m-ovoids of regular near polygons

Jesse Lansdown

joint work with John Bamberg and Melissa Lee

Lehrstuhl B für Mathematik, RWTH Aachen University

10-16/9/2017, Finite Geometries, Irsee, Germany

near polygons

A *near polygon* or 2*d*-gon is an incidence geometry which satisfies:

- Any two points on at most one line.
- Diameter of collinearity graph is d.
- Given a line ℓ and non-incident point P, there is a unique nearest path from P to a point on ℓ (wrt to the collinearity graph).

Regular near polygons

If a near polygon has parameters $(s, t_2, \ldots, t_{d-1}, t)$ such that:

- ullet each point is incident with t+1 lines,
- ullet each line is incident with s+1 points,
- if x and y are points such that d(x, y) = i, then there are $t_i + 1$ lines on y with a point at distance i 1 from x.

Equivalently, they have distance regular collinearity graphs, with intersection numbers:

$$a_i = (s-1)(t_i+1), \quad b_i = s(t-t_i), \quad c_i = t_i+1$$

Regular near polygons

If a near polygon has parameters $(s, t_2, \dots, t_{d-1}, t)$ such that:

- ullet each point is incident with t+1 lines,
- ullet each line is incident with s+1 points,
- if x and y are points such that d(x, y) = i, then there are $t_i + 1$ lines on y with a point at distance i 1 from x.

Equivalently, they have distance regular collinearity graphs, with intersection numbers:

$$a_i = (s-1)(t_i+1), \quad b_i = s(t-t_i), \quad c_i = t_i+1$$

Example

Finite dual polar spaces are regular near 2d-gons.

In particular DW(2d-1,q), DQ(2d,q) and $DH(2d-1,q^2)$ are regular near polygons.

m-ovoids

An m-ovoid of a near 2d-gon is a set of points $\mathcal O$ such that every line meets exactly m elements of $\mathcal O$.

m-ovoids

An m-ovoid of a near 2d-gon is a set of points \mathcal{O} such that every line meets exactly m elements of \mathcal{O} .

If m is half the number of points on a line (s+1/2), then the m-ovoid is called a hemisystem.

Some *m*-ovoid results of dual polar spaces

- No 1-ovoids of DQ(4, q), q odd (Thas)
- No 1-ovoids of $DQ^-(5,q)$ (Thas)
- No 1-ovoids of DQ(3, q), q odd (Thas)
- No 1-ovoids of $DH(4, 2^2)$ (Brouwer)
- 1-ovoids of $DQ^-(7, q)$ not known
- 1-ovoids of $DH(6, q^2)$ not known
- No 1-ovoids DW(5, q), q even (Payne, Thas), q odd (Thomas)
- No 1-ovoids of generalised hexagons of order (s, s^2) (De Bruyn, Vanhove)
- *m*-ovoids of $DH(3, q^2)$ are hemisystems, q odd (Segre)
- m-ovoids of generalised quadrangles of order (q, q^2) are hemisystems, q odd (Cameron, Goethals, Seidel)
- *m*-ovoids of regular near 2d-gons with $t_i + 1 = \frac{s^{2i} 1}{s^2 1}$ are hemisystems (Vanhove)

Prior theorems

Theorem (De Bruyn, Vanhove)

A regular near 2d-gon satisfies

$$\frac{(s^i-1)(t_{i-1}+1-s^{i-2})}{s^{i-2}-1}\leqslant t_i+1\leqslant \frac{(s^i+1)(t_{i-1}+1+s^{i-2})}{s^{i-2}+1}$$

for $s, d \geqslant 2$ and $i \in \{3, \ldots, d\}$.

Prior theorems

Theorem (De Bruyn, Vanhove)

A regular near 2d-gon satisfies

$$\frac{(s^i-1)(t_{i-1}+1-s^{i-2})}{s^{i-2}-1}\leqslant t_i+1\leqslant \frac{(s^i+1)(t_{i-1}+1+s^{i-2})}{s^{i-2}+1}$$

for $s, d \geqslant 2$ and $i \in \{3, \ldots, d\}$.

Theorem (De Bruyn, Vanhove)

A regular 2d-gon ($d \ge 3$, $s \ge 2$) attaining the lower bound for i = 3 is isomorphic to DQ(2d,q), DW(2d-1,q) or $DH(2d-1,q^2)$.

