Extension Sets, Affine Designs, and Hamada's Conjecture

Dieter Jungnickel University of Augsburg

(Joint work with Yue Zhou and Vladimir D. Tonchev)

Finite Geometries, Fifth Irsee Conference Sept. 12, 2017

Overview

- 1. Background: Designs with Classical Parameters
- 2. Background: Hamada's Conjecture
- 3. Extension Sets and Affine Designs
- 4. Examples: Near-pencils
- 5. Examples: Line Ovals
- 6. Linear Extension Sets
- 7. Problems

Designs and Gaussian Coefficients

Let V be a set of cardinality v, and let \mathcal{B} be a subset of $\mathcal{P}(V)$. One calls

- \blacksquare the elements of V points, and
- \blacksquare the elements of \mathcal{B} blocks.

The pair (V, \mathcal{B}) is said to be a (v, k, λ) -design provided that:

- \blacksquare Each block contains exactly k points.
- Given any two distinct points, there are exactly λ blocks containing both points.

Designs and Gaussian Coefficients

Let V be a set of cardinality v, and let \mathcal{B} be a subset of $\mathcal{P}(V)$. One calls

- \blacksquare the elements of V points, and
- \blacksquare the elements of \mathcal{B} blocks.

The pair (V, \mathcal{B}) is said to be a (v, k, λ) -design provided that:

- \blacksquare Each block contains exactly k points.
- Given any two distinct points, there are exactly λ blocks containing both points.

The Gaussian coefficient $\begin{bmatrix} n \\ i \end{bmatrix}_q$ is the number of *i*-dimensional subspaces of an *n*-dimensional vector space over GF(q):

$${n \brack i}_q = \frac{(q^n - 1)(q^{n-1} - 1)\cdots(q^{n-i+1} - 1)}{(q^i - 1)(q^{i-1} - 1)\cdots(q - 1)}$$

Geometric Designs

Let $\Sigma = AG(n,q)$ be the *n*-dimensional affine space over GF(q).

The points and d-spaces of Σ form a resolvable 2- (v,k,λ) design $\mathcal{D}=AG_d(n,q)$ with parameters

$$v = q^n, \quad k = q^d, \quad \lambda = \begin{bmatrix} n-1 \\ d-1 \end{bmatrix}_q,$$
 $r = \begin{bmatrix} n \\ d \end{bmatrix}_q, \quad b = r \cdot q^{n-d}.$

These designs – and their projective analogues $PG_d(n,q)$ – are called classical or geometric.

Designs with Classical Parameters

Theorem. (DJ 1984,2011, DJ & VDT 2009, 2011, DJ & KM 2016) Let q be any prime power and d an integer in the range $1 \le d \le n-1$. If we fix either d or n-d, then the number of (resolvable) non-isomorphic designs having the same parameters as $AG_d(n,q)$ or $PG_d(n,q)$ grows exponentially with linear growth of n.

Designs with Classical Parameters

Theorem. (DJ 1984,2011, DJ & VDT 2009, 2011, DJ & KM 2016) Let q be any prime power and d an integer in the range $1 \le d \le n-1$. If we fix either d or n-d, then the number of (resolvable) non-isomorphic designs having the same parameters as $AG_d(n,q)$ or $PG_d(n,q)$ grows exponentially with linear growth of n.

Example.
$$(n = 3, q = 4, d = 1, 2)$$

There are at least

$$2^{19} \cdot 3^{12} \cdot 5^7 \cdot 7^7 \cdot 143^4 > 10^{30}$$

non-isomorphic resolvable 2-(64,4,1) designs. (DJ & KM 2016)

There are at least 21,621,600 non-isomorphic resolvable 2-(64,16,5) designs. (Harada, Lam & VDT 2003)

Codes from Designs

Let $\mathcal{D}=(V,\mathcal{B},I)$ be a (v,k,λ) -design and label the points as p_1,\ldots,p_v and the blocks as B_1,\ldots,B_b . The matrix $M=(m_{ij})_{i=1,\ldots,b;\,j=1,\ldots,v}$ defined by

$$m_{ij} := \begin{cases} 1 & \text{if } p_j \in B_i \\ 0 & \text{otherwise} \end{cases}$$

is called an *incidence matrix* for \mathcal{D} . The row of M belonging to a block B is called the *incidence vector* of B.

