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The Fq-linear representation of Λ = PG(V ,Fqn ) = PG(r − 1,qn)

Λ = PG(V ,Fqn ) = PG(r − 1,qn) −→ Λ̄ = PG(rn − 1,q)

P = 〈u〉qn −→ XP = PG(n − 1,q)

D := {XP : P ∈ Λ} Desarguesian spread of Λ̄

PG(D) :

{
points: elements of D

lines: (2n-1) - dim. subspaces of Λ̄ joining two elements of D

PG(D) ∼= Λ
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The Fq-linear representation of Λ = PG(V ,Fqn ) = PG(r − 1,qn)

Λ = PG(V ,Fqn ) = PG(r − 1,qn) −→ Λ̄ = PG(rn − 1,q)

P = 〈u〉qn −→ XP = PG(n − 1,q)

U Fq-subspace of V −→ P(U)

LU

XP
P(U)

LU = {P ∈ Λ: XP ∩ P(U) 6= ∅}
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Definition of linear set

Λ = PG(V ) V = V (Fqn )

L ⊆ Λ is an Fq-linear set if

L = LU = {P = 〈u〉qn : u ∈ U \ {0}}

U subspace of V over Fq
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Λ = PG(V ) V = V (Fqn )

L ⊆ Λ is an Fq-linear set if

L = LU = {P = 〈u〉qn : u ∈ U \ {0}}

U subspace of V over Fq

dimFq U = k ⇒ LU is an Fq–linear set of Λ of rank k
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Definition of linear set

Λ = PG(V ) V = V (Fqn )

L ⊆ Λ is an Fq-linear set if

L = LU = {P = 〈u〉qn : u ∈ U \ {0}}

U subspace of V over Fq

Every projective subspace of PG(r − 1,qn) is an Fqn -linear set.

Every subgeometry PG(s,q) of PG(r − 1,qn) (s < r and n > 1) is an
Fq-linear set.
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Definition of linear set

∀λ ∈ Fqn ⇒ LλU = LU

Different Fq-subspaces can define the same linear set

U

λU
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Definition of linear set

∀λ ∈ Fqn ⇒ LλU = LU

Different Fq-subspaces can define the same linear set

↓

An Fq-linear set and the vector space defining it must be considered as coming
in pair
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Linear sets and applications

Blocking sets in finite projective spaces

Two intersection sets in finite projective spaces

Translation spreads of the Cayley Generalized Hexagon

Translation ovoids of polar spaces

Semifield flocks

Finite semifields and finite semifield planes

Translation caps in affine and projective spaces

MRD-codes

[O. Polverino: Linear sets in finite projective spaces, Discrete Math. 310 (2010), 3096–3107.]

[M. Lavrauw: Scattered spaces in Galois Geometry, Contemporary Developments in Finite Fields
and Applications, 2016, 195–216.]
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Definition of equivalence of linear sets

LU and LV Fq-linear sets of Λ = PG(W ,Fqn ) = PG(r − 1,qn)

LU and LV are PΓL-equivalent (or simply equivalent) if there is an element

Φ ∈ PΓL(r ,qn) s.t. LΦ
U = LV

U = V f f ∈ ΓL(r ,qn) ⇒ LΦf
U = LU f = LV

The converse does not hold
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Φ ∈ PΓL(r ,qn) s.t. LΦ
U = LV

U = V f f ∈ ΓL(r ,qn) ⇒ LΦf
U = LU f = LV

The converse does not hold

Example

Fq-vector subspaces of W = V (r ,qn) of rank k ≥ rn − n + 1 determine the
whole projective space but there is no semilinear map between two
Fq-subspaces with different rank

Giuseppe Marino Classes and equivalence of linear sets in PG(1, qn) Irsee 2017 6 / 23



Definition of equivalence of linear sets

LU and LV Fq-linear sets of Λ = PG(W ,Fqn ) = PG(r − 1,qn)

