Hemisystems on the Hermitian surface

Gábor Korchmáros

Università degli Studi della Basilicata, Italy

joint work with Gábor P. Nagy and Pietro Speziali

Finite Geometries, Fifth Irsee Conference

September 10-16 2017, Irsee

 U_3 :=set of all isotropic points of a unitary polarity of $PG(3, q^2)$.

 U_3 :=set of all isotropic points of a unitary polarity of $PG(3, q^2)$.

Remark

 U_3 :=set of all isotropic points of a unitary polarity of $PG(3, q^2)$.

Remark

 U_3 :=set of all isotropic points of a unitary polarity of $PG(3, q^2)$.

Remark

$$\{P = (a_1, a_2, a_3, a_4) \in PG(3, q^2) | a_3^q a_0 + a_3 a_0^q + a_1^{q+1} + a_2^{q+1} = 0\}$$

 \mathcal{U}_3 :=set of all isotropic points of a unitary polarity of $PG(3, q^2)$.

Remark

$$\{P = (a_1, a_2, a_3, a_4) \in PG(3, q^2) | a_3^q a_0 + a_3 a_0^q + a_1^{q+1} + a_2^{q+1} = 0\}$$

Set of all points of $PG(3, q^2)$ on the Hermitian surface with equation $X_0 X_3^q + X_0^q X_3 + X_1^{q+1} + X_2^{q+1} = 0$.

 \mathcal{U}_3 :=set of all isotropic points of a unitary polarity of $PG(3, q^2)$.

Remark

Equivalent definitions for U_3 : $\{P = (a_1, a_2, a_3, a_4) \in PG(3, q^2) | a_3^q a_0 + a_3 a_0^q + a_1^{q+1} + a_2^{q+1} = 0\}$ Set of all points of $PG(3, q^2)$ on the Hermitian surface with equation $X_0 X_3^q + X_0^q X_3 + X_1^{q+1} + X_2^{q+1} = 0$.

• number of points in $U_3 = (q^3 + 1)(q^2 + 1)$

 \mathcal{U}_3 :=set of all isotropic points of a unitary polarity of $PG(3, q^2)$.

Remark

$$\{ P = (a_1, a_2, a_3, a_4) \in PG(3, q^2) | a_3^q a_0 + a_3 a_0^q + a_1^{q+1} + a_2^{q+1} = 0 \}$$
 Set of all points of $PG(3, q^2)$ on the Hermitian surface with equation $X_0 X_3^q + X_0^q X_3 + X_1^{q+1} + X_2^{q+1} = 0.$

- number of points in $U_3 = (q^3 + 1)(q^2 + 1)$
- ullet number of generators of $\mathcal{U}_3 = (q^3+1)(q+1)$

 \mathcal{U}_3 :=set of all isotropic points of a unitary polarity of $PG(3, q^2)$.

Remark

Equivalent definitions for U_3 : $\{P = (a_1, a_2, a_3, a_4) \in PG(3, q^2) | a_3^q a_0 + a_3 a_0^q + a_1^{q+1} + a_2^{q+1} = 0\}$ Set of all points of $PG(3, q^2)$ on the Hermitian surface with

Set of all points of $PG(3, q^2)$ on the Hermitian surface with equation $X_0X_3^q + X_0^qX_3 + X_1^{q+1} + X_2^{q+1} = 0$.

- number of points in $U_3 = (q^3 + 1)(q^2 + 1)$
- number of generators of $U_3 = (q^3 + 1)(q + 1)$
- ullet number of generators on a point =q+1

 \mathcal{U}_3 :=set of all isotropic points of a unitary polarity of $PG(3, q^2)$.

Remark

$$\{P = (a_1, a_2, a_3, a_4) \in PG(3, q^2) | a_3^q a_0 + a_3 a_0^q + a_1^{q+1} + a_2^{q+1} = 0 \}$$
 Set of all points of $PG(3, q^2)$ on the Hermitian surface with equation $X_0 X_3^q + X_0^q X_3 + X_1^{q+1} + X_2^{q+1} = 0.$

- number of points in $U_3 = (q^3 + 1)(q^2 + 1)$
- number of generators of $U_3 = (q^3 + 1)(q + 1)$
- number of generators on a point = q + 1
- hemisystem:=set of generators containing exactly $\frac{1}{2}(q+1)$ generators on every point of \mathcal{U}_3 .

Hemisystems of \mathcal{U}_3 are rare objects

Hemisystems of \mathcal{U}_3 are rare objects

Segre (1965) for q = 3

Hemisystems of \mathcal{U}_3 are rare objects

Segre (1965) for q=3 Cossidente-Penttila (2005) for every (odd) q

Hemisystems of \mathcal{U}_3 are rare objects

Segre (1965) for q=3 Cossidente-Penttila (2005) for every (odd) q Bamberg-Giudici-Royle, Cossidente-Pavese for small $q\leq 23$'s

Hemisystems of U_3 are rare objects

```
Segre (1965) for q=3 Cossidente-Penttila (2005) for every (odd) q Bamberg-Giudici-Royle, Cossidente-Pavese for small q\leq 23's Bamberg-Lee-Momihara-Xiang (2016), for all q with q\equiv 3\pmod 4
```

Hemisystems of U_3 are rare objects

```
Segre (1965) for q=3 Cossidente-Penttila (2005) for every (odd) q Bamberg-Giudici-Royle, Cossidente-Pavese for small q\leq 23's Bamberg-Lee-Momihara-Xiang (2016), for all q with q\equiv 3\pmod 4
```

Our contribution:

Hemisystems of U_3 are rare objects

Segre (1965) for q=3 Cossidente-Penttila (2005) for every (odd) q Bamberg-Giudici-Royle, Cossidente-Pavese for small $q\leq 23$'s Bamberg-Lee-Momihara-Xiang (2016), for all q with $q\equiv 3\pmod 4$

Our contribution:

G.K.-Nagy-Speziali (2017) for all q=p with $p=1+16n^2$ (infinite family if Landau's conjecture is true)

Maximal curve:= curve \mathcal{X} whose number of points $N_{q^2}(\mathcal{X})$ attains the Hasse-Weil upper bound;

Maximal curve:= curve $\mathcal X$ whose number of points $N_{q^2}(\mathcal X)$ attains the Hasse-Weil upper bound;

$$N_{q^2}(\mathcal{X}) = q^2 + 1 + 2\mathfrak{g}(\mathcal{X})q$$
 where $\mathfrak{g}(\mathcal{X})$:=genus of \mathcal{X} .

Maximal curve:= curve $\mathcal X$ whose number of points $N_{q^2}(\mathcal X)$ attains the Hasse-Weil upper bound;

$$\mathit{N}_{q^2}(\mathcal{X}) = q^2 + 1 + 2\mathfrak{g}(\mathcal{X})q$$
 where $\mathfrak{g}(\mathcal{X})$:=genus of \mathcal{X} .

Corollary to the Natural Embedding Theorem (G.K.-F. Torres, 2000) Every curve of degree q+1 lying on the Hermitian surface \mathcal{U}_3 is a maximal curve.