New result

Theorem (Bamberg, JL, Lee)

Given a 2d-gon satisfying

$$t_i + 1 = \frac{(s^i + (-1)^i)(t_{i-1} + 1 + (-1)^i s^{i-2})}{s^{i-2} + (-1)^i}$$

a non-trivial m-ovoid is a hemisystem.

Fix $x \notin \mathcal{O}$. Count $y, z \in \mathcal{O}$ such that d(x, y) = i and

$$d(y,z) = i - 1$$

$$d(x,z) = 1$$

or
$$\bullet d(y, z) = 1$$

 $d(x, z) = i - 1$

Counting y then z:

For x and y at distance i define

$$v_{x,y} := s(c_{i-1} - s)(\chi_x + \chi_y) + \chi_{\Gamma_1(x) \cap \Gamma_{i-1}(y)} + \chi_{\Gamma_{i-1}(x) \cap \Gamma_1(y)}$$

Theorem

$$v_{x,y}.\chi_{\mathcal{O}} = \frac{2(s(c_{i-1}-s^{i-2})+c_i)m}{s+1}$$
 (design-orthogonal)

Counting first y and then z, the number of pairs is

$$\begin{split} &\sum_{y \in \mathcal{O} \cap \Gamma_{i}(x)} \left(|\Gamma_{1}(x) \cap \Gamma_{i-1}(y) \cap \mathcal{O}| + |\Gamma_{i-1}(x) \cap \Gamma_{1}(y) \cap \mathcal{O}| \right) \\ &= \sum_{y \in \mathcal{O} \cap \Gamma_{i}(x)} (v_{x,y} - s(c_{i-1} + (-1)^{i}s^{i-2})(\chi_{x} + \chi_{y})) \cdot \chi_{\mathcal{O}} \\ &= \dots \\ &= \frac{mk_{i-1}(t - t_{i-1})}{s+1} \left(1 - \left(-\frac{1}{s} \right)^{i} \right) \frac{2c_{i}ms - (s+1-2m)\left(c_{i-1}s^{2} + (-1)^{i}s^{i}\right)}{c_{i}(s+1)}. \end{split}$$

Counting z then y:

$$\sum_{z\in\mathcal{O}\cap\Gamma_1(x)}|\Gamma_{i-1}(z)\cap\Gamma_i(x)\cap\mathcal{O}|+\sum_{z\in\mathcal{O}\cap\Gamma_{i-1}(x)}|\Gamma_1(z)\cap\Gamma_i(x)\cap\mathcal{O}|.$$

$$d(x,z) = i - 1, \quad |\Gamma_1(z) \cap \Gamma_i(x) \cap \mathcal{O}| = ?$$

$$d(x,z) = i - 1, \quad |\Gamma_1(z) \cap \Gamma_i(x) \cap \mathcal{O}| = ?$$

$$d(x,z) = i - 1, \quad |\Gamma_1(z) \cap \Gamma_i(x) \cap \mathcal{O}| = ?$$

$$d(x,z) = i - 1, \quad |\Gamma_1(z) \cap \Gamma_i(x) \cap \mathcal{O}| = ?$$

$$d(x,z) = i - 1, \quad |\Gamma_1(z) \cap \Gamma_i(x) \cap \mathcal{O}| = ?$$

$$d(x,z) = i - 1, \quad |\Gamma_1(z) \cap \Gamma_i(x) \cap \mathcal{O}| = ?$$

$$d(x,z) = i - 1, \quad |\Gamma_1(z) \cap \Gamma_i(x) \cap \mathcal{O}| = ?$$

$$d(x,z)=i-1, \quad |\Gamma_1(z)\cap\Gamma_i(x)\cap\mathcal{O}|=(t-t_{i-1})(m-1)$$

$$d(x,z) = 1$$
, $|\Gamma_{i-1}(z) \cap \Gamma_i(x) \cap \mathcal{O}| = ?$

$$d(x,z) = 1$$
, $|\Gamma_{i-1}(z) \cap \Gamma_i(x) \cap \mathcal{O}| = ?$

Harder - can't just take points on lines through z.

$$d(x,z) = 1, \quad |\Gamma_{i-1}(z) \cap \Gamma_i(x) \cap \mathcal{O}| = ?$$

Harder - can't just take points on lines through z.