Codes from Designs

Let $\mathcal{D}=(V,\mathcal{B},I)$ be a (v,k,λ) -design and label the points as p_1,\ldots,p_v and the blocks as B_1,\ldots,B_b . The matrix $M=(m_{ij})_{i=1,\ldots,b;\,j=1,\ldots,v}$ defined by

$$m_{ij} := \begin{cases} 1 & \text{if } p_j \in B_i \\ 0 & \text{otherwise} \end{cases}$$

is called an *incidence matrix* for \mathcal{D} . The row of M belonging to a block B is called the *incidence vector* of B.

Now let F be some field. The F-vector space spanned by the rows of M is called the (block) code of \mathcal{D} over F and will be denoted by $\mathcal{C}_F(\mathcal{D})$.

For most fields, this notion is not interesting:

The p-rank

Proposition. Assume v > k. Then M has rank v over any field of characteristic 0 as well as over any field of characteristic p, where p is a prime not dividing any of the numbers r, k and $n := r - \lambda$.

Moreover, If p divides one of r or k, but not n, the rank of M over F is either v or v-1.

The p-rank

Proposition. Assume v > k. Then M has rank v over any field of characteristic 0 as well as over any field of characteristic p, where p is a prime not dividing any of the numbers r, k and $n := r - \lambda$.

Moreover, If p divides one of r or k, but not n, the rank of M over F is either v or v-1.

Assume that F has a prime characteristic p dividing n. One calls rank M = dim $\mathcal{C}_F(\mathcal{D})$ the p-rank of \mathcal{D} .

For designs with classical parameters, the natural choice for p is the characteristic of GF(q).

The p-rank

Proposition. Assume v > k. Then M has rank v over any field of characteristic 0 as well as over any field of characteristic p, where p is a prime not dividing any of the numbers r, k and $n := r - \lambda$.

Moreover, If p divides one of r or k, but not n, the rank of M over F is either v or v-1.

Assume that F has a prime characteristic p dividing n. One calls rank M = dim $C_F(\mathcal{D})$ the p-rank of \mathcal{D} .

For designs with classical parameters, the natural choice for p is the characteristic of GF(q).

Explicit summation formulas for the p-rank of the incidence matrix of a geometric design were given by Hamada in 1968.

Hamada's Conjecture

The following conjecture was proposed by Hamada in 1973:

Conjecture. Let \mathcal{D} be a design with the parameters of a geometric design $PG_d(n,q)$ or $AG_d(n,q)$, where q is a power of a prime p.

Then the p-rank of the incidence matrix of \mathcal{D} is greater than or equal to the p-rank of the corresponding geometric design. (Weak Hamada Conjecture)

Hamada's Conjecture

The following conjecture was proposed by Hamada in 1973:

Conjecture. Let \mathcal{D} be a design with the parameters of a geometric design $PG_d(n,q)$ or $AG_d(n,q)$, where q is a power of a prime p.

Then the p-rank of the incidence matrix of \mathcal{D} is greater than or equal to the p-rank of the corresponding geometric design. (Weak Hamada Conjecture)

Moreover, equality holds if and only if \mathcal{D} is isomorphic to the geometric design. (Strong Hamada Conjecture)

The significance of Hamada's Conjecture:

It indicates that the geometric designs are the best choice for the construction of majority-logic decodable codes.

The significance of Hamada's Conjecture:

- It indicates that the geometric designs are the best choice for the construction of majority-logic decodable codes.
- It provides a computationally simple characterization of geometric designs.

The significance of Hamada's Conjecture:

- It indicates that the geometric designs are the best choice for the construction of majority-logic decodable codes.
- It provides a computationally simple characterization of geometric designs.
- It implies that any finite projective plane of prime order is Desarguesian.

Hamada's Conjecture (in its strong version) is known to hold for the designs corresponding to the following cases:

- hyperplanes in a binary projective or affine space (Hamada & Ohmori 1975);
- lines in a binary projective or ternary affine space (Doyen, Hubaut & Vandensavel 1978);
- planes in a binary affine space (Teirlinck 1980).