LU and LV are PΓL-equivalent (or simply equivalent) if there is an element

Φ ∈ PΓL(r ,qn) s.t. LΦ
U = LV

U = V f f ∈ ΓL(r ,qn) ⇒ LΦf
U = LU f = LV

The converse does not hold

Example

Fq-vector subspaces of W = V (2,qn) of rank k ≥ 2n − n + 1 determine the
whole projective space but there is no semilinear map between two
Fq-subspaces with different rank
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Equivalence issue linear sets of rank n in PG(1,qn)

LU an Fq-linear set of rank n in PG(1,qn)

FIRST STEP: Determine all Fq-subspaces defining LU

Question
Is it possible to have an Fq-subspace of rank different from n defining LU?
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Equivalence between Fq-linear sets of PG(1,qn) of rank n

Theorem (Ball, Blokhuis, Brouwer, Storme, Szőnyi, 1999 - Ball, 2003)

Let f be a function from Fq to Fq , q = ph, and let N be the number of
directions determined by f . Let s = pe be maximal such that any line with a
direction determined by f that is incident with a point of the graph of f is
incident with a multiple of s points of the graph of f . Then one of the following
holds.

1 s = 1 and (q + 3)/2 ≤ N ≤ q + 1,

2 e|h, q/s + 1 ≤ N ≤ (q − 1)/(s − 1),

3 s = q and N = 1.

Moreover if s > 2, then the graph of f is Fs-linear.
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Equivalence between Fq-linear sets of PG(1,qn) of rank n

Fqt is the maximum field of linearity of LU if t |n and LU is an Fqt -linear set

Theorem (B. Csajbók, G.M., O. Polverino)

Let LU be an Fq-linear set of PG(W ,Fqn ) = PG(1,qn) of rank n. The
maximum field of linearity of LU is Fqd , where

d = min{dimq(U ∩ 〈u〉qn ) : u ∈ U \ {0}}.

If the maximum field of linearity of LU is Fq , then the rank of LU as an
Fq-linear set is uniquely defined, i.e. for each Fq-subspace V of W if LU = LV ,
then dimq(V ) = n.
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Equivalence of linear sets in PG(1,qn) of rank n

LU and LV are PΓL-equivalent (or simply equivalent) if there is an element Φf ∈ PΓL(2, qn) s.t.
LΦf

U = LU f = LV

FIRST STEP: Determine all Fq-subspaces defining LU (which have all rank n)

SECOND STEP: Study the action on these Fq-subspaces of ΓL(2, qn)

Definition

Let LU be an Fq-linear set of PG(W ,Fqn ) = PG(1, qn) of rank n with maximum field of linearity
Fq . The ΓL-class of LU is the number of the ΓL(2, qn)-orbits determined by the Fq-subspaces
defining LU .

If the ΓL-class is 1, then LU is said to be simple
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LU and LV are PΓL-equivalent (or simply equivalent) if there is an element Φf ∈ PΓL(2, qn) s.t.
LΦf

U = LU f = LV

FIRST STEP: Determine all Fq-subspaces defining LU (which have all rank n)

SECOND STEP: Study the action on these Fq-subspaces of ΓL(2, qn)

Definition

Let LU be an Fq-linear set of PG(W ,Fqn ) = PG(1, qn) of rank n with maximum field of linearity
Fq . The ΓL-class of LU is the number of the ΓL(2, qn)-orbits determined by the Fq-subspaces
defining LU .

If the ΓL-class is 1, then LU is said to be simple

The ΓL-class of a linear set is a PΓL-invariant
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Simple linear sets have been also studied by Csajboók-Zanella and Van de Voorde
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Simple linear sets

Definition

An Fq-linear set L of PG(r − 1, qn) = PG(W ,Fqn ) of rank k with maximum field of linearity Fq is
called simple if all the Fq-subspaces of W of dimension k defining L are in the same orbit of
ΓL(r , qn).

Example

Subgeometries (trivial).

Remark

Let LU and LV be two Fq-linear sets of PG(r − 1, qn) of rank k. If LU is simple, then LV is
PΓL-equivalent to LU iff U and V are ΓL(r , qn)-equivalent

Example (Bonoli-Polverino, 2005)

Fq-linear sets of PG(2, qn) of rank n + 1 with (q + 1)-secants are simple. This allowed a
complete classification of Fq-linear blocking sets in PG(2, q4).

