pavese (2016))

The strongly regular point graph of a GQ(s,t) with $t \in \{s, s\sqrt{s}\}$, s an even power of a prime, is not determined by its spectrum.

Open Problems

There other strongly regular graphs from finite geometries, e.g. one can use polarities of subgeometries to obtain cospectral graphs:

Theorem (Cossidente, Pavese (2016))

The strongly regular point graph of a GQ(s,t) with $t \in \{s, s\sqrt{s}\}$, s an even power of a prime, is not determined by its spectrum.

Related finite geometry problems that are open (as far as I know):

- Other generalized quadrangles.
- 2 There are (slightly exceptional) families of strongly regular graphs defined on defined for $\Omega^{-}(2d-1,3)$, $\Omega^{+}(2d+1,3)$, $\Omega^{-}(2d-1,5)$, and $\Omega^{+}(2d+1,5)$.
- **3** Strongly regular graphs from E_6 .
- Distance-regular graphs from E₇.
- Oistance-regular graphs from maximals of polar spaces.

Strongly Regular Graphs