- four 2-(31,7,7) designs with the same parameters as $PG_2(4,2)$, all of 2-rank 16 (Tonchev 1986);
- four 3-(32, 8, 7) designs with the same parameters as $AG_3(5, 2)$, all of 2-rank 16 (Tonchev 1986);

- four 2-(31, 7, 7) designs with the same parameters as $PG_2(4, 2)$, all of 2-rank 16 (Tonchev 1986);
- four 3-(32, 8, 7) designs with the same parameters as $AG_3(5, 2)$, all of 2-rank 16 (Tonchev 1986);
- two 2-(64, 16, 5) designs with the same parameters as $AG_2(3, 4)$, all of 2-rank 16 (Harada, Lam and Tonchev 2005).

- four 2-(31, 7, 7) designs with the same parameters as $PG_2(4, 2)$, all of 2-rank 16 (Tonchev 1986);
- four 3-(32, 8, 7) designs with the same parameters as $AG_3(5, 2)$, all of 2-rank 16 (Tonchev 1986);
- two 2-(64, 16, 5) designs with the same parameters as $AG_2(3, 4)$, all of 2-rank 16 (Harada, Lam and Tonchev 2005).

Theorem (DJ & VDT 2009). Let q = p be a prime, and let $d \ge 2$. Then there exists a design with the same parameters and the same p-rank as, but not isomorphic to, the geometric design $PG_d(2d, p)$.

- four 2-(31, 7, 7) designs with the same parameters as $PG_2(4, 2)$, all of 2-rank 16 (Tonchev 1986);
- four 3-(32, 8, 7) designs with the same parameters as $AG_3(5, 2)$, all of 2-rank 16 (Tonchev 1986);
- two 2-(64, 16, 5) designs with the same parameters as $AG_2(3, 4)$, all of 2-rank 16 (Harada, Lam and Tonchev 2005).

Theorem (DJ & VDT 2009). Let q = p be a prime, and let $d \ge 2$. Then there exists a design with the same parameters and the same p-rank as, but not isomorphic to, the geometric design $PG_d(2d, p)$.

Theorem (Clark, DJ & VDT 2010). Let $d \ge 2$. Then there exists a design with the same parameters and the same 2-rank as, but not isomorphic to, the geometric design $AG_{d+1}(2d+1,2)$.

Good blocks

- lacksquare an affine design with the parameters of $AG_2(3,q)$
- A block B is called good if the incidence structure $\mathcal{D}(B)$ induced on B by the intersections of non-parallel blocks is a q-fold multiple of an affine plane A.

Good blocks

- lacksquare \mathcal{D} an affine design with the parameters of $AG_2(3,q)$
- A block B is called good if the incidence structure $\mathcal{D}(B)$ induced on B by the intersections of non-parallel blocks is a q-fold multiple of an affine plane A.
- lacksquare \mathcal{D}_B the residual structure induced on the points not in B
- lacksquare View blocks parallel to B as "groups" in \mathcal{D}_B
- lacksquare \mathcal{D}_B becomes a resolvable GDD \mathcal{E} with parameters

$$m = q - 1, n = q^2, k = q^2 - q, \lambda_1 = q, \lambda_2 = q + 1$$

Good blocks

- \mathcal{D} an affine design with the parameters of $AG_2(3,q)$
- A block B is called good if the incidence structure $\mathcal{D}(B)$ induced on B by the intersections of non-parallel blocks is a q-fold multiple of an affine plane A.
- lacksquare \mathcal{D}_B the residual structure induced on the points not in B
- lacksquare View blocks parallel to B as "groups" in \mathcal{D}_B
- lacksquare \mathcal{D}_B becomes a resolvable GDD \mathcal{E} with parameters

$$m = q - 1$$
, $n = q^2$, $k = q^2 - q$, $\lambda_1 = q$, $\lambda_2 = q + 1$

- lacksquare bundle -q blocks of $\mathcal D$ intersecting B in a fixed line ℓ of $\mathcal A$
- The bundles give a second resolution of \mathcal{E} , orthogonal to the natural parallelism.

Extension sets

An extension set for \mathcal{A} is a collection \mathcal{F} of q^2 sets of lines of \mathcal{A} , called factors, such that

- (F1) Each factor in $\mathcal F$ contains precisely one line from each parallel class of $\mathcal A$.
- (F2) Any two distinct factors in \mathcal{F} have precisely one line of \mathcal{A} in common.

Extension sets

An extension set for A is a collection F of q^2 sets of lines of A, called factors, such that

- (F1) Each factor in $\mathcal F$ contains precisely one line from each parallel class of $\mathcal A$.
- (F2) Any two distinct factors in \mathcal{F} have precisely one line of \mathcal{A} in common.