Maximal curve:= curve $\mathcal X$ whose number of points $N_{q^2}(\mathcal X)$ attains the Hasse-Weil upper bound;

$$\mathit{N}_{q^2}(\mathcal{X}) = q^2 + 1 + 2\mathfrak{g}(\mathcal{X})q$$
 where $\mathfrak{g}(\mathcal{X})$:=genus of \mathcal{X} .

Corollary to the Natural Embedding Theorem (G.K.-F. Torres, 2000) Every curve of degree q+1 lying on the Hermitian surface \mathcal{U}_3 is a maximal curve.

Example 1

Maximal curve:= curve $\mathcal X$ whose number of points $N_{q^2}(\mathcal X)$ attains the Hasse-Weil upper bound;

$$\mathit{N}_{q^2}(\mathcal{X}) = q^2 + 1 + 2\mathfrak{g}(\mathcal{X})q$$
 where $\mathfrak{g}(\mathcal{X})$:=genus of \mathcal{X} .

Corollary to the Natural Embedding Theorem (G.K.-F. Torres, 2000) Every curve of degree q+1 lying on the Hermitian surface \mathcal{U}_3 is a maximal curve.

Example 1

Rational curve

Maximal curve:= curve $\mathcal X$ whose number of points $N_{q^2}(\mathcal X)$ attains the Hasse-Weil upper bound;

$$\mathit{N}_{q^2}(\mathcal{X}) = q^2 + 1 + 2\mathfrak{g}(\mathcal{X})q$$
 where $\mathfrak{g}(\mathcal{X})$:=genus of \mathcal{X} .

Corollary to the Natural Embedding Theorem (G.K.-F. Torres, 2000) Every curve of degree q+1 lying on the Hermitian surface \mathcal{U}_3 is a maximal curve.

Example 1

Rational curve

Example 2

Maximal curve:= curve $\mathcal X$ whose number of points $N_{q^2}(\mathcal X)$ attains the Hasse-Weil upper bound;

$$N_{q^2}(\mathcal{X}) = q^2 + 1 + 2\mathfrak{g}(\mathcal{X})q$$
 where $\mathfrak{g}(\mathcal{X})$:=genus of \mathcal{X} .

Corollary to the Natural Embedding Theorem (G.K.-F. Torres, 2000) Every curve of degree q+1 lying on the Hermitian surface \mathcal{U}_3 is a maximal curve.

Example 1

Rational curve

Example 2

Hermitian curve (non-tangent plane section of \mathcal{U}_3)

Maximal curve:= curve $\mathcal X$ whose number of points $N_{q^2}(\mathcal X)$ attains the Hasse-Weil upper bound;

$$N_{q^2}(\mathcal{X}) = q^2 + 1 + 2\mathfrak{g}(\mathcal{X})q$$
 where $\mathfrak{g}(\mathcal{X})$:=genus of \mathcal{X} .

Corollary to the Natural Embedding Theorem (G.K.-F. Torres, 2000) Every curve of degree q+1 lying on the Hermitian surface \mathcal{U}_3 is a maximal curve.

Example 1

Rational curve

Example 2

Hermitian curve (non-tangent plane section of \mathcal{U}_3)

Maximal curve:= curve $\mathcal X$ whose number of points $N_{q^2}(\mathcal X)$ attains the Hasse-Weil upper bound;

$$N_{q^2}(\mathcal{X}) = q^2 + 1 + 2\mathfrak{g}(\mathcal{X})q$$
 where $\mathfrak{g}(\mathcal{X})$:=genus of \mathcal{X} .

Corollary to the Natural Embedding Theorem (G.K.-F. Torres, 2000) Every curve of degree q+1 lying on the Hermitian surface \mathcal{U}_3 is a maximal curve.

Example 1

Rational curve

Example 2

Hermitian curve (non-tangent plane section of \mathcal{U}_3)

$$\mathcal{U}_3:=X_3^qX_0+X_3X_0^q+2X_2^{q+1}-X_1^{q+1}=0;$$

Maximal curve:= curve $\mathcal X$ whose number of points $N_{q^2}(\mathcal X)$ attains the Hasse-Weil upper bound;

$$N_{q^2}(\mathcal{X}) = q^2 + 1 + 2\mathfrak{g}(\mathcal{X})q$$
 where $\mathfrak{g}(\mathcal{X})$:=genus of \mathcal{X} .

Corollary to the Natural Embedding Theorem (G.K.-F. Torres, 2000) Every curve of degree q+1 lying on the Hermitian surface \mathcal{U}_3 is a maximal curve.

Example 1

Rational curve

Example 2

Hermitian curve (non-tangent plane section of \mathcal{U}_3)

$$\mathcal{U}_3 := X_3^q X_0 + X_3 X_0^q + 2 X_2^{q+1} - X_1^{q+1} = 0;$$

$$\mathcal{X}^+ := \{ (1, u, v, v^2) | u^{(q+1)/2} = v^q - v; u, v \in \mathbb{F}_{q^2} \} \cup \{ (0, 0, 0, 1\}.$$

Maximal curve:= curve \mathcal{X} whose number of points $N_{a^2}(\mathcal{X})$ attains the Hasse-Weil upper bound:

$$N_{q^2}(\mathcal{X}) = q^2 + 1 + 2\mathfrak{g}(\mathcal{X})q$$
 where $\mathfrak{g}(\mathcal{X})$:=genus of \mathcal{X} .

Corollary to the Natural Embedding Theorem (G.K.-F. Torres, 2000) Every curve of degree q + 1 lying on the Hermitian surface \mathcal{U}_3 is a maximal curve.

Example 1

Rational curve

Example 2

Hermitian curve (non-tangent plane section of \mathcal{U}_3)

$$\mathcal{U}_3:=X_3^q X_0 + X_3 X_0^q + 2 X_2^{q+1} - X_1^{q+1} = 0;$$

 $\mathcal{X}^+:=\{(1,u,v,v^2)|u^{(q+1)/2}=v^q-v;u,v\in\mathbb{F}_{q^2}\}\cup\{(0,0,0,1\}.$
 \mathcal{X}^+ has genus $q(\mathcal{X})=\frac{1}{2}(q-1)^2.$

$$\mathcal{X}^+$$
 has genus $\mathfrak{g}(\mathcal{X})=\frac{1}{4}(q-1)^2$;

Maximal curve:= curve $\mathcal X$ whose number of points $N_{q^2}(\mathcal X)$ attains the Hasse-Weil upper bound;

$$N_{q^2}(\mathcal{X}) = q^2 + 1 + 2\mathfrak{g}(\mathcal{X})q$$
 where $\mathfrak{g}(\mathcal{X})$:=genus of \mathcal{X} .

Corollary to the Natural Embedding Theorem (G.K.-F. Torres, 2000) Every curve of degree q+1 lying on the Hermitian surface \mathcal{U}_3 is a maximal curve.