Obtain an iterative formula,

$$|\Gamma_{i-1}(z) \cap \Gamma_i(x) \cap \mathcal{O}| = p_{i-1,i-2}^1 \frac{t - t_{i-1}}{t_{i-1} + 1} m - \frac{t - t_{i-1}}{t_{i-1} + 1} |\Gamma_{i-2}(z) \cap \Gamma_{i-1}(x) \cap \mathcal{O}|$$

$$d(x,z) = 1, \quad |\Gamma_{i-1}(z) \cap \Gamma_i(x) \cap \mathcal{O}| = ?$$

Harder - can't just take points on lines through z.

Obtain an iterative formula,

$$|\Gamma_{i-1}(z) \cap \Gamma_i(x) \cap \mathcal{O}| = p_{i-1,i-2}^1 \frac{t - t_{i-1}}{t_{i-1} + 1} m - \frac{t - t_{i-1}}{t_{i-1} + 1} |\Gamma_{i-2}(z) \cap \Gamma_{i-1}(x) \cap \mathcal{O}|$$

And after manipulation:

$$\begin{split} |\Gamma_{i-1}(z) \cap \Gamma_i(x) \cap \mathcal{O}| &= p_{i,i-1}^1 \left(\frac{m - s \left(-\frac{1}{s} \right)^i \left(-m + s + 1 \right)}{s + 1} \right) \\ &= \frac{k_{i-1}(t - t_{i-1})}{t + 1} \left(\frac{m - s \left(-\frac{1}{s} \right)^i \left(-m + s + 1 \right)}{s + 1} \right) \\ &= \frac{k_{i-1}(t - t_{i-1})}{s^{i-1}(t + 1)} \left(\frac{m}{s + 1} \left(s^{i-1} + (-1)^{i-2} \right) + (-1)^{i-1} \right). \end{split}$$

Summing the terms:

$$\sum_{z \in \mathcal{O} \cap \Gamma_1(x)} |\Gamma_{i-1}(z) \cap \Gamma_i(x) \cap \mathcal{O}| + \sum_{z \in \mathcal{O} \cap \Gamma_{i-1}(x)} |\Gamma_1(z) \cap \Gamma_i(x) \cap \mathcal{O}|$$

$$= \frac{mk_{i-1}(t - t_{i-1})}{s+1} \left(2m - 1 + \left(\frac{-1}{s}\right)^{i-1} (s - 2m + 2)\right).$$

Equating the two counts "y then z" and "z then y":

$$\left(1 - \left(-\frac{1}{s}\right)^{i}\right) \frac{2(t_{i}+1)ms - (s+1-2m)\left((t_{i-1}+1)s^{2} + (-1)^{i}s^{i}\right)}{(t_{i}+1)(s+1)}$$

$$= 2m - 1 + \left(\frac{-1}{s}\right)^{i-1}(s-2m+2).$$

Equating the two counts "y then z" and "z then y":

$$\left(1 - \left(-\frac{1}{s}\right)^{i}\right) \frac{2(t_{i}+1)ms - (s+1-2m)\left((t_{i-1}+1)s^{2} + (-1)^{i}s^{i}\right)}{(t_{i}+1)(s+1)}$$

$$= 2m-1 + \left(\frac{-1}{s}\right)^{i-1}(s-2m+2).$$

Making use of the assumption on $t_i + 1$, solving for m yields:

$$m=(s+1)/2.$$

Additional results

Theorem (Bamberg, JL, Lee)

The only nontrivial m-ovoids of DQ(2d, q), DW(2d - 1, q) and $DH(2d - 1, q^2)$, for $d \ge 3$, are hemisystems.

Computational results:

- DW(5,3) no hemisystems (De Bruyn, Vanhove)
 - \rightarrow DH(5,9) no hemisystems
- *DW*(5,5) no hemisystems (Bamberg, JL, Lee)
 - \rightarrow DH(5,25) no hemisystems
- DQ(6,3) unique hemisystem (De Bruyn, Vanhove)
- \bullet DQ(6,5) multiple non-isomorphic hemisystems (Bamberg, JL, Lee)

Conjectures

Conjecture

There are no hemisystems of DW(5, q), for all prime powers q.

Conjecture

There exists a hemisystems of DQ(6, q), for all prime powers q.

Danke!