Giuseppe Marino Classes and equivalence of linear sets in PG(1, qn) Irsee 2017 11 / 23



Simple linear sets

Definition

An Fq-linear set L of PG(r − 1, qn) = PG(W ,Fqn ) of rank k with maximum field of linearity Fq is
called simple if all the Fq-subspaces of W of dimension k defining L are in the same orbit of
ΓL(r , qn).

Example

Subgeometries (trivial).

Remark

Let LU and LV be two Fq-linear sets of PG(r − 1, qn) of rank k. If LU is simple, then LV is
PΓL-equivalent to LU iff U and V are ΓL(r , qn)-equivalent

Example (Bonoli-Polverino, 2005)

Fq-linear sets of PG(2, qn) of rank n + 1 with (q + 1)-secants are simple. This allowed a
complete classification of Fq-linear blocking sets in PG(2, q4).

Giuseppe Marino Classes and equivalence of linear sets in PG(1, qn) Irsee 2017 11 / 23



Simple linear sets

Definition

An Fq-linear set L of PG(r − 1, qn) = PG(W ,Fqn ) of rank k with maximum field of linearity Fq is
called simple if all the Fq-subspaces of W of dimension k defining L are in the same orbit of
ΓL(r , qn).

Example

Subgeometries (trivial).

Remark

Let LU and LV be two Fq-linear sets of PG(r − 1, qn) of rank k.

If LU is simple, then LV is
PΓL-equivalent to LU iff U and V are ΓL(r , qn)-equivalent

Example (Bonoli-Polverino, 2005)

Fq-linear sets of PG(2, qn) of rank n + 1 with (q + 1)-secants are simple. This allowed a
complete classification of Fq-linear blocking sets in PG(2, q4).

Giuseppe Marino Classes and equivalence of linear sets in PG(1, qn) Irsee 2017 11 / 23



Simple linear sets

Definition

An Fq-linear set L of PG(r − 1, qn) = PG(W ,Fqn ) of rank k with maximum field of linearity Fq is
called simple if all the Fq-subspaces of W of dimension k defining L are in the same orbit of
ΓL(r , qn).

Example

Subgeometries (trivial).

Remark

Let LU and LV be two Fq-linear sets of PG(r − 1, qn) of rank k. If LU is simple, then LV is
PΓL-equivalent to LU iff U and V are ΓL(r , qn)-equivalent

Example (Bonoli-Polverino, 2005)

Fq-linear sets of PG(2, qn) of rank n + 1 with (q + 1)-secants are simple. This allowed a
complete classification of Fq-linear blocking sets in PG(2, q4).

Giuseppe Marino Classes and equivalence of linear sets in PG(1, qn) Irsee 2017 11 / 23



Simple linear sets

Definition

An Fq-linear set L of PG(r − 1, qn) = PG(W ,Fqn ) of rank k with maximum field of linearity Fq is
called simple if all the Fq-subspaces of W of dimension k defining L are in the same orbit of
ΓL(r , qn).

Example

Subgeometries (trivial).

Remark

Let LU and LV be two Fq-linear sets of PG(r − 1, qn) of rank k. If LU is simple, then LV is
PΓL-equivalent to LU iff U and V are ΓL(r , qn)-equivalent

Example (Bonoli-Polverino, 2005)

Fq-linear sets of PG(2, qn) of rank n + 1 with (q + 1)-secants are simple. This allowed a
complete classification of Fq-linear blocking sets in PG(2, q4).

Giuseppe Marino Classes and equivalence of linear sets in PG(1, qn) Irsee 2017 11 / 23



Non-simple Fq-linear sets of PG(1,qn) of rank n

Example (Csajbók-Zanella, 2016)

Linear sets of pseudoregulus type of PG(1,qn)

LU = {〈(x , xqs
)〉 : x ∈ F∗qn}, gcd(s,n) = 1

are non-simple for n ≥ 5, n 6= 6.

