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Hermitian surface and hemisystems

U3:=set of all isotropic points of a unitary polarity of PG (3, q2).

Remark

Equivalent definitions for U3:
{P = (a1, a2, a3, a4) ∈ PG (3, q2)|aq

3a0 + a3aq
0 + aq+1

1 + aq+1
2 = 0}

Set of all points of PG (3, q2) on the Hermitian surface with
equation X0X q

3 + X q
0 X3 + X q+1

1 + X q+1
2 = 0.

number of points in U3= (q3 + 1)(q2 + 1)

number of generators of U3 =(q3 + 1)(q + 1)

number of generators on a point = q + 1

hemisystem:=set of generators containing exactly 1
2 (q + 1)

generators on every point of U3.
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Known examples

Hemisystems of U3 are rare objects

Segre (1965) for q = 3
Cossidente-Penttila (2005) for every (odd) q
Bamberg-Giudici-Royle, Cossidente-Pavese for small q ≤ 23’s
Bamberg–Lee–Momihara–Xiang (2016), for all q with q ≡ 3
(mod 4)

Our contribution:
G.K.-Nagy-Speziali (2017) for all q = p with p = 1 + 16n2 (infinite
family if Landau’s conjecture is true)
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Maximal curves

Maximal curve:= curve X whose number of points Nq2(X ) attains
the Hasse-Weil upper bound;
Nq2(X ) = q2 + 1 + 2g(X )q where g(X ):=genus of X .

Corollary to the Natural Embedding Theorem (G.K.-F. Torres,
2000) Every curve of degree q + 1 lying on the Hermitian surface
U3 is a maximal curve.
Example 1
Rational curve
Example 2
Hermitian curve (non-tangent plane section of U3)
Example 3 (Fuhrmann-Torres curve)
U3:=X q

3 X0 + X3X q
0 + 2X q+1

2 − X q+1
1 = 0;

X+ := {(1, u, v , v 2)|u(q+1)/2 = v q − v ; u, v ∈ Fq2} ∪ {(0, 0, 0, 1}.
X+ has genus g(X ) = 1

4 (q − 1)2; Nq2(X+) = 1
2 (q3 − q) + q + 1.

Aut(X+) has an index 2 subgroup ∼= PSL(2, q)× C(q+1)/2
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Gábor Korchmáros Hemisystems on the Hermititan surface



Maximal curves

Maximal curve:= curve X whose number of points Nq2(X ) attains
the Hasse-Weil upper bound;
Nq2(X ) = q2 + 1 + 2g(X )q where g(X ):=genus of X .

Corollary to the Natural Embedding Theorem (G.K.-F. Torres,
2000) Every curve of degree q + 1 lying on the Hermitian surface
U3 is a maximal curve.
Example 1
Rational curve
Example 2
Hermitian curve (non-tangent plane section of U3)
Example 3 (Fuhrmann-Torres curve)

U3:=X q
3 X0 + X3X q

0 + 2X q+1
2 − X q+1

1 = 0;
X+ := {(1, u, v , v 2)|u(q+1)/2 = v q − v ; u, v ∈ Fq2} ∪ {(0, 0, 0, 1}.
X+ has genus g(X ) = 1

4 (q − 1)2; Nq2(X+) = 1
2 (q3 − q) + q + 1.

Aut(X+) has an index 2 subgroup ∼= PSL(2, q)× C(q+1)/2
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Combinatorial Properties of Maximal curves lying on H3

Apparently maximal curves are useless as a tool in the study of U3,
as a polar space.
Wrong thesis!
X :=maximal curve naturally embedded in U3;

real chord of X := any line meeting X in more than one point;

imaginary chord of X := any line through a point P ∈ X with
P ∈ PG (3, q4) \ PG (3, q2) and its Frobenius image P ′ = Φq2(P).

the points of X form a partial ovoid of U3;

every imaginary chord of X is a generator disjoint from X .

Question Is there a hemisystem consisting of imaginary chords and
generators which meet X (exactly one point)?
Some evidence that the answer might be yes
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Basic idea to construct hemisystems from maximal curves

X :=Maximal curve naturally embedded in U3;
g := g(X ):=genus of X ;
N1:=number of points of X in PG (3, q2);
N1 = q2 + 1 + 2gq;
S1:=number of generators meeting X ;
S1 = (q + 1)(q2 + 1 + 2gq);
N2:=number of points of X in PG (3, q4);
N2 = q4 + 1− 2gq2;
S2:=number of imaginary chords;
S2 = 1

2 (N2 − N1) = 1
2 (q2 + q)((q2 − q)− 2g);

S2 + 1
2 S1 = 1

2 (q + 1)(q3 + 1);
Taking half of the generators on each point of X plus all imaginary
chords may produce a hemisystem
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Sufficient conditions

∀ P ∈ U3 \ X ;
nP :=number of generators on P meeting X .
M:=set of generators is a half-hemisystem on X if:

(A) On each Q ∈ X there are exactly 1
2 (q + 1) generators from

M.

(B) For any point P ∈ U3 \ X , M has as many as 1
2 nP generators

on P meeting X .