Example 1

Rational curve

Example 2

Hermitian curve (non-tangent plane section of \mathcal{U}_3)

$$\begin{split} &\mathcal{U}_3 {:=} X_3^q X_0 + X_3 X_0^q + 2 X_2^{q+1} - X_1^{q+1} = 0; \\ &\mathcal{X}^+ := \{ (1, u, v, v^2) | u^{(q+1)/2} = v^q - v; u, v \in \mathbb{F}_{q^2} \} \cup \{ (0, 0, 0, 1\}. \\ &\mathcal{X}^+ \text{ has genus } \mathfrak{g}(\mathcal{X}) = \frac{1}{4} (q-1)^2; \; \mathcal{N}_{q^2}(\mathcal{X}^+) = \frac{1}{2} (q^3 - q) + q + 1. \end{split}$$

Maximal curve:= curve $\mathcal X$ whose number of points $N_{q^2}(\mathcal X)$ attains the Hasse-Weil upper bound;

$$\mathit{N}_{q^2}(\mathcal{X}) = q^2 + 1 + 2\mathfrak{g}(\mathcal{X})q$$
 where $\mathfrak{g}(\mathcal{X})$:=genus of \mathcal{X} .

Corollary to the Natural Embedding Theorem (G.K.-F. Torres, 2000) Every curve of degree q+1 lying on the Hermitian surface \mathcal{U}_3 is a maximal curve.

Example 1

Rational curve

Example 2

Hermitian curve (non-tangent plane section of \mathcal{U}_3)

$$\mathcal{U}_3 := X_3^q X_0 + X_3 X_0^q + 2 X_2^{q+1} - X_1^{q+1} = 0;$$

$$\mathcal{X}^+ := \{ (1, u, v, v^2) | u^{(q+1)/2} = v^q - v; u, v \in \mathbb{F}_{q^2} \} \cup \{ (0, 0, 0, 1\}.$$

$$\mathcal{X}^+ \text{ has genus } \mathfrak{g}(\mathcal{X}) = \frac{1}{4} (q-1)^2; \ N_{q^2}(\mathcal{X}^+) = \frac{1}{2} (q^3 - q) + q + 1.$$

$$\operatorname{Aut}(\mathcal{X}^+) \text{ has an index 2 subgroup } \cong PSL(2, q) \times C_{(q+1)/2}$$

Apparently maximal curves are useless as a tool in the study of \mathcal{U}_3 , as a polar space.

Apparently maximal curves are useless as a tool in the study of \mathcal{U}_3 , as a polar space.

Wrong thesis!

Apparently maximal curves are useless as a tool in the study of \mathcal{U}_3 , as a polar space.

Wrong thesis!

 \mathcal{X} :=maximal curve naturally embedded in \mathcal{U}_3 ;

Apparently maximal curves are useless as a tool in the study of \mathcal{U}_3 , as a polar space.

Wrong thesis!

 \mathcal{X} :=maximal curve naturally embedded in \mathcal{U}_3 ;

real chord of \mathcal{X} := any line meeting \mathcal{X} in more than one point;

Apparently maximal curves are useless as a tool in the study of \mathcal{U}_3 , as a polar space.

Wrong thesis!

 \mathcal{X} :=maximal curve naturally embedded in \mathcal{U}_3 ;

real chord of \mathcal{X} := any line meeting \mathcal{X} in more than one point;

imaginary chord of \mathcal{X} := any line through a point $P \in \mathcal{X}$ with $P \in PG(3, q^4) \setminus PG(3, q^2)$ and its Frobenius image $P' = \Phi_{q^2}(P)$.

Apparently maximal curves are useless as a tool in the study of \mathcal{U}_3 , as a polar space.

Wrong thesis!

 \mathcal{X} :=maximal curve naturally embedded in \mathcal{U}_3 ;

real chord of \mathcal{X} := any line meeting \mathcal{X} in more than one point;

imaginary chord of \mathcal{X} := any line through a point $P \in \mathcal{X}$ with $P \in PG(3, q^4) \setminus PG(3, q^2)$ and its Frobenius image $P' = \Phi_{q^2}(P)$.

- the points of \mathcal{X} form a partial ovoid of \mathcal{U}_3 ;
- ullet every imaginary chord of ${\mathcal X}$ is a generator disjoint from ${\mathcal X}.$

Apparently maximal curves are useless as a tool in the study of \mathcal{U}_3 , as a polar space.

Wrong thesis!

 \mathcal{X} :=maximal curve naturally embedded in \mathcal{U}_3 ;

real chord of \mathcal{X} := any line meeting \mathcal{X} in more than one point;

imaginary chord of \mathcal{X} := any line through a point $P \in \mathcal{X}$ with $P \in PG(3, q^4) \setminus PG(3, q^2)$ and its Frobenius image $P' = \Phi_{q^2}(P)$.

- the points of \mathcal{X} form a partial ovoid of \mathcal{U}_3 ;
- ullet every imaginary chord of ${\mathcal X}$ is a generator disjoint from ${\mathcal X}.$

Question Is there a hemisystem consisting of imaginary chords and generators which meet \mathcal{X} (exactly one point)?

Apparently maximal curves are useless as a tool in the study of \mathcal{U}_3 , as a polar space.

Wrong thesis!

 \mathcal{X} :=maximal curve naturally embedded in \mathcal{U}_3 ;

real chord of \mathcal{X} := any line meeting \mathcal{X} in more than one point;

imaginary chord of \mathcal{X} := any line through a point $P \in \mathcal{X}$ with $P \in PG(3, q^4) \setminus PG(3, q^2)$ and its Frobenius image $P' = \Phi_{q^2}(P)$.

- the points of \mathcal{X} form a partial ovoid of \mathcal{U}_3 ;
- ullet every imaginary chord of ${\mathcal X}$ is a generator disjoint from ${\mathcal X}.$

Question Is there a hemisystem consisting of imaginary chords and generators which meet \mathcal{X} (exactly one point)? Some evidence that the answer might be yes

Basic idea to construct hemisystems from maximal curves

$$\mathcal{X}$$
:=Maximal curve naturally embedded in \mathcal{U}_3 ; $\mathfrak{g}:=\mathfrak{g}(\mathcal{X})$:=genus of \mathcal{X} ; N_1 :=number of points of \mathcal{X} in $PG(3,q^2)$; $N_1=q^2+1+2\mathfrak{g}q$; S_1 :=number of generators meeting \mathcal{X} ; $S_1=(q+1)(q^2+1+2\mathfrak{g}q)$; N_2 :=number of points of \mathcal{X} in $PG(3,q^4)$; N_2 :=number of points of \mathcal{X} in $PG(3,q^4)$; S_2 :=number of imaginary chords; S_2 :=number of imaginary chords; $S_2=\frac{1}{2}(N_2-N_1)=\frac{1}{2}(q^2+q)((q^2-q)-2\mathfrak{g})$; $S_2+\frac{1}{2}S_1=\frac{1}{2}(q+1)(q^3+1)$; Taking half of the generators on each point of \mathcal{X} plus all imaginary

chords may produce a hemisystem

$$\forall P \in \mathcal{U}_3 \setminus \mathcal{X};$$

$$\forall P \in \mathcal{U}_3 \setminus \mathcal{X};$$

 n_P :=number of generators on P meeting \mathcal{X} .