It is not hard to find non-simple linear sets!
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Dual of a linear set

LU Fq-linear set of rank n of PG(1,qn)

τ polarity of PG(1,qn) = PG(W ,Fqn ) induced by

β : W ×W → Fqn non-degenerate alternating form

↓

LτU := LU⊥ dual linear set (rank n)

U⊥ orthogonal complement of U wrt Trqn/q ◦ β : W ×W → Fq
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LU Fq-linear set of rank n of PG(1,qn)

τ polarity of PG(1,qn) = PG(W ,Fqn ) induced by

β : W ×W → Fqn non-degenerate alternating form

↓

LτU := LU⊥ dual linear set (rank n)

U⊥ orthogonal complement of U wrt Trqn/q ◦ β : W ×W → Fq

Up to projective equivalence such a linear set does not depend on τ
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Dual of a linear set

LU Fq-linear set of rank n of PG(1,qn)

τ polarity of PG(1,qn) = PG(W ,Fqn ) induced by

β : W ×W → Fqn non-degenerate alternating form

↓

LτU := LU⊥ dual linear set (rank n)

U⊥ orthogonal complement of U wrt Trqn/q ◦ β : W ×W → Fq

If τ is symplectic

then LU = LτU = LU⊥
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Dual of a linear set

In practice:
LU , U := Uf = {(x , f (x)) : x ∈ Fqn},

for some q-polynomial f (x) =
∑n−1

i=0 ai xqi
, ai ∈ Fqn

τ symplectic polarity of PG(1, qn) induced by β((x , y), (u, v)) := xv − uy

U⊥f = Uf̂ = {(x , f̂ (x)) : x ∈ Fqn},

where f̂ (x) :=
∑n−1

i=0 aqn−i

i xqn−i
is the adjoint map of f wrt the bilinear form 〈x , y〉 = Tr(xy)

In general, Uf and Uf̂ are in different ΓL(2, qn)-orbits

↓

Hence, usually, the ΓL-class of LU is at least 2, i.e. LU is non-simple
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Non-simple linear sets of rank n in PG(1,qn)

Example (Csajbók-Zanella, 2016)

Fq-linear sets of PG(1, qn) of psudoregulus type

LU = {〈(x , xqs
)〉 : x ∈ F∗qn}, gcd(s, n) = 1

The ΓL-class of LU is ϕ(n)/2. Hence, for n ≥ 5 and n = 6, LU is not simple.

Proposition (Csajbók-G.M.-Polverino)

The Fq-linear sets of PG(1, qn) introduced by Lunardon-Polverino (2001)

LU = {〈(x , δxq + xqn−1
)〉 : x ∈ F∗qn}, n > 3, q ≥ 3

are not simple for n > 4, q > 4 and δ a generator of F∗qn .

Other examples in PG(1, qn), n ∈ {6, 8} (Csajbók-G.M.-Polverino-Zanella,
Csajbók-G.M.-Zullo)

: Ferdinando′s talk!
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Simple Fq-linear sets of PG(1,qn) of rank n

Question

Is it possible to find a simple Fq-linear set of rank n in PG(1,qn) for each n?
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Simple Fq-linear sets of PG(1,qn) of rank n

Lemma

Let f (x) =
∑n−1

i=0 ai xqi
and g(x) =

∑n−1
i=0 bi xqi

be two q-polynomials over Fqn , such that

Lf = Lg , i.e. { f (x)

x
: x ∈ F∗qn

}
=
{g(x)

x
: x ∈ F∗qn

}
.

Then
a0 = b0, (1)

and for k = 1, 2, . . . , n − 1 it holds that

ak aqk

n−k = bk bqk

n−k , (2)

for k = 2, 3, . . . , n − 1 it holds that

a1aq
k−1aqk

n−k + ak aq
n−1aqk

n−k+1 = b1bq
k−1bqk

n−k + bk bq
n−1bqk

n−k+1. (3)
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n−k + ak aq
n−1aqk

n−k+1 = b1bq
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n−k + bk bq
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n−k+1. (3)

Theorem

Let T = {(x ,Trqn/q(x)) : x ∈ Fqn} ⊂ PG(1, qn) = PG(W ,Fqn ). For each Fq-subspace U of W it
turns out LU = LT only if T = λU for some λ ∈ F∗qn .