Examples.

- pencil type: Associate with each point p of \mathcal{A} the factor F_p consisting of the q+1 lines through p.
- translation type: Choose a first factor F by selecting an arbitrary line from each parallel class of A, and then apply the translation group T of A to obtain q^2 factors.

Lemma.

Define a new incidence structure \mathcal{A}' as follows:

- \blacksquare The points are the factors in \mathcal{F} .
- \blacksquare The lines are the lines of \mathcal{A} .
- A point (= factor F) is incident with a line ℓ if and only if $\ell \in F$.

Lemma.

Define a new incidence structure A' as follows:

- \blacksquare The points are the factors in \mathcal{F} .
- \blacksquare The lines are the lines of \mathcal{A} .
- A point (= factor F) is incident with a line ℓ if and only if $\ell \in F$.

Then \mathcal{A}' is an affine plane of order q with the same line set.

Two distinct lines are parallel in \mathcal{A}' if and only if they are parallel in \mathcal{A} .

Modify \mathcal{D} as follows:

- lacksquare Consider the groups of $\mathcal E$ again as blocks.
- lacksquare Adjoin the factors in $\mathcal F$ to $\mathcal E$ as new points, forming a new block B'.
- Let a new point F be incident with the q(q+1) blocks of \mathcal{E} in the q+1 bundles determined by the lines in F.

Modify \mathcal{D} as follows:

- lacksquare Consider the groups of $\mathcal E$ again as blocks.
- Adjoin the factors in \mathcal{F} to \mathcal{E} as new points, forming a new block B'.
- Let a new point F be incident with the q(q+1) blocks of \mathcal{E} in the q+1 bundles determined by the lines in F.

Every block of \mathcal{D}_B is a point set of the form $C \setminus \ell$ for a unique block C of \mathcal{D} , where the intersection $\ell = C \cap B$ of the good block B with C is a line of the affine plane \mathcal{A} induced on B.

Then $C \setminus \ell$ is extended to a block C' of the new incidence structure \mathcal{D}' by adjoining the q points of the line ℓ considered as a line of \mathcal{A}' , that is, by adjoining the q factors in \mathcal{F} containing ℓ .

Theorem.

The new incidence structure $\mathcal{D}' = \mathcal{D}'(\mathcal{F})$ is an affine design with the same parameters as \mathcal{D} .

B' is a good block of \mathcal{D}' such that

- $\mathcal{D}'(B')$ is the q-fold multiple of \mathcal{A}' ;

Theorem.

The new incidence structure $\mathcal{D}' = \mathcal{D}'(\mathcal{F})$ is an affine design with the same parameters as \mathcal{D} .

B' is a good block of \mathcal{D}' such that

- $\mathcal{D}'(B')$ is the q-fold multiple of \mathcal{A}' ;

If $\mathcal{D} = AG_2(3,q)$, where $q \geq 3$, and if \mathcal{F} is not of pencil type, then \mathcal{D}' is not isomorphic to \mathcal{D} .

Assume that \mathcal{F} is of translation type. Then the lines in \mathcal{D}' are as follows:

- A line ℓ of \mathcal{D} which is not parallel to B loses the point $B \cap \ell$ in \mathcal{D}' and becomes a line of size q-1.
- The lines in B' have size q in \mathcal{D}' .
- lacktriangle The lines of $\mathcal D$ parallel to, but not in, B remain unchanged in $\mathcal D'$.
- A point in B' and a point of \mathcal{D}_B always determine a line of size 2 in \mathcal{D}' .

Assume that \mathcal{F} is of translation type. Then the lines in \mathcal{D}' are as follows:

- A line ℓ of \mathcal{D} which is not parallel to B loses the point $B \cap \ell$ in \mathcal{D}' and becomes a line of size q-1.
- The lines in B' have size q in \mathcal{D}' .
- lacktriangle The lines of $\mathcal D$ parallel to, but not in, B remain unchanged in $\mathcal D'$.
- A point in B' and a point of \mathcal{D}_B always determine a line of size 2 in \mathcal{D}' .

Hence the good blocks of \mathcal{D}' are B' and its parallel blocks.

Nearpencils

Replacing the line [0,b] of the pencil through the point (a,b) by [0,b-1] gives the *nearpencil* through (a,b):

The q^2 nearpencils form an extension set of translation type.