 $\forall P \in \mathcal{U}_3 \setminus \mathcal{X};$

 n_P :=number of generators on P meeting \mathcal{X} .

 $\mathcal{M}{:}{=}\mathsf{set}$ of generators is a $\mathit{half-hemisystem}$ on \mathcal{X} if:

 $\forall P \in \mathcal{U}_3 \setminus \mathcal{X};$

 n_P :=number of generators on P meeting \mathcal{X} .

 \mathcal{M} :=set of generators is a half-hemisystem on \mathcal{X} if:

(A) On each $Q \in \mathcal{X}$ there are exactly $\frac{1}{2}(q+1)$ generators from $\mathcal{M}.$

 $\forall P \in \mathcal{U}_3 \setminus \mathcal{X};$

 n_P :=number of generators on P meeting \mathcal{X} .

 \mathcal{M} :=set of generators is a half-hemisystem on \mathcal{X} if:

- (A) On each $Q \in \mathcal{X}$ there are exactly $\frac{1}{2}(q+1)$ generators from $\mathcal{M}.$
- (B) For any point $P \in \mathcal{U}_3 \setminus \mathcal{X}$, \mathcal{M} has as many as $\frac{1}{2}n_P$ generators on P meeting \mathcal{X} .

 $\forall P \in \mathcal{U}_3 \setminus \mathcal{X};$

 n_P :=number of generators on P meeting \mathcal{X} .

 \mathcal{M} :=set of generators is a half-hemisystem on \mathcal{X} if:

- (A) On each $Q \in \mathcal{X}$ there are exactly $\frac{1}{2}(q+1)$ generators from $\mathcal{M}.$
- (B) For any point $P \in \mathcal{U}_3 \setminus \mathcal{X}$, \mathcal{M} has as many as $\frac{1}{2}n_P$ generators on P meeting \mathcal{X} .

 $\mathcal{H}:=$ set of all imaginary chords of \mathcal{X} ;

 $\forall P \in \mathcal{U}_3 \setminus \mathcal{X};$

 n_P :=number of generators on P meeting \mathcal{X} .

 \mathcal{M} :=set of generators is a half-hemisystem on \mathcal{X} if:

- (A) On each $Q \in \mathcal{X}$ there are exactly $\frac{1}{2}(q+1)$ generators from \mathcal{M} .
- (B) For any point $P \in \mathcal{U}_3 \setminus \mathcal{X}$, \mathcal{M} has as many as $\frac{1}{2}n_P$ generators on P meeting \mathcal{X} .

 \mathcal{H} := set of all imaginary chords of \mathcal{X} ;

Theorem

 $\mathcal{M} \cup \mathcal{H}$ is a hemisystem of \mathcal{U}_3 .

$$U_3 := X_1^{q+1} + X_2^{q+1} = X_0^q X_3 + X_0 X_3^q;$$

$$\mathcal{U}_3 := X_1^{q+1} + X_2^{q+1} = X_0^q X_3 + X_0 X_3^q;$$

 \mathcal{X} :=rational curve (i.e. $\mathfrak{g}(\mathcal{X}) = 0$);

$$\begin{split} \mathcal{U}_3 &:= X_1^{q+1} + X_2^{q+1} = X_0^q X_3 + X_0 X_3^q; \\ \mathcal{X} &:= \text{rational curve (i.e. } \mathfrak{g}(\mathcal{X}) = 0); \\ \mathcal{X} &:= \{ P(1, t, t^q, t^{q+1}) | t \in \mathbb{F}_{q^2} \} \cup \{ (0, 0, 0, 1 \} \end{split}$$

$$\mathcal{U}_3 := X_1^{q+1} + X_2^{q+1} = X_0^q X_3 + X_0 X_3^q; \\ \mathcal{X} := \text{rational curve (i.e. } \mathfrak{g}(\mathcal{X}) = 0); \\ \mathcal{X} := \{ P(1, t, t^q, t^{q+1}) | t \in \mathbb{F}_{q^2} \} \cup \{ (0, 0, 0, 1 \} \\ \mathcal{N}_1 = g^2 + 1;$$

```
 \begin{split} \mathcal{U}_3 &:= X_1^{q+1} + X_2^{q+1} = X_0^q X_3 + X_0 X_3^q; \\ \mathcal{X} &:= \text{rational curve (i.e. } \mathfrak{g}(\mathcal{X}) = 0); \\ \mathcal{X} &:= \{ P(1, t, t^q, t^{q+1}) | t \in \mathbb{F}_{q^2} \} \cup \{ (0, 0, 0, 1 \} \\ N_1 &= q^2 + 1; \\ G &:= \text{subgroup of } PGU(4, q) \text{ s.t. } G \cong PSL(2, q^2) \text{ and } G : \mathcal{X} \mapsto \mathcal{X}. \end{split}
```

```
\begin{array}{l} \mathcal{U}_{3} := X_{1}^{q+1} + X_{2}^{q+1} = X_{0}^{q} X_{3} + X_{0} X_{3}^{q}; \\ \mathcal{X} := \text{rational curve (i.e. } \mathfrak{g}(\mathcal{X}) = 0); \\ \mathcal{X} := \{P(1, t, t^{q}, t^{q+1}) | t \in \mathbb{F}_{q^{2}}\} \cup \{(0, 0, 0, 1\} \\ N_{1} = q^{2} + 1; \\ G := \text{subgroup of } PGU(4, q) \text{ s.t. } G \cong PSL(2, q^{2}) \text{ and } G : \mathcal{X} \mapsto \mathcal{X}. \\ \text{Take a point } Q \in \mathcal{X}; \end{array}
```

```
 \begin{array}{l} \mathcal{U}_3 := X_1^{q+1} + X_2^{q+1} = X_0^q X_3 + X_0 X_3^q; \\ \mathcal{X} := \text{rational curve (i.e. } \mathfrak{g}(\mathcal{X}) = 0); \\ \mathcal{X} := \{P(1,t,t^q,t^{q+1})|t \in \mathbb{F}_{q^2}\} \cup \{(0,0,0,1\} \\ N_1 = q^2 + 1; \\ G := \text{subgroup of } PGU(4,q) \text{ s.t. } G \cong PSL(2,q^2) \text{ and } G : \mathcal{X} \mapsto \mathcal{X}. \\ \text{Take a point } Q \in \mathcal{X}; \end{array}
```