H:= set of all imaginary chords of X ;
Theorem
M∪H is a hemisystem of U3.
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Gábor Korchmáros Hemisystems on the Hermititan surface



Sufficient conditions

∀ P ∈ U3 \ X ;
nP :=number of generators on P meeting X .

M:=set of generators is a half-hemisystem on X if:

(A) On each Q ∈ X there are exactly 1
2 (q + 1) generators from

M.

(B) For any point P ∈ U3 \ X , M has as many as 1
2 nP generators

on P meeting X .

H:= set of all imaginary chords of X ;
Theorem
M∪H is a hemisystem of U3.
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Rational (maximal) curves

U3 := X q+1
1 + X q+1

2 = X q
0 X3 + X0X q

3 ;
X :=rational curve (i.e. g(X ) = 0);
X := {P(1, t, tq, tq+1)|t ∈ Fq2} ∪ {(0, 0, 0, 1}
N1 = q2 + 1;
G :=subgroup of PGU(4, q) s.t. G ∼= PSL(2, q2) and G : X 7→ X .
Take a point Q ∈ X ;
The stabilizer GQ has two orbits on the set of all generators on Q;
Take a generator ` meeting X , and the orbit Λ of ` (under the
action of G )
Conditions (A) and (B) are satisfied.

Remark

The arising hemisystem is isomorphic to the Cossidente-Penttila
hemisystem.
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Hemisystems from the FT maximal curve, q ≡ 1 (mod 4)

U3:=X q
3 X0 + X3X q

0 + 2X q+1
2 − X q+1

1 = 0;
X+ := {(1, u, v , v 2)|u(q+1)/2 = v q − v ; u, v ∈ Fq2} ∪ {(0, 0, 0, 1}.
G:=subgroup of PGU(4, q) preserving X ;
G/C(q+1)/2

∼= PGL(2, q) Z (G) = C(q+1)/2;
H:=subgroup of G of index 2, H ∼= PSL(2, q)× C(q+1)/2;
G fixes X∞ and preserves the plane Π of equation X = 0;
X = ∆ ∪ Ω with Ω = X ∩ Π;
Take a point P1 ∈ ∆, together with a generator `1 on P1;
Then the orbit M1 of `1 (under the action of H) has size
1
2 (q + 1)(q3 − q);
Take a point P2 ∈ Ω, together with a generator `2 on P2;
Then the orbit M2 of `2 (under the action of H) has size
1
2 (q + 1)2.
Is M a half-semisystem?
If “yes” then M∪H is a hemisystem.
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H:=subgroup of G of index 2, H ∼= PSL(2, q)× C(q+1)/2;
G fixes X∞ and preserves the plane Π of equation X = 0;
X = ∆ ∪ Ω with Ω = X ∩ Π;
Take a point P1 ∈ ∆, together with a generator `1 on P1;
Then the orbit M1 of `1 (under the action of H) has size
1
2 (q + 1)(q3 − q);
Take a point P2 ∈ Ω, together with a generator `2 on P2;
Then the orbit M2 of `2 (under the action of H) has size
1
2 (q + 1)2.
Is M a half-semisystem?
If “yes” then M∪H is a hemisystem.
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Discussion

M a half-semisystem if

(A) Each Q ∈ X is incident with exactly 1
2 (q + 1) generators inM

(B) For any point P ∈ U3 \ X , M has as many as 1
2 nP generators

on P meeting X .

By construction (A) is satisfied.

If GP is nontrivial, then (B) is satisfied.

If GP is trivial, then (B) does not hold in general.

Assumption Either q = ph with p ≡ 1 (mod 8), or q square.
Theorem. Condition (B) is satisfied for ∀P ∈ U3 \ X if and only if
the following Condition (U) is satisfies:

(U) the elliptic curve E3 of equation Y 2 = X 3 − X has exactly
q − 1 point over Fq.

Remark Some more computation should prove that Theorem holds
true for p ≡ 1 (mod 4).
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Gábor Korchmáros Hemisystems on the Hermititan surface



Existence of hemisystems

Let q = p with p ≡ 1 (mod 4). From earlier results on elliptic
curves (Serre)
(U) is satisfied ⇔ p = 1 + n2 with n ∈ Z.
⇒ Let p ≡ 1 (mod 8). Then we obtain a hemisystem if and only if
p = 1 + 16n2.
Remark This should remain true for p = 1 + n2

Landau’s Conjecture
∃ infinite sequence of primes p = 1 + n2.
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More hemisystems for q ≡ 1 (mod 4)

Some more examples arise with a slight modification of the above
procedure;
The idea is to use the Fuhrmann-Torres curve X together with its
twin curve;
X+ := {(1, u, v , v 2)|−u(q+1)/2 = v q−v ; u, v ∈ Fq2}∪{(0, 0, 0, 1}.
The modified construction:
On each point of X take one half of the generators (using again
the group G ∼= PSL(2, q)× C(q+1)/2;
Take a G -orbit Σ of imaginary chords of X ;
Take a G -orbit ∆ of imaginary chords of Y;
The generators chosen in this way may form a hemisystem.
For instance, this occurs for q = 5, 13, 17, 25, 37, 41, 101 (computer
aided research);
Are these hemisystems members of an infinite family?
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