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Strongly Regular Graphs

Definition

A strongly regular graph (SRG) with parameters (v , k, λ, µ) is a
k-regular graph on v vertices s.t. two adjacent vertices have λ common
neighbours and two non-adjacent vertices have µ common neighbours.

Example (K4 × K4)

v = 16, k = 6, λ = 2, µ = 2.
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The Spectrum

Definition

A strongly regular graph (SRG) with parameters (v , k, λ, µ) is a
k-regular graph on v vertices s.t. two adjacent vertices have λ common
neighbours and two non-adjacent vertices have µ common neighbours.

Lemma

The adjacency matrix of a strongly regular graph has three different
eigenvalues k, e+, e−, where k > e+ > 0 > e−.

Given (v , k, λ) one can calculate (k , e+, e−) and vice versa.
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Godsil-McKay Switching

Question

Is a strongly regular graph uniquely determined by its
parameters/spectrum?

Lemma (Godsil-McKay Switching (simplified))

Let G be a graph. Let {X ,Y } be a partition of the vertex set of G
such that

each z ∈ Y is adjacent to 0, |X |/2 or |X | vertices in X ,

each z ∈ X has the same number of neighbours in X .

Change the adjacencies of z ∈ Y with |X |/2 neighbours in X :

Old neighbourhood: N(z).

New neighbourhood: N(z)4 X .

The new graph has same spectrum as G . If G is a SRG, then the new
graph is an SRG with the same parameters.
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Godsil-McKay Switching Example

Example

The graph G = K4 × K4 has v = 16, k = 6, λ = 2, µ = 2.

Let X be a coclique of size 4. Then G ′ is the (strongly regular)
Shrikhande graph with v = 16, k = 6, λ = 2, µ = 2.

Example (From K4 × K4 to the Shrikhande graph)
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The Symplectic Polar Space

Vector space: F6
q.

Symplectic form: σ(x , y) = x1y2 − x2y1 + x3y4 − x4y3 + x5y6 − x6y5.

Define Sp(6, q) as follows:

The vertices are the 1-dimensional subspaces of F6
q.

Two vertices 〈x〉 and 〈y〉 are adjacent if σ(x , y) = 0.

Parameters for q = 2: v = 63, k = 30, λ = 13, µ = 15.

Theorem (Abiad & Haemers (2015))

The SRG Sp(2d , 2), d > 2, is not determined by (v , k, λ, µ).

Proof idea for d = 3.

A switching set of size 4 yields a non-isomorphic graph.

To understand this, let’s look at Sp(6, 2) . . .
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One Possible Switching Set?

The following is based on Barwick, Jackson, Penttila (2016).

Take a 2-space ` of Sp(6, 2) (3 vertices).

There is a 3-space S of Sp(6, 2) containing `.

The switching set X consists of the 4 vertices of S \ `.
A vertex x not in S is adjacent to a 2-space `′ of S :

If `′ = `, then x has 0 neighbours in X .
If `′ 6= `, then x has 2 = |X |/2 neighbours in X .

Godsil-McKay switching applicable! :-)
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What about Sp(6, q), q > 2?

The following is based on Barwick, Jackson, Penttila (2016).

Take a 2-space ` of Sp(6, q) (q + 1 vertices).

There is a 3-space S of Sp(6, q) containing `.

The switching set X consists of the q2 vertices of S \ `.
A vertex x not in S is adjacent to a 2-space `′ of S :

If `′ = `, then x has 0 neighbours in X .
If `′ 6= `, then x has q 6= q2/2 = |X |/2 neighbours in X .

Godsil-McKay switching not applicable! :-(
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More Polar Spaces

Finite classical polar spaces are geometries embedded in Fn
q: 1-spaces

(points), 2-spaces (lines), 3-spaces (planes), . . . , d-spaces.

Ω−(2d + 2, q): Elliptic quadric.

Ω(2d + 1, q): Parabolic quadric.

Ω+(2d , q): Hyperbolic quadric.