The stabilizer G_Q has two orbits on the set of all generators on Q;

```
 \mathcal{U}_3 := X_1^{q+1} + X_2^{q+1} = X_0^q X_3 + X_0 X_3^q; \\ \mathcal{X} := \text{rational curve (i.e. } \mathfrak{g}(\mathcal{X}) = 0); \\ \mathcal{X} := \{P(1,t,t^q,t^{q+1})|t\in\mathbb{F}_{q^2}\} \cup \{(0,0,0,1\}\\ N_1 = q^2 + 1; \\ G := \text{subgroup of } PGU(4,q) \text{ s.t. } G \cong PSL(2,q^2) \text{ and } G: \mathcal{X} \mapsto \mathcal{X}. \\ \text{Take a point } Q \in \mathcal{X}; \\ \text{The stabilizer } G_Q \text{ has two orbits on the set of all generators on } Q; \\ \text{Take a generator } \ell \text{ meeting } \mathcal{X}, \text{ and }
```

```
 \begin{array}{l} \mathcal{U}_3 := X_1^{q+1} + X_2^{q+1} = X_0^q X_3 + X_0 X_3^q; \\ \mathcal{X} := \text{rational curve (i.e. } \mathfrak{g}(\mathcal{X}) = 0); \\ \mathcal{X} := \{P(1,t,t^q,t^{q+1})|t\in \mathbb{F}_{q^2}\} \cup \{(0,0,0,1\}\\ N_1 = q^2 + 1; \\ G := \text{subgroup of } PGU(4,q) \text{ s.t. } G \cong PSL(2,q^2) \text{ and } G: \mathcal{X} \mapsto \mathcal{X}. \\ \text{Take a point } Q \in \mathcal{X}; \\ \text{The stabilizer } G_Q \text{ has two orbits on the set of all generators on } Q; \\ \text{Take a generator } \ell \text{ meeting } \mathcal{X}, \text{ and the orbit } \Lambda \text{ of } \ell \text{ (under the action of } G) \\ \end{array}
```

```
 \mathcal{U}_3 := X_1^{q+1} + X_2^{q+1} = X_0^q X_3 + X_0 X_3^q; \\ \mathcal{X} := \text{rational curve (i.e. } \mathfrak{g}(\mathcal{X}) = 0); \\ \mathcal{X} := \{P(1,t,t^q,t^{q+1})|t\in\mathbb{F}_{q^2}\} \cup \{(0,0,0,1\}\\ N_1 = q^2 + 1; \\ G := \text{subgroup of } PGU(4,q) \text{ s.t. } G \cong PSL(2,q^2) \text{ and } G:\mathcal{X}\mapsto\mathcal{X}. \\ \text{Take a point } Q\in\mathcal{X}; \\ \text{The stabilizer } G_Q \text{ has two orbits on the set of all generators on } Q; \\ \text{Take a generator } \ell \text{ meeting } \mathcal{X}, \text{ and the orbit } \Lambda \text{ of } \ell \text{ (under the action of } G) \\ \text{Conditions (A) and (B) are satisfied.}
```

$$\begin{array}{l} \mathcal{U}_{3} := X_{1}^{q+1} + X_{2}^{q+1} = X_{0}^{q} X_{3} + X_{0} X_{3}^{q}; \\ \mathcal{X} := \text{rational curve (i.e. } \mathfrak{g}(\mathcal{X}) = 0); \\ \mathcal{X} := \{ P(1, t, t^{q}, t^{q+1}) | t \in \mathbb{F}_{q^{2}} \} \cup \{ (0, 0, 0, 1\} \\ N_{1} = q^{2} + 1; \\ G := \text{subgroup of } PGU(4, q) \text{ s.t. } G \cong PSL(2, q^{2}) \text{ and } G : \mathcal{X} \mapsto \mathcal{X}. \\ \text{Take a point } Q \in \mathcal{X}; \end{array}$$

The stabilizer G_Q has two orbits on the set of all generators on Q;

Take a generator ℓ meeting \mathcal{X} , and the orbit Λ of ℓ (under the action of G)

Conditions (A) and (B) are satisfied.

Remark

The arising hemisystem is isomorphic to the Cossidente-Penttila hemisystem.

$$U_3:=X_3^qX_0+X_3X_0^q+2X_2^{q+1}-X_1^{q+1}=0;$$

$$\mathcal{U}_3:=X_3^qX_0+X_3X_0^q+2X_2^{q+1}-X_1^{q+1}=0; \\ \mathcal{X}^+:=\{(1,u,v,v^2)|u^{(q+1)/2}=v^q-v;u,v\in\mathbb{F}_{q^2}\}\cup\{(0,0,0,1\}.$$

```
\mathcal{U}_3:=X_3^qX_0+X_3X_0^q+2X_2^{q+1}-X_1^{q+1}=0;

\mathcal{X}^+:=\{(1,u,v,v^2)|u^{(q+1)/2}=v^q-v;u,v\in\mathbb{F}_{q^2}\}\cup\{(0,0,0,1\}.

\mathfrak{G}:=subgroup of PGU(4,q) preserving \mathcal{X};
```

```
\mathcal{U}_3:=X_3^q X_0 + X_3 X_0^q + 2 X_2^{q+1} - X_1^{q+1} = 0;

\mathcal{X}^+:=\{(1,u,v,v^2)|u^{(q+1)/2}=v^q-v;u,v\in\mathbb{F}_{q^2}\}\cup\{(0,0,0,1\}.

\mathfrak{G}:=subgroup of PGU(4,q) preserving \mathcal{X};

\mathfrak{G}/C_{(q+1)/2}\cong PGL(2,q)\ Z(\mathfrak{G})=C_{(q+1)/2};
```

```
\mathcal{U}_3:=X_3^q X_0 + X_3 X_0^q + 2 X_2^{q+1} - X_1^{q+1} = 0;

\mathcal{X}^+:=\{(1,u,v,v^2)|u^{(q+1)/2}=v^q-v;u,v\in\mathbb{F}_{q^2}\}\cup\{(0,0,0,1\}.

\mathfrak{G}:= subgroup of PGU(4,q) preserving \mathcal{X};

\mathfrak{G}/C_{(q+1)/2}\cong PGL(2,q)\ Z(\mathfrak{G})=C_{(q+1)/2};

\mathfrak{H}:= subgroup of \mathfrak{G} of index 2, \mathfrak{H}\cong PSL(2,q)\times C_{(q+1)/2};
```

```
\mathcal{U}_3 := X_3^q X_0 + X_3 X_0^q + 2 X_2^{q+1} - X_1^{q+1} = 0;

\mathcal{X}^+ := \{(1, u, v, v^2) | u^{(q+1)/2} = v^q - v; u, v \in \mathbb{F}_{q^2}\} \cup \{(0, 0, 0, 1\}.

\mathfrak{G} := \text{subgroup of } PGU(4, q) \text{ preserving } \mathcal{X};

\mathfrak{G}/C_{(q+1)/2} \cong PGL(2, q) \ Z(\mathfrak{G}) = C_{(q+1)/2};

\mathfrak{H} := \text{subgroup of } \mathfrak{G} \text{ of index } 2, \ \mathfrak{H} \cong PSL(2, q) \times C_{(q+1)/2};

\mathfrak{G} \text{ fixes } X_{\infty} \text{ and preserves the plane } \Pi \text{ of equation } X = 0;
```

```
\begin{array}{l} \mathcal{U}_3 := X_3^q X_0 + X_3 X_0^q + 2 X_2^{q+1} - X_1^{q+1} = 0; \\ \mathcal{X}^+ := \{(1,u,v,v^2) | u^{(q+1)/2} = v^q - v; u,v \in \mathbb{F}_{q^2}\} \cup \{(0,0,0,1\}. \\ \mathfrak{G} := \text{subgroup of } PGU(4,q) \text{ preserving } \mathcal{X}; \\ \mathfrak{G}/C_{(q+1)/2} \cong PGL(2,q) \ Z(\mathfrak{G}) = C_{(q+1)/2}; \\ \mathfrak{H} := \text{subgroup of } \mathfrak{G} \text{ of index } 2, \ \mathfrak{H} \cong PSL(2,q) \times C_{(q+1)/2}; \\ \mathfrak{G} \text{ fixes } X_\infty \text{ and preserves the plane } \Pi \text{ of equation } X = 0; \\ \mathcal{X} = \Delta \cup \Omega \text{ with } \Omega = \mathcal{X} \cap \Pi; \end{array}
```

```
 \mathcal{U}_3 := X_3^q X_0 + X_3 X_0^q + 2 X_2^{q+1} - X_1^{q+1} = 0; \\ \mathcal{X}^+ := \{(1, u, v, v^2) | u^{(q+1)/2} = v^q - v; u, v \in \mathbb{F}_{q^2}\} \cup \{(0, 0, 0, 1\}. \\ \mathfrak{G} := \text{subgroup of } PGU(4, q) \text{ preserving } \mathcal{X}; \\ \mathfrak{G}/C_{(q+1)/2} \cong PGL(2, q) \ Z(\mathfrak{G}) = C_{(q+1)/2}; \\ \mathfrak{H} := \text{subgroup of } \mathfrak{G} \text{ of index } 2, \ \mathfrak{H} \cong PSL(2, q) \times C_{(q+1)/2}; \\ \mathfrak{G} \text{ fixes } X_\infty \text{ and preserves the plane } \Pi \text{ of equation } X = 0; \\ \mathcal{X} = \Delta \cup \Omega \text{ with } \Omega = \mathcal{X} \cap \Pi; \\ \text{Take a point } P_1 \in \Delta, \text{ together with a generator } \ell_1 \text{ on } P_1;
```

```
 \mathcal{U}_3 := X_3^q X_0 + X_3 X_0^q + 2 X_2^{q+1} - X_1^{q+1} = 0; \\ \mathcal{X}^+ := \{(1,u,v,v^2) | u^{(q+1)/2} = v^q - v; u,v \in \mathbb{F}_{q^2}\} \cup \{(0,0,0,1]. \\ \mathfrak{G} := \text{subgroup of } PGU(4,q) \text{ preserving } \mathcal{X}; \\ \mathfrak{G}/C_{(q+1)/2} \cong PGL(2,q) \ Z(\mathfrak{G}) = C_{(q+1)/2}; \\ \mathfrak{H} := \text{subgroup of } \mathfrak{G} \text{ of index } 2, \ \mathfrak{H} \cong PSL(2,q) \times C_{(q+1)/2}; \\ \mathfrak{G} \text{ fixes } X_\infty \text{ and preserves the plane } \Pi \text{ of equation } X = 0; \\ \mathcal{X} = \Delta \cup \Omega \text{ with } \Omega = \mathcal{X} \cap \Pi; \\ \text{Take a point } P_1 \in \Delta, \text{ together with a generator } \ell_1 \text{ on } P_1; \\ \text{Then the orbit } \mathcal{M}_1 \text{ of } \ell_1 \text{ (under the action of } \mathfrak{H}) \text{ has size } \frac{1}{2}(q+1)(q^3-q);
```

