A q-analogue of perfect matroid designs

Relinde Jurrius

Université de Neuchâtel, Switzerland (→ The Netherlands Defence Academy)

Finite geometries September 15, 2017

Matroid: a pair (E, r) with

- ► E finite set:
- ▶ $r: 2^E \to \mathbb{N}_0$ a function, the *rank function*, with for all $A, B \in E$:
 - (r1) 0 < r(A) < |A|
 - (r2) If $A \subseteq B$ then $r(A) \le r(B)$.
 - (r2) If $A \subseteq B$ then $r(A) \le r(B)$. (r3) $r(A \cup B) + r(A \cap B) \le r(A) + r(B)$ (semimodular)

Examples:

- ► Set of vectors; rank = matrix rank

 In particular: columns of generator matrix of linear code
 - In particular: columns of generator matrix of linear code
- ► Set of edges of a graph; rank = size of spanning tree

A subset $F \subseteq E$ is a flat if $r(F \cup \{x\}) > r(F)$ for any $x \notin F$.

The closure of a subset $A \subseteq E$ is the smallest flat that contains A.

Flats are equal to their closure: closed sets.

(If r(A) = |A| the set is called *independent*.)

A matroid is also a pair (E, \mathcal{F}) with

- ► E finite set:
- ▶ $\mathcal{F} \subseteq 2^E$ a collection of subsets, the *flats*, with:
 - (F1) $E \in \mathcal{F}$ (F2) If $F_1, F_2 \in \mathcal{F}$ then $F_1 \cap F_2 \in \mathcal{F}$
 - (F2) If $F_1, F_2 \in \mathcal{F}$ then $F_1 \cap F_2 \in \mathcal{F}$. (F3) If $F \in \mathcal{F}$, then every $x \notin F$ is in a unique flat covering F.

We get all flats by taking intersections of rank r(E) - 1 flats.

A perfect matroid design is a matroid such that all flats of the same rank have the same size.

Example

- ► (Truncations of) projective spaces;
- ► (Truncations of) affine spaces;
- ► Steiner systems;
- ► Rank 4 PMDs coming from Moufang loops.

Theorem (Murty, Young & Edmonds, 1970)

The independent sets / circuits / flats of size j form a design.

q-analogue: finite set \longrightarrow finite vector space over \mathbb{F}_q

Example

$$\binom{n}{k}$$
 = number of sets of size k contained in set of size n

$$\begin{bmatrix} n \\ k \end{bmatrix}_q = \text{number of } k\text{-dim subspaces of } n\text{-dim vector space over } \mathbb{F}_q$$

$$= \prod_{i=0}^{k-1} \frac{q^n - q^i}{q^k - q^i}$$

Example

- t-(v, k, λ) design: pair (X, \mathcal{B}) with
 - ► X set with v elements (points)
 - \blacktriangleright B family of subsets of X of size k (blocks)
 - ▶ Every t-tuple of points is contained in exactly λ blocks
- t-(v, k, λ ; q) subspace design: pair (X, \mathcal{B}) with
 - ► X v-dim vectorspace over \mathbb{F}_a
 - \blacktriangleright B family of k-dim subspaces of X (blocks)
 - ▶ Every *t*-dim subspace is contained in exactly λ blocks

If $\lambda=1$ we call the (subspace) design a (q-)Steiner system

finite set element 1-dim subspace size dimension
$$n \qquad \frac{q^n-1}{q-1}$$
 intersection union sum complement (it depends)

From *q*-analogue to 'normal': let $q \rightarrow 1$.

q-Matroid: a pair (E, r) with

- ► E finite dimensional vector space;

▶
$$r: \{\text{subspaces of } E\} \rightarrow \mathbb{N}_0 \text{ a function, the } rank function, with }$$

(r2) If $A \subseteq B$ then $r(A) \le r(B)$.

(r3) $r(A+B) + r(A \cap B) < r(A) + r(B)$ (semimodular)

- for all $A, B \subseteq E$:
- $(r1) 0 \le r(A) \le \dim A$

Theorem (J. & Pellikaan, 2016)

Every \mathbb{F}_{q^m} -linear rank metric code gives a q-matroid.

Proof.

Let $E = \mathbb{F}_q^n$ and G be a generator matrix of the code. Let $A \subseteq E$ and Y a matrix whose columns span A.

Then r(A) = rk(GY) satisfies the axioms (r1),(r2),(r3).

A q-matroid is also a pair (E, \mathcal{F}) with

- ► *E* finite set:
- \triangleright \mathcal{F} a collection of subspaces, the *flats*, with:
 - $(\mathsf{F1}) \ \ \mathsf{E} \in \mathcal{F}$
 - (F2) If $F_1, F_2 \in \mathcal{F}$ then $F_1 \cap F_2 \in \mathcal{F}$.
 - (F2) If F₁, F₂ ∈ F then F₁ ∩ F₂ ∈ F.
 (F3) If F ∈ F, then every 1-dimensional subspace x ⊈ F is in a unique flat covering F.

We get all flats by taking intersections of rank r(E) - 1 flats.

A *q*-PMD is a *q*-matroid such that all flats of the same rank have the same dimension.

Lemma

q-Steiner systems are q-PMDs, where the blocks are maximal proper flats and the rank function is

$$r(A) = \left\{ \begin{array}{ll} \dim A & \textit{if} \dim A \leq t \\ t & \textit{if} \dim A > t \ \textit{and} \ A \ \textit{is contained in a block} \\ t+1 & \textit{if} \dim A > t \ \textit{and} \ A \ \textit{is not contained in a block} \end{array} \right.$$

Fact: finding q-Steiner systems is hard. Maybe q-matroids help?

Conjecture (J. & Torielli, 2017)

All *q*-matroids come from rank metric codes.

That means: a q-matroid over $E = \mathbb{F}_q^n$ of rank k can be represented by a $k \times n$ matrix over a suitably large extension field \mathbb{F}_{q^m} .

Example

t-(v, t, 1; q) subspace design: all t-spaces are blocks.

$$f(v,t,1;q)$$
 subspace design: all t -spaces are blocks $r(A) = \left\{egin{array}{l} \dim A & ext{if dim } A \leq t \ t+1 & ext{if dim } A > t \end{array}
ight.$

Uniform q-matroid of rank t+1 comes from an MRD code.

Example

1-(v, k, 1; q) subspace design: spread.

$$v=6, k=3, q=2$$
 over \mathbb{F}_8 :

v = 6, k = 2, q = 2 over \mathbb{F}_8 :

$$\left(\begin{array}{ccccccc} 1 & \alpha & \alpha^2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \alpha & \alpha^2 \end{array}\right)$$

 $\left(\begin{array}{cccccc} 1 & \alpha & 0 & 0 & 1 & \alpha \\ 0 & 0 & 1 & \alpha & \alpha^2 & \alpha^3 \end{array}\right)$

To do list:

- ► Fix details.
- ► Do *q*-PMDs give us subspace designs?
- ▶ Do other results on PMDs have a q-analogue? (Deza, 1992)
- ► Residual/derived design vs deletion/contraction in *q*-matroid.
- ► Relation between the representation matrix and the automorphisms of a design?
- ► How to decide if a matrix gives a *q*-PMD?
- ▶ Find a representation of the $S_2(2,3,13)$ *q*-Steiner system.
- ► Wishful thinking: what about the *q*-analogue of the Fano plane . . . ?

Help is welcome!