Nearpencils

Theorem. Let \mathcal{D} be a classical affine design $AG_2(3,q)$, where $q=p^n\geq 3$ and p is a prime. Let B be an arbitrary block of \mathcal{D} , and let \mathcal{F} be the extension set of nearpencil type.

Then the affine design $\mathcal{D}'=\mathcal{D}'(\mathcal{F})$ has the same parameters as \mathcal{D} , and its p-rank exceeds that of \mathcal{D} by an integer d satisfying

$$1 \le d \le q - p^{n-1} - 1.$$

Nearpencils

Theorem. Let \mathcal{D} be a classical affine design $AG_2(3,q)$, where $q=p^n\geq 3$ and p is a prime. Let B be an arbitrary block of \mathcal{D} , and let \mathcal{F} be the extension set of nearpencil type.

Then the affine design $\mathcal{D}'=\mathcal{D}'(\mathcal{F})$ has the same parameters as \mathcal{D} , and its p-rank exceeds that of \mathcal{D} by an integer d satisfying

$$1 \le d \le q - p^{n-1} - 1.$$

The bounds coincide for $q \in \{3, 4\}$.

Nearpencils

Theorem. Let \mathcal{D} be a classical affine design $AG_2(3,q)$, where $q=p^n\geq 3$ and p is a prime. Let B be an arbitrary block of \mathcal{D} , and let \mathcal{F} be the extension set of nearpencil type.

Then the affine design $\mathcal{D}'=\mathcal{D}'(\mathcal{F})$ has the same parameters as \mathcal{D} , and its p-rank exceeds that of \mathcal{D} by an integer d satisfying

$$1 \le d \le q - p^{n-1} - 1.$$

- The bounds coincide for $q \in \{3, 4\}$.
- The p-rank of \mathcal{D}' attains the upper bound for all $q \leq 19$.

Line ovals

Let \mathcal{F} be an extension set in \mathcal{A} for which every point is on at most two lines from any given factor: the factors are *line ovals*.

Line ovals

Let \mathcal{F} be an extension set in \mathcal{A} for which every point is on at most two lines from any given factor: the factors are *line ovals*.

- Any line oval in \mathcal{A} determines a maximal arc of degree q/2, namely the q(q-1)/2 points which are not contained in any of its lines (and conversely).
- Let A = AG(2,q), and choose the line oval F as the affine part of a regular dual hyperoval in PG(2,q). Then F is a *line conic*.

Line ovals

Theorem (Kantor 1975).

An extension set of translation type determined by a line oval F is the set of blocks of a symmetric design S with parameters

$$v = q^2$$
, $k = \frac{1}{2}q(q+1)$ and $\lambda = \frac{1}{4}q(q+2)$.

Assume that A = AG(2,q) and that F is a line conic. Then S admits a 2-transitive automorphism group G.

Theorem.

Let B be a block of the affine design $\mathcal{D} = AG_2(3,4)$, and let \mathcal{F} be an extension set determined by a line conic in the affine plane \mathcal{A} of order 4 induced on B.

Then the affine design $\mathcal{D}' = \mathcal{D}'(\mathcal{F})$ is not isomorphic to \mathcal{D} , but has the same parameters and the same 2-rank as \mathcal{D} .

Theorem.

- Let B be a block of the affine design $\mathcal{D} = AG_2(3,4)$, and let \mathcal{F} be an extension set determined by a line conic in the affine plane \mathcal{A} of order 4 induced on B.
 - Then the affine design $\mathcal{D}' = \mathcal{D}'(\mathcal{F})$ is not isomorphic to \mathcal{D} , but has the same parameters and the same 2-rank as \mathcal{D} .
- Let \widetilde{B} be one of the three good blocks of \mathcal{D}' distinct from B', and let $\widetilde{\mathcal{F}}$ be an extension set determined by a line conic in the affine plane $\widetilde{\mathcal{A}}$ of order 4 induced on \widetilde{B} .
 - Then the affine design $\mathcal{D}''=\mathcal{D}''(\widetilde{\mathcal{F}})$ is not isomorphic to either \mathcal{D} or \mathcal{D}' , but has the same parameters and the same 2-rank.

Theorem.

