Classes and equivalence of linear sets in $PG(1, q^n)$

Giuseppe Marino

Università degli Studi della Campania "Luigi Vanvitelli"

Joint work with B. Csajbók and O. Polverino

Irsee 2017 10 - 16 September 2017

$$\Lambda = \mathsf{PG}(V, \mathbb{F}_{q^n}) = \mathsf{PG}(r-1, q^n) \longrightarrow \bar{\Lambda} = \mathsf{PG}(rn-1, q)$$

$$\Lambda = \operatorname{PG}(V, \mathbb{F}_{q^n}) = \operatorname{PG}(r-1, q^n) \longrightarrow \bar{\Lambda} = \operatorname{PG}(rn-1, q)$$

$$P = \langle \mathbf{u} \rangle_{q^n} \longrightarrow X_P = \operatorname{PG}(n-1, q)$$

$$\Lambda = \operatorname{PG}(V, \mathbb{F}_{q^n}) = \operatorname{PG}(r-1, q^n) \longrightarrow \bar{\Lambda} = \operatorname{PG}(rn-1, q)$$

$$P = \langle \mathbf{u} \rangle_{q^n} \longrightarrow X_P = \operatorname{PG}(n-1, q)$$

$$\mathcal{D} := \{X_P \colon P \in \Lambda\} \text{ Desarguesian spread of } \bar{\Lambda}$$

$$\Lambda = \operatorname{PG}(V, \mathbb{F}_{q^n}) = \operatorname{PG}(r-1, q^n) \longrightarrow \bar{\Lambda} = \operatorname{PG}(rn-1, q)$$

$$P = \langle \mathbf{u} \rangle_{q^n} \longrightarrow X_P = \operatorname{PG}(n-1, q)$$

$$\mathcal{D} := \{X_P \colon P \in \Lambda\} \text{ Desarguesian spread of } \bar{\Lambda}$$

$$\mathsf{PG}(\mathcal{D})$$
 : $\left\{\right.$

$$\begin{split} \Lambda &= \mathsf{PG}(\mathit{V}, \mathbb{F}_{q^n}) = \mathsf{PG}(\mathit{r}-1, \mathit{q}^n) &\longrightarrow \bar{\Lambda} = \mathsf{PG}(\mathit{rn}-1, \mathit{q}) \\ &P = \langle \mathbf{u} \rangle_{q^n} &\longrightarrow \mathit{X}_P = \mathsf{PG}(\mathit{n}-1, \mathit{q}) \\ \\ \mathcal{D} &:= \{ \mathit{X}_P \colon P \in \Lambda \} \text{ Desarguesian spread of } \bar{\Lambda} \end{split}$$

$$\mathsf{PG}(\mathcal{D})$$
 : $\left\{ egin{array}{ll} \mathsf{points:} & \mathsf{elements} \ \mathsf{of} \ \mathcal{D} \end{array} \right.$

$$\Lambda = \operatorname{PG}(V, \mathbb{F}_{q^n}) = \operatorname{PG}(r-1, q^n) \longrightarrow \bar{\Lambda} = \operatorname{PG}(rn-1, q)$$

$$P = \langle \mathbf{u} \rangle_{q^n} \longrightarrow X_P = \operatorname{PG}(n-1, q)$$

$$\mathcal{D} := \{X_P \colon P \in \Lambda\} \text{ Desarguesian spread of } \bar{\Lambda}$$

$$PG(\mathcal{D}): \begin{cases}{ll} & points: & elements of \mathcal{D} \\ & lines: & (2n-1) - dim. subspaces of $\bar{\Lambda}$ joining two elements of \mathcal{D} \\ \end{cases}$$

$$\Lambda = \operatorname{PG}(V, \mathbb{F}_{q^n}) = \operatorname{PG}(r-1, q^n) \longrightarrow \bar{\Lambda} = \operatorname{PG}(rn-1, q)$$

$$P = \langle \mathbf{u} \rangle_{q^n} \longrightarrow X_P = \operatorname{PG}(n-1, q)$$

$$\mathcal{D} := \{X_P \colon P \in \Lambda\} \text{ Desarguesian spread of } \bar{\Lambda}$$

$$PG(\mathcal{D}): \left\{ \begin{array}{ll} \text{points:} & \text{elements of } \mathcal{D} \\ \\ \text{lines:} & \text{(2n-1)-dim. subspaces of } \bar{\Lambda} \text{ joining two elements of } \mathcal{D} \end{array} \right.$$

$$\mathsf{PG}(\mathcal{D})\cong \Lambda$$

$$\Lambda = \operatorname{PG}(V, \mathbb{F}_{q^n}) = \operatorname{PG}(r-1, q^n) \longrightarrow \bar{\Lambda} = \operatorname{PG}(rn-1, q)$$

$$P = \langle \mathbf{u} \rangle_{q^n} \longrightarrow X_P = \operatorname{PG}(n-1, q)$$

$$\Lambda = \operatorname{PG}(V, \mathbb{F}_{q^n}) = \operatorname{PG}(r-1, q^n) \longrightarrow \bar{\Lambda} = \operatorname{PG}(rn-1, q)$$
 $P = \langle \mathbf{u} \rangle_{q^n} \longrightarrow X_P = \operatorname{PG}(n-1, q)$
 $U \quad \mathbb{F}_q$ -subspace of $V \longrightarrow P(U)$