Hence, LT simple.
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be two q-polynomials over Fqn , such that

Lf = Lg , i.e. { f (x)

x
: x ∈ F∗qn

}
=
{g(x)

x
: x ∈ F∗qn

}
.

Then
a0 = b0, (1)

and for k = 1, 2, . . . , n − 1 it holds that

ak aqk

n−k = bk bqk

n−k , (2)

for k = 2, 3, . . . , n − 1 it holds that

a1aq
k−1aqk

n−k + ak aq
n−1aqk

n−k+1 = b1bq
k−1bqk

n−k + bk bq
n−1bqk

n−k+1. (3)

Theorem

Let T = {(x ,Trqn/q(x)) : x ∈ Fqn} ⊂ PG(1, qn) = PG(W ,Fqn ). For each Fq-subspace U of W it
turns out LU = LT only if T = λU for some λ ∈ F∗qn . Hence, LT simple.
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Simple Fq-linear sets of PG(1,qn) of rank n

Summing up:

LT is simple for each n

For n > 4 there are non-simple linear sets (linear sets of
Lunardon-Polverino and linear sets of pseudoregulus type)

n = 2→ Baer sublines (simple)
n = 3→ Pseudoregulus type (simple)

Clubs (simple)

Question
What happens for n = 4?
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Fq-linear sets of PG(1,q4) of rank 4

Theorem

Linear sets of rank 4 of PG(1, q4), with maximum field of linearity Fq , are simple.

Sketch of Proof.

1 Simplicity is PΓL-invariant, so we can consider linear sets of type Lf = LUf
,

Uf = {(x , f (x)) : x ∈ Fq4}, with f (x) =
∑4

i=0 ai xqi
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1 Simplicity is PΓL-invariant, so we can consider linear sets of type Lf = LUf
,

Uf = {(x , f (x)) : x ∈ Fq4}, with f (x) =
∑4

i=0 ai xqi

2 Let g(x) =
∑4

i=0 bi xqi
such that Lf = Lg . By technical lemma we have

a0 = b0, a1aq
3 = b1bq

3 , aq2+1
2 = bq2+1

2 , aq+1
1 aq2

2 + a2aq+q2

3 = bq+1
1 bq2

2 + b2bq+q2

3

3 Also, for n = 4, we have

Nqn/q(a1) + Nqn/q(a2) + Nqn/q(a3) + a1+q2

1 aq+q3

3 + aq+q3

1 a1+q2

3 + Trq4/q

(
a1aq+q2

2 aq3

3

)
=

Nqn/q(b1) + Nqn/q(b2) + Nqn/q(b3) + b1+q2

1 bq+q3

3 + bq+q3

1 b1+q2

3 + Trq4/q

(
b1bq+q2

2 bq3

3

)
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Fq-linear sets of PG(1,q4) of rank 4

Theorem

Linear sets of rank 4 of PG(1, q4), with maximum field of linearity Fq , are simple.

Sketch of Proof.

1 Simplicity is PΓL-invariant, so we can consider linear sets of type Lf = LUf
,

Uf = {(x , f (x)) : x ∈ Fq4}, with f (x) =
∑4

i=0 ai xqi

4 Let g(x) =
∑4

i=0 bi xqi
such that Lf = Lg . Then there exists λ ∈ F∗

q4 such that

Ug = λUf or Ug = λUf̂ .

Hence the ΓL-class of Lf is at most 2.

5 Prove that Uf and Uf̂ are in the same ΓL(2, q4)-orbit.
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Fq-linear sets of PG(1,q4) of rank 4

6 Uf and Uf̂ are in the same ΓL(2, q4)-orbit iff there exist A,B,C,D ∈ Fq4 , AD − BC 6= 0,
and σ = pk ,

satisfying the following system of four equations

C + Daσ0 − a0A = Ba0aσ0 + (Ba1aσ1 )q3
+ (Ba2aσ2 )q2

+ (Ba3aσ3 )q ,

Daσ1 − (a3A)q = Ba0aσ1 + (Ba1aσ2 )q3
+ (Ba2aσ3 )q2

+ (Ba3aσ0 )q ,

Daσ2 − (a2A)q2
= Ba0aσ2 + (Ba1aσ3 )q3

+ (Ba2aσ0 )q2
+ (Ba3aσ1 )q ,

Daσ3 − (a1A)q3
= Ba0aσ3 + (Ba1aσ0 )q3

+ (Ba2aσ1 )q2
+ (Ba3aσ2 )q .