- Let B be a block of the affine design $\mathcal{D} = AG_2(3,4)$, and let \mathcal{F} be an extension set determined by a line conic in the affine plane \mathcal{A} of order 4 induced on B.
 - Then the affine design $\mathcal{D}' = \mathcal{D}'(\mathcal{F})$ is not isomorphic to \mathcal{D} , but has the same parameters and the same 2-rank as \mathcal{D} .
- Let \widetilde{B} be one of the three good blocks of \mathcal{D}' distinct from B', and let $\widetilde{\mathcal{F}}$ be an extension set determined by a line conic in the affine plane $\widetilde{\mathcal{A}}$ of order 4 induced on \widetilde{B} .
 - Then the affine design $\mathcal{D}''=\mathcal{D}''(\widetilde{\mathcal{F}})$ is not isomorphic to either \mathcal{D} or \mathcal{D}' , but has the same parameters and the same 2-rank.
- Iterating the construction two more times gives an affine design \mathcal{D}''' isomorphic to \mathcal{D}' , and then an affine design isomorphic to \mathcal{D} .

Essential steps:

- \blacksquare \mathcal{D} has 2-rank 16.
- ${f D}_B$ is linearly embeddable in ${\cal D}$: it has 2-rank 15=16-1.

Essential steps:

- \square D has 2-rank 16.
- \mathcal{D}_B is *linearly embeddable* in \mathcal{D} : it has 2-rank 15 = 16 1.

 Note: The residual designs of $AG_{n-1}(n,q)$ and of $PG_{n-1}(n,q)$ are always linearly embeddable. (Tonchev 2016)

Essential steps:

- \blacksquare \mathcal{D} has 2-rank 16.
- \mathcal{D}_B is *linearly embeddable* in \mathcal{D} : it has 2-rank 15 = 16 1.

 Note: The residual designs of $AG_{n-1}(n,q)$ and of $PG_{n-1}(n,q)$ are always linearly embeddable. (Tonchev 2016)
- \blacksquare An incidence matrix M for \mathcal{D} :

- Let C be the code spanned by the last 48 rows of M. Then the sum $\mathbf{r}_p + \mathbf{r}_{p'}$ of any two of the first 16 row vectors belongs to C.
- It suffices to prove the analogous statement for any two of the first 16 row vectors of a corresponding incidence matrix M' for \mathcal{D}' .
- Check that the sum $\mathbf{s} = \mathbf{r}_F + \mathbf{r}_{F'}$ of any two "oval vectors" (with $F, F' \in \mathcal{F}$) can also be written as the sum $\mathbf{r}_p + \mathbf{r}_{p'}$ of two "pencil vectors".

- Let \mathcal{C} be the code spanned by the last 48 rows of M. Then the sum $\mathbf{r}_p + \mathbf{r}_{p'}$ of any two of the first 16 row vectors belongs to \mathcal{C} .
- It suffices to prove the analogous statement for any two of the first 16 row vectors of a corresponding incidence matrix M' for \mathcal{D}' .
- Check that the sum $\mathbf{s} = \mathbf{r}_F + \mathbf{r}_{F'}$ of any two "oval vectors" (with $F, F' \in \mathcal{F}$) can also be written as the sum $\mathbf{r}_p + \mathbf{r}_{p'}$ of two "pencil vectors".
- lacksquare Show that the residual structure $\mathcal{D}_{\widetilde{B}}$ is linearly embeddable in \mathcal{D}' .
- Then an analogous proof works for \mathcal{D}'' .

An extension set in $\mathcal{A}=AG(2,q)$ is called *linear* if it yields a non-classical linear embedding of the residual structure $RAG_2(3,q)$ of $AG_2(3,q)$.

Example: The extension set defined by a line conic in AG(2,4) is linear.

An extension set in $\mathcal{A}=AG(2,q)$ is called *linear* if it yields a non-classical linear embedding of the residual structure $RAG_2(3,q)$ of $AG_2(3,q)$.

Example: The extension set defined by a line conic in AG(2,4) is linear.

Example: The extension sets defined by a line conic in AG(2,8) and by a line conic or the Lunelli-Sce hyperoval in AG(2,16) are not linear:

- $\mathcal{D} = AG_2(3,8)$ has 2-rank 64, but \mathcal{D}' has 2-rank 70;
- $\mathcal{D} = AG_2(3, 16)$ has 2-rank 256, but \mathcal{D}' has 2-rank 280 resp. 288.