$$L_U = \{P \in \Lambda \colon X_P \cap P(U) \neq \emptyset\}$$

$$\Lambda = \operatorname{PG}(V) \quad V = V(\mathbb{F}_{q^n})$$
 $L \subseteq \Lambda \text{ is an } \mathbb{F}_q\text{-linear set if}$
 $L = L_U = \{P = \langle \mathbf{u} \rangle_{q^n} : \mathbf{u} \in U \setminus \{\mathbf{0}\}\}$
 $U \text{ subspace of } V \text{ over } \mathbb{F}_q$

$$egin{aligned} & \Lambda = \mathsf{PG}(V) & V = V(\mathbb{F}_{q^n}) \ & L \subseteq \Lambda \text{ is an } \mathbb{F}_q ext{-linear set if} \end{aligned}$$
 $L = L_U = \{P = \langle \mathbf{u}
angle_{q^n} : \mathbf{u} \in U \setminus \{\mathbf{0}\}\}$ U subspace of V over \mathbb{F}_q

 $\dim_{\mathbb{F}_q} U = k \quad \Rightarrow L_U \text{ is an } \mathbb{F}_q ext{-linear set of } \Lambda \text{ of } \mathit{rank } k$

$$\Lambda = \mathsf{PG}(V) \qquad V = V(\mathbb{F}_{q^n})$$
 $L \subseteq \Lambda \text{ is an } \mathbb{F}_q\text{-linear set if}$
 $L = L_U = \{P = \langle \mathbf{u} \rangle_{q^n} : \mathbf{u} \in U \setminus \{\mathbf{0}\}\}$
 $U \text{ subspace of } V \text{ over } \mathbb{F}_q$

• Every projective subspace of PG $(r-1,q^n)$ is an \mathbb{F}_{q^n} -linear set.

$$\Lambda = \mathsf{PG}(V) \qquad V = V(\mathbb{F}_{q^n})$$
 $L \subseteq \Lambda \text{ is an } \mathbb{F}_q\text{-linear set if}$
 $L = L_U = \{P = \langle \mathbf{u} \rangle_{q^n} : \mathbf{u} \in U \setminus \{\mathbf{0}\}\}$
 $U \text{ subspace of } V \text{ over } \mathbb{F}_q$

- Every projective subspace of $PG(r-1,q^n)$ is an \mathbb{F}_{q^n} -linear set.
- Every subgeometry PG(s, q) of $PG(r 1, q^n)$ (s < r and n > 1) is an \mathbb{F}_q -linear set.

$$\forall \lambda \in \mathbb{F}_{q^n} \Rightarrow L_{\lambda U} = L_U$$

$$\forall \lambda \in \mathbb{F}_{q^n} \Rightarrow L_{\lambda U} = L_U$$

Different \mathbb{F}_q -subspaces can define the same linear set

$$\forall \lambda \in \mathbb{F}_{q^n} \Rightarrow L_{\lambda U} = L_U$$

Different \mathbb{F}_q -subspaces can define the same linear set

$$\forall \lambda \in \mathbb{F}_{q^n} \Rightarrow L_{\lambda U} = L_U$$

Different \mathbb{F}_q -subspaces can define the same linear set

An $\mathbb{F}_q\text{-linear}$ set and the vector space defining it must be considered as coming in pair

- Blocking sets in finite projective spaces
- Two intersection sets in finite projective spaces
- Translation spreads of the Cayley Generalized Hexagon
- Translation ovoids of polar spaces
- Semifield flocks
- Finite semifields and finite semifield planes

- Blocking sets in finite projective spaces
- Two intersection sets in finite projective spaces
- Translation spreads of the Cayley Generalized Hexagon
- Translation ovoids of polar spaces
- Semifield flocks
- Finite semifields and finite semifield planes
- Translation caps in affine and projective spaces

- Blocking sets in finite projective spaces
- Two intersection sets in finite projective spaces
- Translation spreads of the Cayley Generalized Hexagon
- Translation ovoids of polar spaces
- Semifield flocks
- Finite semifields and finite semifield planes
- Translation caps in affine and projective spaces
- MRD-codes

- Blocking sets in finite projective spaces
- Two intersection sets in finite projective spaces
- Translation spreads of the Cayley Generalized Hexagon
- Translation ovoids of polar spaces
- Semifield flocks
- Finite semifields and finite semifield planes
- Translation caps in affine and projective spaces
- MRD-codes

[O. Polverino: Linear sets in finite projective spaces, Discrete Math. 310 (2010), 3096-3107.]

- Blocking sets in finite projective spaces
- Two intersection sets in finite projective spaces
- Translation spreads of the Cayley Generalized Hexagon
- Translation ovoids of polar spaces
- Semifield flocks
- Finite semifields and finite semifield planes
- Translation caps in affine and projective spaces
- MRD-codes

[O. Polverino: Linear sets in finite projective spaces, Discrete Math. 310 (2010), 3096-3107.]