Determine A,B,C,D ∈ Fq4 and σ = pk is not hard. The delicate part is to show that∣∣∣∣A B
C D

∣∣∣∣ = AD − BC 6= 0

Giuseppe Marino Classes and equivalence of linear sets in PG(1, qn) Irsee 2017 20 / 23



Fq-linear sets of PG(1,q4) of rank 4

6 Uf and Uf̂ are in the same ΓL(2, q4)-orbit iff there exist A,B,C,D ∈ Fq4 , AD − BC 6= 0,
and σ = pk , satisfying the following system of four equations

C + Daσ0 − a0A = Ba0aσ0 + (Ba1aσ1 )q3
+ (Ba2aσ2 )q2

+ (Ba3aσ3 )q ,

Daσ1 − (a3A)q = Ba0aσ1 + (Ba1aσ2 )q3
+ (Ba2aσ3 )q2

+ (Ba3aσ0 )q ,

Daσ2 − (a2A)q2
= Ba0aσ2 + (Ba1aσ3 )q3

+ (Ba2aσ0 )q2
+ (Ba3aσ1 )q ,

Daσ3 − (a1A)q3
= Ba0aσ3 + (Ba1aσ0 )q3

+ (Ba2aσ1 )q2
+ (Ba3aσ2 )q .

Determine A,B,C,D ∈ Fq4 and σ = pk is not hard. The delicate part is to show that∣∣∣∣A B
C D

∣∣∣∣ = AD − BC 6= 0

Giuseppe Marino Classes and equivalence of linear sets in PG(1, qn) Irsee 2017 20 / 23



Fq-linear sets of PG(1,q4) of rank 4

6 Uf and Uf̂ are in the same ΓL(2, q4)-orbit iff there exist A,B,C,D ∈ Fq4 , AD − BC 6= 0,
and σ = pk , satisfying the following system of four equations

C + Daσ0 − a0A = Ba0aσ0 + (Ba1aσ1 )q3
+ (Ba2aσ2 )q2

+ (Ba3aσ3 )q ,

Daσ1 − (a3A)q = Ba0aσ1 + (Ba1aσ2 )q3
+ (Ba2aσ3 )q2

+ (Ba3aσ0 )q ,

Daσ2 − (a2A)q2
= Ba0aσ2 + (Ba1aσ3 )q3

+ (Ba2aσ0 )q2
+ (Ba3aσ1 )q ,

Daσ3 − (a1A)q3
= Ba0aσ3 + (Ba1aσ0 )q3

+ (Ba2aσ1 )q2
+ (Ba3aσ2 )q .

Determine A,B,C,D ∈ Fq4 and σ = pk is not hard.

The delicate part is to show that∣∣∣∣A B
C D

∣∣∣∣ = AD − BC 6= 0

Giuseppe Marino Classes and equivalence of linear sets in PG(1, qn) Irsee 2017 20 / 23



Fq-linear sets of PG(1,q4) of rank 4

6 Uf and Uf̂ are in the same ΓL(2, q4)-orbit iff there exist A,B,C,D ∈ Fq4 , AD − BC 6= 0,
and σ = pk , satisfying the following system of four equations

C + Daσ0 − a0A = Ba0aσ0 + (Ba1aσ1 )q3
+ (Ba2aσ2 )q2

+ (Ba3aσ3 )q ,

Daσ1 − (a3A)q = Ba0aσ1 + (Ba1aσ2 )q3
+ (Ba2aσ3 )q2

+ (Ba3aσ0 )q ,

Daσ2 − (a2A)q2
= Ba0aσ2 + (Ba1aσ3 )q3

+ (Ba2aσ0 )q2
+ (Ba3aσ1 )q ,

Daσ3 − (a1A)q3
= Ba0aσ3 + (Ba1aσ0 )q3

+ (Ba2aσ1 )q2
+ (Ba3aσ2 )q .