Sp(2d , q): Symplectic polar space.

U(2d , q2): Hermitian polar space.

U(2d + 1, q2): Hermitian polar space.

(In this talk I usually identify a polar space with its collinearity graph.)
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More Results for Polar Spaces

The following results were obtained by Godsil-McKay switching:

Theorem (Kubota (2016))

More non-isomorphic graphs with the same parameters as Sp(2d , 2).

Theorem (Barwick, Jackson, Penttila (2016))

Non-isomorphic graphs with the same parameters as Ω−(2d + 2, 2),
Ω(2d + 1, 2), Ω+(2d , 2).

Hui, Rodrigues (2016) have a similar result for related graphs.

For all polar spaces and for all q (no switching):

Theorem (Kantor (1982))

Constructs a possibly new SRG with the same parameters as the
collinearity graph if there is a partition into d-spaces (spread).

Problem: existence of partitions and non-isomorphy.
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A Geometric Construction

Define a SRG as follows:

The vertices are the 2-dimensional subspaces of F4
q.

Two vertices x and y are adjacent if dim(x ∩ y) = 1.

Theorem (Jungnickel (1984))

There are many SRGs with the same parameters.

Idea (ad libitum): Permute the 2-spaces of an affine space while
preserving parallel classes.

Vaguely similar ideas: Wallis (1971), Fon-Der-Flaass (2002),
Muzychuk (2006), Jungnickel–Tonchev (2009), and surely many more.

Pointed out to me by: Klaus Metsch for a different project (on the
MMS conjecture1 with Karen Meagher).

1
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Solution for q = 3

S : 3-space.
`: 2-space in S .

Blue: `. Black: S \ `.

Consider one of the “problematic” vertices x outside of S .

x is adjacent to a 2-space `′ with 3 vertices in S .

The complement of `′ has too many vertices.

Better: take a 2-space parallel to `′ instead of the complement.

Solution: permute parallel classes of subspaces to change adjacency.
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New Strongly Regular Graphs

The sketched construction works for . . .

All finite classical polar spaces: Ω−, Ω, Ω+, Sp, U.

All finite fields Fq.

All ranks d > 2 (the dimension of the maximal subspaces, in the
examples usually 3).

Theorem (I. (2017))

No collinearity graph of a finite classical polar space with rank at least 3
is determined by its parameters (v , k , λ, µ).

What about non-isomorphy?
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Are These New Graphs?

How to distinguish graphs?

p-ranks (Abiad, Haemers)

automorphism groups (Barwick, Jackson, Penttila)

common neighbours of triples (K4 × K4 vs Shrikhande graph)

Lemma

A clique of size 3 of Sp(6, q) has q3 + q2 + q− 2 or q2 + q− 2 neighbours.

Lemma

If the permutation switches exactly two 2-spaces, then the modified
graph has a clique of size 3 with q3 + q2 + q − 3 common neighbours.
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What changes?

Take three points such that their (common) neighbours in the affine
subspace are as follows:

1

2

3

Classical Case: Three vertices have one common neighbour in the
affine plane.

Switched Case: Three vertices have no common neighbour in the
affine plane.
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Open Problems

There other strongly regular graphs from finite geometries, e.g. one can
use polarities of subgeometries to obtain cospectral graphs:

Theorem (Cossidente, Pavese (2016))

The strongly regular point graph of a GQ(s, t) with t ∈ {s, s
√

s}, s an
even power of a prime, is not determined by its spectrum.

Related finite geometry problems that are open (as far as I know):

1 Other generalized quadrangles.

2 There are (slightly exceptional) families of strongly regular graphs
defined on defined for Ω−(2d − 1, 3), Ω+(2d + 1, 3), Ω−(2d − 1, 5),
and Ω+(2d + 1, 5).

3 Strongly regular graphs from E6.

4 Distance-regular graphs from E7.

5 Distance-regular graphs from maximals of polar spaces.
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Thank you for your attention!
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