[M. Lavrauw: Scattered spaces in Galois Geometry, Contemporary Developments in Finite Fields and Applications, 2016, 195–216.]

 L_U and L_V \mathbb{F}_q -linear sets of $\Lambda = \mathsf{PG}(W, \mathbb{F}_{q^n}) = \mathsf{PG}(r-1, q^n)$

 L_U and L_V \mathbb{F}_q -linear sets of $\Lambda = PG(W, \mathbb{F}_{q^n}) = PG(r-1, q^n)$ L_U and L_V are PFL-equivalent (or simply equivalent)

 L_U and L_V \mathbb{F}_q -linear sets of $\Lambda=\mathsf{PG}(W,\mathbb{F}_{q^n})=\mathsf{PG}(r-1,q^n)$ L_U and L_V are $\mathsf{P}\Gamma\mathsf{L}$ -equivalent (or simply equivalent) if there is an element $\Phi\in\mathsf{P}\Gamma\mathsf{L}(r,q^n)$ s.t. $L_U^\Phi=L_V$

 L_U and L_V \mathbb{F}_q -linear sets of $\Lambda = \mathsf{PG}(W, \mathbb{F}_{q^n}) = \mathsf{PG}(r-1, q^n)$

 L_U and L_V are PFL-equivalent (or simply equivalent) if there is an element

$$\Phi \in P\Gamma L(r, q^n)$$
 s.t. $L_U^{\Phi} = L_V$

$$U = V^f$$
 $f \in \Gamma L(r, q^n)$

 L_U and $L_V \mathbb{F}_q$ -linear sets of $\Lambda = \mathsf{PG}(W, \mathbb{F}_{q^n}) = \mathsf{PG}(r-1, q^n)$

 L_U and L_V are PFL-equivalent (or simply equivalent) if there is an element

$$\Phi \in P\Gamma L(r, q^n)$$
 s.t. $L_U^{\Phi} = L_V$

$$U = V^f$$
 $f \in \Gamma L(r, q^n) \Rightarrow L_U^{\Phi_f} = L_{U^f} = L_V$

 L_U and L_V \mathbb{F}_q -linear sets of $\Lambda = PG(W, \mathbb{F}_{q^n}) = PG(r-1, q^n)$

 L_U and L_V are PFL-equivalent (or simply equivalent) if there is an element

$$\Phi \in P\Gamma L(r, q^n)$$
 s.t. $L_U^{\Phi} = L_V$

$$U = V^f$$
 $f \in \Gamma L(r, q^n) \Rightarrow L_U^{\Phi_f} = L_{U^f} = L_V$

The converse does not hold

 L_U and $L_V \mathbb{F}_q$ -linear sets of $\Lambda = \mathsf{PG}(W, \mathbb{F}_{q^n}) = \mathsf{PG}(r-1, q^n)$

 L_U and L_V are PFL-equivalent (or simply equivalent) if there is an element

$$\Phi \in P\Gamma L(r, q^n)$$
 s.t. $L_U^{\Phi} = L_V$

$$U = V^f$$
 $f \in \Gamma L(r, q^n) \Rightarrow L_U^{\Phi_f} = L_{U^f} = L_V$

The converse does not hold

Example

 \mathbb{F}_q -vector subspaces of $W=V(r,q^n)$ of rank $k\geq rn-n+1$ determine the whole projective space but there is no semilinear map between two \mathbb{F}_q -subspaces with different rank

 L_U and $L_V \mathbb{F}_q$ -linear sets of $\Lambda = \mathsf{PG}(W, \mathbb{F}_{q^n}) = \mathsf{PG}(r-1, q^n)$

 L_U and L_V are PFL-equivalent (or simply equivalent) if there is an element

$$\Phi \in P\Gamma L(r, q^n)$$
 s.t. $L_U^{\Phi} = L_V$

$$U = V^f$$
 $f \in \Gamma L(r, q^n) \Rightarrow L_U^{\Phi_f} = L_{U^f} = L_V$

The converse does not hold

Example

 \mathbb{F}_q -vector subspaces of $W=V(\mathbf{2},q^n)$ of rank $k\geq 2n-n+1$ determine the whole projective space but there is no semilinear map between two \mathbb{F}_q -subspaces with different rank

Equivalence issue linear sets of rank n in $PG(1, q^n)$

 L_U an \mathbb{F}_q -linear set of rank n in $PG(1, q^n)$

Equivalence issue linear sets of rank n in $PG(1, q^n)$

 L_U an \mathbb{F}_q -linear set of rank n in $PG(1, q^n)$

 L_V is equivalent to $L_U \Rightarrow \Phi_f \in P\Gamma L(2, q^n)$ s.t. $L_V^{\Phi_f} = L_{V^f} = L_U$

Equivalence issue linear sets of rank n in $PG(1, q^n)$

 L_U an \mathbb{F}_q -linear set of rank n in $PG(1, q^n)$

 L_V is equivalent to $L_U \Rightarrow \Phi_f \in P\Gamma L(2, q^n)$, $f \in \Gamma L(2, q^n)$, s.t. $L_V^{\Phi_f} = L_{V^f} = L_U$