Hemisystems from the FT maximal curve, $q \equiv 1 \pmod{4}$

$$\begin{array}{l} \mathcal{U}_3 {:=} X_3^q X_0 + X_3 X_0^q + 2 X_2^{q+1} - X_1^{q+1} = 0; \\ \mathcal{X}^+ := \{(1,u,v,v^2) | u^{(q+1)/2} = v^q - v; u,v \in \mathbb{F}_{q^2}\} \cup \{(0,0,0,1\}. \\ \mathfrak{G} {:=} \text{subgroup of } PGU(4,q) \text{ preserving } \mathcal{X}; \\ \mathfrak{G}/C_{(q+1)/2} \cong PGL(2,q) \ Z(\mathfrak{G}) = C_{(q+1)/2}; \\ \mathfrak{H} {:=} \text{subgroup of } \mathfrak{G} \text{ of index } 2, \ \mathfrak{H} \cong PSL(2,q) \times C_{(q+1)/2}; \\ \mathfrak{G} \text{ fixes } X_\infty \text{ and preserves the plane } \Pi \text{ of equation } X = 0; \\ \mathcal{X} = \Delta \cup \Omega \text{ with } \Omega = \mathcal{X} \cap \Pi; \\ \text{Take a point } P_1 \in \Delta, \text{ together with a generator } \ell_1 \text{ on } P_1; \\ \text{Then the orbit } \mathcal{M}_1 \text{ of } \ell_1 \text{ (under the action of } \mathfrak{H}) \text{ has size } \frac{1}{2}(q+1)(q^3-q); \end{array}$$

Take a point $P_2 \in \Omega$, together with a generator ℓ_2 on P_2 ;

Hemisystems from the FT maximal curve, $q \equiv 1 \pmod{4}$

```
U_3:=X_3^qX_0+X_3X_0^q+2X_2^{q+1}-X_1^{q+1}=0;
\mathcal{X}^+ := \{(1, u, v, v^2) | u^{(q+1)/2} = v^q - v; u, v \in \mathbb{F}_{a^2}\} \cup \{(0, 0, 0, 1\}.
\mathfrak{G}:=subgroup of PGU(4, q) preserving \mathcal{X};
\mathfrak{G}/C_{(g+1)/2}\cong PGL(2,q)\ Z(\mathfrak{G})=C_{(g+1)/2};
\mathfrak{H}:= subgroup of \mathfrak{G} of index 2, \mathfrak{H}\cong PSL(2,q)\times C_{(q+1)/2};
\mathfrak{G} fixes X_{\infty} and preserves the plane \Pi of equation X=0;
\mathcal{X} = \Delta \cup \Omega with \Omega = \mathcal{X} \cap \Pi:
Take a point P_1 \in \Delta, together with a generator \ell_1 on P_1;
Then the orbit \mathcal{M}_1 of \ell_1 (under the action of \mathfrak{H}) has size
\frac{1}{2}(q+1)(q^3-q);
Take a point P_2 \in \Omega, together with a generator \ell_2 on P_2;
Then the orbit \mathcal{M}_2 of \ell_2 (under the action of \mathfrak{H}) has size
\frac{1}{2}(q+1)^2.
```