Determine A,B,C,D ∈ Fq4 and σ = pk is not hard. The delicate part is to show that∣∣∣∣A B
C D

∣∣∣∣ = AD − BC 6= 0

Giuseppe Marino Classes and equivalence of linear sets in PG(1, qn) Irsee 2017 20 / 23



Fq-linear sets of PG(1,q4) of rank 4

AD − BC 6= 0 iff a given projective subspace H of dimension at least 1 of

Σ := {〈(x , xq , xq2
, xq3

)〉q4 : x ∈ Fq4} = Fix ξ ' PG(3, q) ⊂ Σ∗ = PG(3, q4)

is not contained in the quadric of Σ∗

Q :

( 3∑
i=0

ci Xi

)2

+ X0(X1a2q
3 + X2 + X3a2q3

1 )(N(a1)− N(a3))2 = 0,
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AD − BC 6= 0 iff a given projective subspace H of dimension at least 1 of

Σ := {〈(x , xq , xq2
, xq3

)〉q4 : x ∈ Fq4} = Fix ξ ' PG(3, q) ⊂ Σ∗ = PG(3, q4)

is not contained in the quadric of Σ∗

Q :

( 3∑
i=0

ci Xi

)2

+ X0(X1a2q
3 + X2 + X3a2q3

1 )(N(a1)− N(a3))2 = 0,

where
c0 = a1+q2+q3

1 aq
3 − aq3

1 a1+q+q2

3 ,

c1 = a2q+q2+q3

3 − aq+q3

1 aq+q2

3 ,

c2 = aq+q2+q3

3 aq2

1 − aq+q2+q3

1 aq2

3 ,

c3 = aq2+q3

1 aq+q3

3 − aq+q2+2q3

1 .
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Fq-linear sets of PG(1,q4) of rank 4

AD − BC 6= 0 iff a given projective subspace H of dimension at least 1 of
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, xq3

)〉q4 : x ∈ Fq4} = Fix ξ ' PG(3, q) ⊂ Σ∗ = PG(3, q4)

is not contained in the quadric of Σ∗

Q :

( 3∑
i=0

ci Xi

)2

+ X0(X1a2q
3 + X2 + X3a2q3

1 )(N(a1)− N(a3))2 = 0,

Σ∗ = PG(3, q4)

Q

Σ ' PG(3, q)

H

AIM: H 6⊂ Q
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Fq-linear sets of PG(1,q4) of rank 4

AD − BC 6= 0 iff a given projective subspace H of dimension at least 1 of

Σ := {〈(x , xq , xq2
, xq3

)〉q4 : x ∈ Fq4} = Fix ξ ' PG(3, q) ⊂ Σ∗ = PG(3, q4)

is not contained in the quadric of Σ∗

Q :

( 3∑
i=0

ci Xi

)2

+ X0(X1a2q
3 + X2 + X3a2q3

1 )(N(a1)− N(a3))2 = 0,

Q has rank 3 or 2.
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Fq-linear sets of PG(1,q4) of rank 4

If Q has rank 3, then the vertex V 6∈ H. Also if H ⊂ Q ⇒ H is a subline⇒ V ∈ H̄ ⇒
V ,V ξ,V ξ

2
,V ξ

3 ∈ H̄, a contradiction.

V ξ

V ξ
2

V H ⊂ Σ = Fix ξ ' PG(3, q) ⊂ Σ∗

V ξ
3

H̄

If Q has rank 2

α H
`

Rξ

R

β

There exists a point R ∈ ` \ H, with 〈R,Rξ,Rξ2
,Rξ

3 〉 = Σ∗. Also Rξ ∈ ` \ H.
If H ⊂ Q ⇒ H ⊂ α or H ⊂ β. Suppose H ⊂ α⇒ α = 〈H,R〉 = αξ, a contradiction.
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