Equivalence issue linear sets of rank n in $PG(1, q^n)$

 L_U an \mathbb{F}_q -linear set of rank n in $PG(1, q^n)$

$$L_V$$
 is equivalent to $L_U \Rightarrow \Phi_f \in P\Gamma L(2, q^n)$, $f \in \Gamma L(2, q^n)$, s.t. $L_V^{\Phi_f} = L_{V^f} = L_U$

FIRST STEP: Determine all \mathbb{F}_q -subspaces defining L_U

Equivalence issue linear sets of rank n **in** $PG(1, q^n)$

 L_U an \mathbb{F}_q -linear set of rank n in $PG(1, q^n)$

$$L_V$$
 is equivalent to $L_U \Rightarrow \Phi_f \in P\Gamma L(2, q^n)$, $f \in \Gamma L(2, q^n)$, s.t. $L_V^{\Phi_f} = L_{V^f} = L_U$

FIRST STEP: Determine all \mathbb{F}_q -subspaces defining L_U

Question

Is it possible to have an \mathbb{F}_q -subspace of rank different from n defining L_U ?

Theorem (Ball, Blokhuis, Brouwer, Storme, Szőnyi, 1999 - Ball, 2003)

Let f be a function from \mathbb{F}_q to \mathbb{F}_q , $q=p^h$, and let N be the number of directions determined by f. Let $s=p^e$ be maximal such that any line with a direction determined by f that is incident with a point of the graph of f is incident with a multiple of f points of the graph of f. Then one of the following holds.

- **1** s = 1 and $(q+3)/2 \le N \le q+1$,
- 2 $e|h, q/s + 1 \le N \le (q-1)/(s-1),$
- **3** s = q and N = 1.

Moreover if s > 2, then the graph of f is \mathbb{F}_s -linear.

 \mathbb{F}_{q^t} is the maximum field of linearity of L_U if t|n and L_U is an \mathbb{F}_{q^t} -linear set

Theorem (B. Csajbók, G.M., O. Polverino)

Let L_U be an \mathbb{F}_q -linear set of $PG(W, \mathbb{F}_{q^n}) = PG(1, q^n)$ of rank n. The maximum field of linearity of L_U is \mathbb{F}_{q^d} , where

$$d = \min\{\dim_q(U \cap \langle \mathbf{u} \rangle_{q^n}) \colon \mathbf{u} \in U \setminus \{\mathbf{0}\}\}.$$

If the maximum field of linearity of L_U is \mathbb{F}_q , then the rank of L_U as an \mathbb{F}_q -linear set is uniquely defined, i.e. for each \mathbb{F}_q -subspace V of W if $L_U = L_V$, then $\dim_q(V) = n$.

 \mathbb{F}_{q^t} is the maximum field of linearity of L_U if t|n and L_U is an \mathbb{F}_{q^t} -linear set

Theorem (B. Csajbók, G.M., O. Polverino)

Let L_U be an \mathbb{F}_q -linear set of $PG(W, \mathbb{F}_{q^n}) = PG(1, q^n)$ of rank n. The maximum field of linearity of L_U is \mathbb{F}_{q^d} , where

$$d = \min\{\dim_q(U \cap \langle \mathbf{u} \rangle_{q^n}) \colon \mathbf{u} \in U \setminus \{\mathbf{0}\}\}.$$

If the maximum field of linearity of L_U is \mathbb{F}_q , then the rank of L_U as an \mathbb{F}_q -linear set is uniquely defined, i.e. for each \mathbb{F}_q -subspace V of W if $L_U = L_V$, then $\dim_q(V) = n$.

 L_U and L_V are PFL-equivalent (or simply equivalent) if there is an element $\Phi_f \in \text{PFL}(2, q^n)$ s.t. $L_U^{\Phi_f} = L_{U^f} = L_V$

 L_U and L_V are PFL-equivalent (or simply equivalent) if there is an element $\Phi_f \in \text{PFL}(2, q^n)$ s.t. $L_U^{\Phi_f} = L_{U^f} = L_V$

FIRST STEP: Determine all \mathbb{F}_q -subspaces defining L_U (which have all rank n)

 L_U and L_V are PFL-equivalent (or simply equivalent) if there is an element $\Phi_f \in \text{PFL}(2, q^n)$ s.t. $L_U^{\Phi_f} = L_{U^f} = L_V$

FIRST STEP: Determine all \mathbb{F}_q -subspaces defining L_U (which have all rank n)

SECOND STEP: Study the action on these \mathbb{F}_q -subspaces of $\Gamma L(2,q^n)$

 L_U and L_V are PFL-equivalent (or simply equivalent) if there is an element $\Phi_f \in \text{PFL}(2, q^n)$ s.t. $L_U^{\Phi_f} = L_{U^f} = L_V$

FIRST STEP: Determine all \mathbb{F}_q -subspaces defining L_U (which have all rank n)

SECOND STEP: Study the action on these \mathbb{F}_q -subspaces of $\Gamma L(2, q^n)$

Definition

Let L_U be an \mathbb{F}_q -linear set of $\mathsf{PG}(W,\mathbb{F}_{q^n}) = \mathsf{PG}(1,q^n)$ of rank n with maximum field of linearity \mathbb{F}_q . The Γ L-class of L_U is the number of the Γ L $(2,q^n)$ -orbits determined by the \mathbb{F}_q -subspaces defining L_U .