Hemisystems from the FT maximal curve, $q \equiv 1 \pmod{4}$

$$\begin{array}{l} \mathcal{U}_3 := X_3^q X_0 + X_3 X_0^q + 2 X_2^{q+1} - X_1^{q+1} = 0; \\ \mathcal{X}^+ := \{(1,u,v,v^2)|u^{(q+1)/2} = v^q - v; u,v \in \mathbb{F}_{q^2}\} \cup \{(0,0,0,1]. \\ \mathfrak{G} := \text{subgroup of } PGU(4,q) \text{ preserving } \mathcal{X}; \\ \mathfrak{G}/C_{(q+1)/2} \cong PGL(2,q) \ Z(\mathfrak{G}) = C_{(q+1)/2}; \\ \mathfrak{H} := \text{subgroup of } \mathfrak{G} \text{ of index } 2, \ \mathfrak{H} \cong PSL(2,q) \times C_{(q+1)/2}; \\ \mathfrak{G} \text{ fixes } X_\infty \text{ and preserves the plane } \Pi \text{ of equation } X = 0; \\ \mathcal{X} = \Delta \cup \Omega \text{ with } \Omega = \mathcal{X} \cap \Pi; \\ \text{Take a point } P_1 \in \Delta, \text{ together with a generator } \ell_1 \text{ on } P_1; \\ \text{Then the orbit } \mathcal{M}_1 \text{ of } \ell_1 \text{ (under the action of } \mathfrak{H}) \text{ has size } \\ \frac{1}{2}(q+1)(q^3-q); \\ \text{Take a point } P_2 \in \Omega, \text{ together with a generator } \ell_2 \text{ on } P_2; \\ \text{Then the orbit } \mathcal{M}_2 \text{ of } \ell_2 \text{ (under the action of } \mathfrak{H}) \text{ has size } \\ \frac{1}{2}(q+1)^2. \\ \text{Is } \mathcal{M} \text{ a half-semisystem?} \\ \text{If "yes" then } \mathcal{M} \cup \mathcal{H} \text{ is a hemisystem.} \\ \end{array}$$

 ${\mathcal M}$ a half-semisystem if

(A) Each $Q \in \mathcal{X}$ is incident with exactly $rac{1}{2}(q+1)$ generators in \mathcal{M}

- ${\mathcal M}$ a half-semisystem if
- (A) Each $Q \in \mathcal{X}$ is incident with exactly $rac{1}{2}(q+1)$ generators in \mathcal{M}
- (B) For any point $P \in \mathcal{U}_3 \setminus \mathcal{X}$, \mathcal{M} has as many as $\frac{1}{2}n_P$ generators on P meeting \mathcal{X} .

- ${\cal M}$ a half-semisystem if
- (A) Each $Q \in \mathcal{X}$ is incident with exactly $rac{1}{2}(q+1)$ generators in \mathcal{M}
- (B) For any point $P \in \mathcal{U}_3 \setminus \mathcal{X}$, \mathcal{M} has as many as $\frac{1}{2}n_P$ generators on P meeting \mathcal{X} .
 - By construction (A) is satisfied.

- ${\cal M}$ a half-semisystem if
- (A) Each $Q \in \mathcal{X}$ is incident with exactly $rac{1}{2}(q+1)$ generators in \mathcal{M}
- (B) For any point $P \in \mathcal{U}_3 \setminus \mathcal{X}$, \mathcal{M} has as many as $\frac{1}{2}n_P$ generators on P meeting \mathcal{X} .
 - By construction (A) is satisfied.
 - If \mathfrak{G}_P is nontrivial, then (B) is satisfied.

- ${\cal M}$ a half-semisystem if
- (A) Each $Q \in \mathcal{X}$ is incident with exactly $rac{1}{2}(q+1)$ generators in \mathcal{M}
- (B) For any point $P \in \mathcal{U}_3 \setminus \mathcal{X}$, \mathcal{M} has as many as $\frac{1}{2}n_P$ generators on P meeting \mathcal{X} .
 - By construction (A) is satisfied.
 - If \mathfrak{G}_P is nontrivial, then (B) is satisfied.
 - If \mathfrak{G}_P is trivial, then (B) does not hold in general.

- ${\cal M}$ a half-semisystem if
- (A) Each $Q \in \mathcal{X}$ is incident with exactly $rac{1}{2}(q+1)$ generators in \mathcal{M}
- (B) For any point $P \in \mathcal{U}_3 \setminus \mathcal{X}$, \mathcal{M} has as many as $\frac{1}{2}n_P$ generators on P meeting \mathcal{X} .
 - By construction (A) is satisfied.
 - If \mathfrak{G}_P is nontrivial, then (B) is satisfied.
 - If \mathfrak{G}_P is trivial, then (B) does not hold in general.

Assumption Either $q = p^h$ with $p \equiv 1 \pmod{8}$, or q square.

 ${\cal M}$ a half-semisystem if

- (A) Each $Q \in \mathcal{X}$ is incident with exactly $rac{1}{2}(q+1)$ generators in \mathcal{M}
- (B) For any point $P \in \mathcal{U}_3 \setminus \mathcal{X}$, \mathcal{M} has as many as $\frac{1}{2}n_P$ generators on P meeting \mathcal{X} .
 - By construction (A) is satisfied.
 - If \mathfrak{G}_P is nontrivial, then (B) is satisfied.
 - If \mathfrak{G}_P is trivial, then (B) does not hold in general.

Assumption Either $q = p^h$ with $p \equiv 1 \pmod{8}$, or q square.

Theorem. Condition (B) is satisfied for $\forall P \in \mathcal{U}_3 \setminus \mathcal{X}$ if and only if the following Condition (U) is satisfies:

 ${\cal M}$ a half-semisystem if

- (A) Each $Q \in \mathcal{X}$ is incident with exactly $rac{1}{2}(q+1)$ generators in \mathcal{M}
- (B) For any point $P \in \mathcal{U}_3 \setminus \mathcal{X}$, \mathcal{M} has as many as $\frac{1}{2}n_P$ generators on P meeting \mathcal{X} .
 - By construction (A) is satisfied.
 - If \mathfrak{G}_P is nontrivial, then (B) is satisfied.
 - If \mathfrak{G}_P is trivial, then (B) does not hold in general.

Assumption Either $q = p^h$ with $p \equiv 1 \pmod{8}$, or q square.

Theorem. Condition (B) is satisfied for $\forall P \in \mathcal{U}_3 \setminus \mathcal{X}$ if and only if the following Condition (U) is satisfies:

(U) the elliptic curve \mathcal{E}_3 of equation $Y^2=X^3-X$ has exactly q-1 point over \mathbb{F}_q .

 ${\cal M}$ a half-semisystem if

- (A) Each $Q \in \mathcal{X}$ is incident with exactly $rac{1}{2}(q+1)$ generators in \mathcal{M}
- (B) For any point $P \in \mathcal{U}_3 \setminus \mathcal{X}$, \mathcal{M} has as many as $\frac{1}{2}n_P$ generators on P meeting \mathcal{X} .
 - By construction (A) is satisfied.
 - If \mathfrak{G}_P is nontrivial, then (B) is satisfied.
 - If \mathfrak{G}_P is trivial, then (B) does not hold in general.

Assumption Either $q = p^h$ with $p \equiv 1 \pmod{8}$, or q square.

Theorem. Condition (B) is satisfied for $\forall P \in \mathcal{U}_3 \setminus \mathcal{X}$ if and only if the following Condition (U) is satisfies:

(U) the elliptic curve \mathcal{E}_3 of equation $Y^2=X^3-X$ has exactly q-1 point over $\mathbb{F}_q.$

Remark Some more computation should prove that Theorem holds true for $p \equiv 1 \pmod{4}$.