Theorem.

Let $q \geq 3$ be a prime power, and let \mathcal{F} be a linear extension set for the classical affine plane $\mathcal{A} = AG(2,q)$ which is not of pencil type.

Then necessarily q=4, and \mathcal{F} belongs to a line conic in AG(2,4).

Theorem.

Let $q \geq 3$ be a prime power, and let \mathcal{F} be a linear extension set for the classical affine plane $\mathcal{A} = \mathrm{AG}(2,q)$ which is not of pencil type.

Then necessarily q=4, and \mathcal{F} belongs to a line conic in AG(2,4).

Corollary.

The class of affine designs with the parameters of some $AG_2(3,q)$, where $q \geq 5$, which arise from $RAG_2(3,q)$ and some extension set for AG(2,q) satisfies Hamada's conjecture.

The essential tool:

Theorem. (Polverino and Zullo 2016)

Let C be the block code of some classical symmetric design $PG_{d-1}(d,q)$.

Then the minimum weight of C is $q^{d-1} + \cdots + q + 1$, and the second smallest weight is $2q^{d-1}$.

The essential tool:

Theorem. (Polverino and Zullo 2016)

Let C be the block code of some classical symmetric design $PG_{d-1}(d,q)$.

Then the minimum weight of \mathcal{C} is $q^{d-1}+\cdots+q+1$, and the second smallest weight is $2q^{d-1}$.

Moreover, all codewords of minimum weight belong to incidence vectors of hyperplanes,

The essential tool:

Theorem. (Polverino and Zullo 2016)

Let C be the block code of some classical symmetric design $PG_{d-1}(d,q)$.

Then the minimum weight of C is $q^{d-1} + \cdots + q + 1$, and the second smallest weight is $2q^{d-1}$.

Moreover, all codewords of minimum weight belong to incidence vectors of hyperplanes,

and all codewords of weight $2q^{d-1}$ arise from the difference of the incidence vectors of two distinct hyperplanes (up to scalar multiples).

Corollary.

Let C be the point code of some classical affine design $AG_{d-1}(d,q)$.

Then the minimum weight of C is $q^{d-1} + \cdots + q + 1$, and the second smallest weight is $2q^{d-1}$.

Moreover, all codewords of minimum weight belong to incidence vectors of points, and all codewords of weight $2q^{d-1}$ arise from the difference of the incidence vectors of two distinct points (up to scalar multiples).

■ The weak version of Hamada's conjecture is still entirely open.

- The weak version of Hamada's conjecture is still entirely open.
- Find infinite families of counterexamples to the strong version of the conjecture when q is not a prime.
- Can one find an infinite series of counterexamples for the cases $AG_{d-1}(d,4)$?

- The weak version of Hamada's conjecture is still entirely open.
- Find infinite families of counterexamples to the strong version of the conjecture when q is not a prime.
- Can one find an infinite series of counterexamples for the cases $AG_{d-1}(d,4)$?
- Settle the status for n=2 (projective and affine planes) and, more generally, for d=n-1 (symmetric and affine designs).

- The weak version of Hamada's conjecture is still entirely open.
- Find infinite families of counterexamples to the strong version of the conjecture when q is not a prime.
- Can one find an infinite series of counterexamples for the cases $AG_{d-1}(d,4)$?
- Settle the status for n=2 (projective and affine planes) and, more generally, for d=n-1 (symmetric and affine designs).
- Show that the extension set of nearpencil type for AG(2,q), $q=p^n\geq 3$, always transforms $AG_2(3,q)$ into an affine design with p-rank raised by $q-p^{n-1}-1$.

- The weak version of Hamada's conjecture is still entirely open.
- Find infinite families of counterexamples to the strong version of the conjecture when q is not a prime.
- Can one find an infinite series of counterexamples for the cases $AG_{d-1}(d,4)$?
- Settle the status for n=2 (projective and affine planes) and, more generally, for d=n-1 (symmetric and affine designs).
- Show that the extension set of nearpencil type for AG(2,q), $q=p^n\geq 3$, always transforms $AG_2(3,q)$ into an affine design with p-rank raised by $q-p^{n-1}-1$.
- Find (and prove) a formula for the 2-rank of affine designs with the parameters of $AG_2(3,q)$, q even, constructed from the extension set given by a line conic in AG(2,q).

Thanks for your attention.