 L_U and L_V are PFL-equivalent (or simply equivalent) if there is an element $\Phi_f \in \text{PFL}(2, q^n)$ s.t. $L_U^{\Phi_f} = L_{U^f} = L_V$

FIRST STEP: Determine all \mathbb{F}_q -subspaces defining L_U (which have all rank n)

SECOND STEP: Study the action on these \mathbb{F}_q -subspaces of $\Gamma L(2, q^n)$

Definition

Let L_U be an \mathbb{F}_q -linear set of $\mathsf{PG}(W,\mathbb{F}_{q^n}) = \mathsf{PG}(1,q^n)$ of rank n with maximum field of linearity \mathbb{F}_q . The ΓL -class of L_U is the number of the $\Gamma L(2,q^n)$ -orbits determined by the \mathbb{F}_q -subspaces defining L_U .

The Γ L-class of a linear set is a Γ L-invariant

 L_U and L_V are PFL-equivalent (or simply equivalent) if there is an element $\Phi_f \in \text{PFL}(2, q^n)$ s.t. $L_U^{\Phi_f} = L_{U^f} = L_V$

FIRST STEP: Determine all \mathbb{F}_q -subspaces defining L_U (which have all rank n)

SECOND STEP: Study the action on these \mathbb{F}_q -subspaces of $\Gamma L(2, q^n)$

Definition

Let L_U be an \mathbb{F}_q -linear set of $\operatorname{PG}(W,\mathbb{F}_{q^n})=\operatorname{PG}(1,q^n)$ of rank n with maximum field of linearity \mathbb{F}_q . The Γ L-class of L_U is the number of the Γ L(2, q^n)-orbits determined by the \mathbb{F}_q -subspaces defining L_U . If the Γ L-class is 1, then L_U is said to be simple

 L_U and L_V are PFL-equivalent (or simply equivalent) if there is an element $\Phi_f \in \text{PFL}(2, q^n)$ s.t. $L_U^{\Phi_f} = L_{U^f} = L_V$

FIRST STEP: Determine all \mathbb{F}_q -subspaces defining L_U (which have all rank n)

SECOND STEP: Study the action on these \mathbb{F}_q -subspaces of $\Gamma L(2, q^n)$

Definition

Let L_U be an \mathbb{F}_q -linear set of $\mathsf{PG}(W,\mathbb{F}_{q^n}) = \mathsf{PG}(1,q^n)$ of rank n with maximum field of linearity \mathbb{F}_q . The Γ L-class of L_U is the number of the Γ L(2, q^n)-orbits determined by the \mathbb{F}_q -subspaces defining L_U . If the Γ L-class is 1, then L_U is said to be simple

Simple linear sets have been also studied by Csajboók-Zanella and Van de Voorde

Definition

An \mathbb{F}_q -linear set L of $\mathsf{PG}(r-1,q^n) = \mathsf{PG}(W,\mathbb{F}_{q^n})$ of rank k with maximum field of linearity \mathbb{F}_q is called *simple* if all the \mathbb{F}_q -subspaces of W of dimension k defining L are in the same orbit of $\mathsf{\Gamma L}(r,q^n)$.

Definition

An \mathbb{F}_q -linear set L of $\mathsf{PG}(r-1,q^n) = \mathsf{PG}(W,\mathbb{F}_{q^n})$ of rank k with maximum field of linearity \mathbb{F}_q is called simple if all the \mathbb{F}_q -subspaces of W of dimension k defining L are in the same orbit of $\mathsf{\Gamma L}(r,q^n)$.

Example

Subgeometries (trivial).

Definition

An \mathbb{F}_q -linear set L of $\mathsf{PG}(r-1,q^n) = \mathsf{PG}(W,\mathbb{F}_{q^n})$ of rank k with maximum field of linearity \mathbb{F}_q is called simple if all the \mathbb{F}_q -subspaces of W of dimension k defining L are in the same orbit of $\mathsf{\Gamma L}(r,q^n)$.

Example

Subgeometries (trivial).

Remark

Let L_U and L_V be two \mathbb{F}_q -linear sets of $PG(r-1,q^n)$ of rank k.

Definition

An \mathbb{F}_q -linear set L of $\mathsf{PG}(r-1,q^n) = \mathsf{PG}(W,\mathbb{F}_{q^n})$ of rank k with maximum field of linearity \mathbb{F}_q is called simple if all the \mathbb{F}_q -subspaces of W of dimension k defining L are in the same orbit of $\mathsf{\Gamma L}(r,q^n)$.

Example

Subgeometries (trivial).

Remark

Let L_U and L_V be two \mathbb{F}_q -linear sets of $PG(r-1,q^n)$ of rank k. If L_U is simple, then L_V is PFL-equivalent to L_U iff U and V are FL (r,q^n) -equivalent

Definition

An \mathbb{F}_q -linear set L of $\mathsf{PG}(r-1,q^n) = \mathsf{PG}(W,\mathbb{F}_{q^n})$ of rank k with maximum field of linearity \mathbb{F}_q is called simple if all the \mathbb{F}_q -subspaces of W of dimension k defining L are in the same orbit of $\mathsf{\Gamma L}(r,q^n)$.