Let
$$q = p$$
 with $p \equiv 1 \pmod{4}$.

Let q = p with $p \equiv 1 \pmod{4}$. From earlier results on elliptic curves (Serre)

Let q=p with $p\equiv 1\pmod 4$. From earlier results on elliptic curves (Serre) (U) is satisfied $\Leftrightarrow p=1+n^2$ with $n\in\mathbb{Z}$.

Let q = p with $p \equiv 1 \pmod{4}$. From earlier results on elliptic curves (Serre)

- (U) is satisfied $\Leftrightarrow p = 1 + n^2$ with $n \in \mathbb{Z}$.
- \Rightarrow Let $p \equiv 1 \pmod{8}$. Then we obtain a hemisystem if and only if $p = 1 + 16n^2$.

Let q=p with $p\equiv 1\pmod 4$. From earlier results on elliptic curves (Serre)

- (U) is satisfied $\Leftrightarrow p = 1 + n^2$ with $n \in \mathbb{Z}$.
- \Rightarrow Let $p \equiv 1 \pmod{8}$. Then we obtain a hemisystem if and only if $p = 1 + 16n^2$.

Remark This should remain true for $p = 1 + n^2$

```
Let q=p with p\equiv 1\pmod 4. From earlier results on elliptic curves (Serre)
```

(U) is satisfied $\Leftrightarrow p = 1 + n^2$ with $n \in \mathbb{Z}$.

 \Rightarrow Let $p \equiv 1 \pmod{8}$. Then we obtain a hemisystem if and only if $p = 1 + 16n^2$.

Remark This should remain true for $p = 1 + n^2$

Landau's Conjecture

```
Let q=p with p\equiv 1\pmod 4. From earlier results on elliptic curves (Serre)
```

- (U) is satisfied $\Leftrightarrow p = 1 + n^2$ with $n \in \mathbb{Z}$.
- \Rightarrow Let $p \equiv 1 \pmod{8}$. Then we obtain a hemisystem if and only if $p = 1 + 16n^2$.

Remark This should remain true for $p = 1 + n^2$ Landau's Conjecture

 \exists infinite sequence of primes $p = 1 + n^2$.

Some more examples arise with a slight modification of the above procedure;

Some more examples arise with a slight modification of the above procedure;

The idea is to use the Fuhrmann-Torres curve \mathcal{X} together with its twin curve;

$$\mathcal{X}^+:=\{(1,u,v,v^2)|-u^{(q+1)/2}=v^q-v;u,v\in\mathbb{F}_{q^2}\}\cup\{(0,0,0,1\}.$$

Some more examples arise with a slight modification of the above procedure;

The idea is to use the Fuhrmann-Torres curve \mathcal{X} together with its twin curve;

$$\mathcal{X}^+ := \{(1, u, v, v^2) | -u^{(q+1)/2} = v^q - v; u, v \in \mathbb{F}_{q^2}\} \cup \{(0, 0, 0, 1\}.$$
 The modified construction:

Some more examples arise with a slight modification of the above procedure;

The idea is to use the Fuhrmann-Torres curve \mathcal{X} together with its twin curve;

$$\mathcal{X}^+ := \{(1, u, v, v^2) | -u^{(q+1)/2} = v^q - v; u, v \in \mathbb{F}_{q^2}\} \cup \{(0, 0, 0, 1\}.$$

The modified construction:

On each point of \mathcal{X} take one half of the generators (using again the group $G \cong PSL(2,q) \times C_{(q+1)/2}$;

Some more examples arise with a slight modification of the above procedure;

The idea is to use the Fuhrmann-Torres curve \mathcal{X} together with its twin curve;

$$\mathcal{X}^+ := \{(1, u, v, v^2) | -u^{(q+1)/2} = v^q - v; u, v \in \mathbb{F}_{q^2}\} \cup \{(0, 0, 0, 1\}.$$

The modified construction:

On each point of \mathcal{X} take one half of the generators (using again the group $G \cong PSL(2,q) \times C_{(q+1)/2}$;

Take a G-orbit Σ of imaginary chords of \mathcal{X} ;

Some more examples arise with a slight modification of the above procedure;

The idea is to use the Fuhrmann-Torres curve \mathcal{X} together with its twin curve;

$$\mathcal{X}^+:=\{(1,u,v,v^2)|-u^{(q+1)/2}=v^q-v;u,v\in\mathbb{F}_{q^2}\}\cup\{(0,0,0,1\}.$$

The modified construction:

On each point of \mathcal{X} take one half of the generators (using again the group $G \cong PSL(2,q) \times C_{(q+1)/2}$;

Take a G-orbit Σ of imaginary chords of \mathcal{X} ;

Take a G-orbit Δ of imaginary chords of \mathcal{Y} ;

Some more examples arise with a slight modification of the above procedure;

The idea is to use the Fuhrmann-Torres curve \mathcal{X} together with its twin curve;

$$\mathcal{X}^+ := \{(1, u, v, v^2) | -u^{(q+1)/2} = v^q - v; u, v \in \mathbb{F}_{q^2}\} \cup \{(0, 0, 0, 1\}.$$

The modified construction:

On each point of \mathcal{X} take one half of the generators (using again the group $G \cong PSL(2, q) \times C_{(q+1)/2}$;

Take a G-orbit Σ of imaginary chords of \mathcal{X} ;

Take a G-orbit Δ of imaginary chords of \mathcal{Y} ;

The generators chosen in this way may form a hemisystem.

Some more examples arise with a slight modification of the above procedure;

The idea is to use the Fuhrmann-Torres curve \mathcal{X} together with its twin curve;

$$\mathcal{X}^+ := \{(1, u, v, v^2) | -u^{(q+1)/2} = v^q - v; u, v \in \mathbb{F}_{q^2}\} \cup \{(0, 0, 0, 1\}.$$

The modified construction:

On each point of \mathcal{X} take one half of the generators (using again the group $G \cong PSL(2, q) \times C_{(q+1)/2}$;

Take a G-orbit Σ of imaginary chords of \mathcal{X} ;

Take a G-orbit Δ of imaginary chords of \mathcal{Y} ;

The generators chosen in this way may form a hemisystem.

For instance, this occurs for q=5,13,17,25,37,41,101 (computer aided research);

Some more examples arise with a slight modification of the above procedure;

The idea is to use the Fuhrmann-Torres curve \mathcal{X} together with its twin curve;

$$\mathcal{X}^+ := \{(1, u, v, v^2) | -u^{(q+1)/2} = v^q - v; u, v \in \mathbb{F}_{q^2}\} \cup \{(0, 0, 0, 1\}.$$

The modified construction:

On each point of \mathcal{X} take one half of the generators (using again the group $G \cong PSL(2, q) \times C_{(q+1)/2}$;

Take a G-orbit Σ of imaginary chords of \mathcal{X} ;

Take a G-orbit Δ of imaginary chords of \mathcal{Y} ;

The generators chosen in this way may form a hemisystem.

For instance, this occurs for q = 5, 13, 17, 25, 37, 41, 101 (computer aided research);

Are these hemisystems members of an infinite family?