Example

Subgeometries (trivial).

Remark

Let L_U and L_V be two \mathbb{F}_q -linear sets of $PG(r-1,q^n)$ of rank k. If L_U is simple, then L_V is P Γ L-equivalent to L_U iff U and V are Γ L (r,q^n) -equivalent

Example (Bonoli-Polverino, 2005)

 \mathbb{F}_q -linear sets of PG(2, q^n) of rank n+1 with (q+1)-secants are simple. This allowed a complete classification of \mathbb{F}_q -linear blocking sets in PG(2, q^4).

Non-simple \mathbb{F}_q -linear sets of PG(1, q^n) of rank n

Example (Csajbók-Zanella, 2016)

Linear sets of pseudoregulus type of $PG(1, q^n)$

$$L_U = \{\langle (x, x^{q^s}) \rangle \colon x \in \mathbb{F}_{q^n}^* \}, \qquad \gcd(s, n) = 1$$

are non-simple for $n \ge 5$, $n \ne 6$.

Non-simple \mathbb{F}_q -linear sets of PG(1, q^n) of rank n

Example (Csajbók-Zanella, 2016)

Linear sets of pseudoregulus type of $PG(1, q^n)$

$$L_U = \{\langle (x, x^{q^s}) \rangle \colon x \in \mathbb{F}_{q^n}^* \}, \qquad \gcd(s, n) = 1$$

are non-simple for $n \ge 5$, $n \ne 6$.

It is not hard to find non-simple linear sets!

 $L_U \mathbb{F}_q$ -linear set of rank n of $PG(1, q^n)$

$$L_U$$
 \mathbb{F}_q -linear set of rank n of PG(1, q^n)
 au polarity of PG(1, q^n) = PG(W , \mathbb{F}_{q^n}) induced by

$$L_U$$
 \mathbb{F}_q -linear set of rank n of PG(1, q^n) au polarity of PG(1, q^n) = PG(W , \mathbb{F}_{q^n}) induced by eta : $W imes W o \mathbb{F}_{q^n}$ non-degenerate alternating form

$$L_U$$
 \mathbb{F}_q -linear set of rank n of PG(1, q^n) au polarity of PG(1, q^n) = PG(W , \mathbb{F}_{q^n}) induced by eta : $W imes W o \mathbb{F}_{q^n}$ non-degenerate alternating form

$$L_U$$
 \mathbb{F}_q -linear set of rank n of PG(1, q^n) au polarity of PG(1, q^n) = PG(W , \mathbb{F}_{q^n}) induced by eta : $W imes W o \mathbb{F}_{q^n}$ non-degenerate alternating form

$$L_U^{ au} := L_{U^{\perp}}$$
 dual linear set

$$L_U \ \mathbb{F}_q$$
-linear set of rank n of PG(1, q^n) au polarity of PG(1, q^n) = PG(W , \mathbb{F}_{q^n}) induced by eta : $W imes W o \mathbb{F}_{q^n}$ non-degenerate alternating form

 \downarrow

$$L_U^{ au} := L_{U^{\perp}}$$
 dual linear set

 U^{\perp} orthogonal complement of U wrt $\mathit{Tr}_{q^n/q} \circ \beta: W \times W o \mathbb{F}_q$

$$L_U$$
 \mathbb{F}_q -linear set of rank n of PG(1, q^n) au polarity of PG(1, q^n) = PG(W , \mathbb{F}_{q^n}) induced by eta : $W imes W o \mathbb{F}_{q^n}$ non-degenerate alternating form

 \downarrow

$$L_U^ au:=L_{U^\perp}$$
 dual linear set \quad (rank n) U^\perp orthogonal complement of U wrt $\mathit{Tr}_{q^n/q}\circ eta:\ W imes W o \mathbb{F}_q$

$$L_U$$
 \mathbb{F}_q -linear set of rank n of PG(1, q^n) au polarity of PG(1, q^n) = PG(W , \mathbb{F}_{q^n}) induced by eta : $W imes W o \mathbb{F}_{q^n}$ non-degenerate alternating form

 \downarrow

$$L_U^ au:=L_{U^\perp}$$
 dual linear set \quad (rank n) U^\perp orthogonal complement of U wrt $\mathit{Tr}_{q^n/q}\circ \beta:\ W imes W o \mathbb{F}_q$

Up to projective equivalence such a linear set does not depend on au

$$L_U \ \mathbb{F}_q$$
-linear set of rank n of PG(1, q^n) au polarity of PG(1, q^n) = PG(W , \mathbb{F}_{q^n}) induced by eta : $W imes W o \mathbb{F}_{q^n}$ non-degenerate alternating form

 \downarrow

$$L_U^ au:=L_{U^\perp}$$
 dual linear set \qquad (rank n) U^\perp orthogonal complement of U wrt $\mathit{Tr}_{q^n/q}\circ eta:\ W imes W o \mathbb{F}_q$

If $\boldsymbol{\tau}$ is symplectic

$$L_U$$
 \mathbb{F}_q -linear set of rank n of PG(1, q^n) au polarity of PG(1, q^n) = PG(W , \mathbb{F}_{q^n}) induced by eta : $W imes W o \mathbb{F}_{q^n}$ non-degenerate alternating form

 \downarrow

$$L_U^ au:=L_{U^\perp}$$
 dual linear set \quad (rank n) U^\perp orthogonal complement of U wrt $\mathit{Tr}_{q^n/q}\circ eta:\ W imes W o \mathbb{F}_q$

If au is symplectic then $L_U = L_U^{ au} = L_{U^{\perp}}$

In practice:

$$L_U,\quad U:=U_f=\{(x,f(x))\colon x\in\mathbb{F}_{q^n}\},$$

for some q-polynomial $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$, $a_i \in \mathbb{F}_{q^n}$

In practice:

$$L_U$$
, $U := U_f = \{(x, f(x)) : x \in \mathbb{F}_{q^n}\},$

for some q-polynomial $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$, $a_i \in \mathbb{F}_{q^n}$

au symplectic polarity of PG(1, q^n) induced by $\beta((x, y), (u, v)) := xv - uy$

In practice:

$$L_U,\quad U:=U_f=\{(x,f(x))\colon x\in\mathbb{F}_{q^n}\},$$

for some q-polynomial $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$, $a_i \in \mathbb{F}_{q^n}$

au symplectic polarity of PG(1, q^n) induced by $\beta((x, y), (u, v)) := xv - uy$

$$U_f^{\perp}=U_{\hat{f}}=\{(x,\hat{f}(x))\colon x\in\mathbb{F}_{q^n}\},\,$$

where $\hat{f}(x) := \sum_{i=0}^{n-1} a_i^{q^{n-i}} x^{q^{n-i}}$ is the adjoint map of f wrt the bilinear form $\langle x, y \rangle = Tr(xy)$

In practice:

$$L_U$$
, $U := U_f = \{(x, f(x)) : x \in \mathbb{F}_{q^n}\},$

for some q-polynomial $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$, $a_i \in \mathbb{F}_{q^n}$

au symplectic polarity of PG(1, q^n) induced by $\beta((x, y), (u, v)) := xv - uy$

$$U_f^{\perp}=U_{\hat{f}}=\{(x,\hat{f}(x))\colon x\in\mathbb{F}_{q^n}\},\,$$

where $\hat{f}(x) := \sum_{i=0}^{n-1} a_i^{q^{n-i}} x^{q^{n-i}}$ is the adjoint map of f wrt the bilinear form $\langle x, y \rangle = \text{Tr}(xy)$

In general, U_f and $U_{\hat{f}}$ are in different $\Gamma L(2, q^n)$ -orbits

In practice:

$$L_U$$
, $U := U_f = \{(x, f(x)) : x \in \mathbb{F}_{q^n}\},$

for some q-polynomial $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$, $a_i \in \mathbb{F}_{q^n}$

au symplectic polarity of PG(1, q^n) induced by $\beta((x, y), (u, v)) := xv - uy$

$$U_f^{\perp}=U_{\hat{f}}=\{(x,\hat{f}(x))\colon x\in\mathbb{F}_{q^n}\},\,$$

where $\hat{f}(x) := \sum_{i=0}^{n-1} a_i^{q^{n-i}} x^{q^{n-i}}$ is the adjoint map of f wrt the bilinear form $\langle x, y \rangle = \text{Tr}(xy)$

In general, U_f and U_f are in different $\Gamma L(2, q^n)$ -orbits

 \downarrow

Hence, usually, the Γ L-class of L_U is at least 2

Dual of a linear set

In practice:

$$L_U$$
, $U := U_f = \{(x, f(x)) : x \in \mathbb{F}_{q^n}\},$

for some *q*-polynomial $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$, $a_i \in \mathbb{F}_{q^n}$

au symplectic polarity of PG(1, q^n) induced by $\beta((x, y), (u, v)) := xv - uy$

$$U_f^{\perp}=U_{\hat{f}}=\{(x,\hat{f}(x))\colon x\in\mathbb{F}_{q^n}\},\,$$

where $\hat{f}(x) := \sum_{i=0}^{n-1} a_i^{q^{n-i}} x^{q^{n-i}}$ is the adjoint map of f wrt the bilinear form $\langle x, y \rangle = Tr(xy)$

In general, U_f and $U_{\hat{f}}$ are in different $\Gamma L(2, q^n)$ -orbits

 \downarrow

Hence, usually, the Γ L-class of L_U is <u>at least</u> 2, i.e. L_U is non-simple

Example (Csajbók-Zanella, 2016)

 \mathbb{F}_q -linear sets of PG(1, q^n) of psudoregulus type

$$L_U = \{\langle (x, x^{q^s}) \rangle \colon x \in \mathbb{F}_{q^n}^* \}, \qquad \gcd(s, n) = 1$$

The Γ L-class of L_U is $\varphi(n)/2$. Hence, for $n \ge 5$ and n = 6, L_U is not simple.

Example (Csajbók-Zanella, 2016)

 \mathbb{F}_q -linear sets of PG(1, q^n) of psudoregulus type

$$L_U = \{\langle (x, x^{q^s}) \rangle \colon x \in \mathbb{F}_{q^n}^* \}, \qquad \gcd(s, n) = 1$$

The Γ L-class of L_U is $\varphi(n)/2$. Hence, for $n \ge 5$ and n = 6, L_U is not simple.

Proposition (Csajbók-G.M.-Polverino)

The \mathbb{F}_q -linear sets of PG(1, q^n) introduced by Lunardon-Polverino (2001)

$$L_U = \{ \langle (x, \delta x^q + x^{q^{n-1}}) \rangle \colon x \in \mathbb{F}_{q^n}^* \}, \qquad n > 3, q \ge 3$$

Example (Csajbók-Zanella, 2016)

 \mathbb{F}_q -linear sets of PG(1, q^n) of psudoregulus type

$$L_U = \{\langle (x, x^{q^s}) \rangle \colon x \in \mathbb{F}_{q^n}^* \}, \qquad \gcd(s, n) = 1$$

The Γ L-class of L_U is $\varphi(n)/2$. Hence, for $n \ge 5$ and n = 6, L_U is not simple.

Proposition (Csajbók-G.M.-Polverino)

The \mathbb{F}_q -linear sets of PG(1, q^n) introduced by Lunardon-Polverino (2001)

$$L_U = \{ \langle (x, \delta x^q + x^{q^{n-1}}) \rangle \colon x \in \mathbb{F}_{q^n}^* \}, \qquad n > 3, q \ge 3$$

are not simple for n > 4, q > 4 and δ a generator of $\mathbb{F}_{q^n}^*$.

Example (Csajbók-Zanella, 2016)

 \mathbb{F}_q -linear sets of PG(1, q^n) of psudoregulus type

$$L_U = \{\langle (x, x^{q^s}) \rangle \colon x \in \mathbb{F}_{q^n}^* \}, \qquad \gcd(s, n) = 1$$

The Γ L-class of L_U is $\varphi(n)/2$. Hence, for $n \ge 5$ and n = 6, L_U is not simple.

Proposition (Csajbók-G.M.-Polverino)

The \mathbb{F}_q -linear sets of PG(1, q^n) introduced by Lunardon-Polverino (2001)

$$L_U = \{ \langle (x, \delta x^q + x^{q^{n-1}}) \rangle \colon x \in \mathbb{F}_{q^n}^* \}, \qquad n > 3, q \ge 3$$

are not simple for n > 4, q > 4 and δ a generator of $\mathbb{F}_{q^n}^*$.

Other examples in PG(1, q^n), $n \in \{6, 8\}$ (Csajbók-G.M.-Polverino-Zanella, Csajbók-G.M.-Zullo)

Example (Csajbók-Zanella, 2016)

 \mathbb{F}_q -linear sets of PG(1, q^n) of psudoregulus type

$$L_U = \{\langle (x, x^{q^s}) \rangle \colon x \in \mathbb{F}_{q^n}^* \}, \qquad \gcd(s, n) = 1$$

The Γ L-class of L_U is $\varphi(n)/2$. Hence, for $n \ge 5$ and n = 6, L_U is not simple.

Proposition (Csajbók-G.M.-Polverino)

The \mathbb{F}_q -linear sets of PG(1, q^n) introduced by Lunardon-Polverino (2001)

$$L_U = \{ \langle (x, \delta x^q + x^{q^{n-1}}) \rangle \colon x \in \mathbb{F}_{q^n}^* \}, \qquad n > 3, q \ge 3$$

are not simple for n > 4, q > 4 and δ a generator of $\mathbb{F}_{q^n}^*$.

Other examples in PG(1, q^n), $n \in \{6, 8\}$ (Csajbók-G.M.-Polverino-Zanella, Csajbók-G.M.-Zullo) : Ferdinando's talk!

Question

Is it possible to find a simple \mathbb{F}_q -linear set of rank n in PG(1, q^n) for each n?

Lemma

Let $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$ and $g(x) = \sum_{i=0}^{n-1} b_i x^{q^i}$ be two q-polynomials over \mathbb{F}_{q^n} , such that $L_f = L_g$, i.e.

$$\left\{\frac{f(x)}{x}: x \in \mathbb{F}_{q^n}^*\right\} = \left\{\frac{g(x)}{x}: x \in \mathbb{F}_{q^n}^*\right\}.$$

Then

$$a_0=b_0, (1)$$

and for k = 1, 2, ..., n - 1 it holds that

$$a_k a_{n-k}^{q^k} = b_k b_{n-k}^{q^k}, (2)$$

for k = 2, 3, ..., n-1 it holds that

$$a_1 a_{k-1}^q a_{n-k}^{q^k} + a_k a_{n-1}^q a_{n-k+1}^{q^k} = b_1 b_{k-1}^q b_{n-k}^{q^k} + b_k b_{n-1}^q b_{n-k+1}^{q^k}.$$
(3)

Lemma

Let $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$ and $g(x) = \sum_{i=0}^{n-1} b_i x^{q^i}$ be two q-polynomials over \mathbb{F}_{q^n} , such that $L_f = L_g$, i.e.

$$\left\{\frac{f(x)}{x}: x \in \mathbb{F}_{q^n}^*\right\} = \left\{\frac{g(x)}{x}: x \in \mathbb{F}_{q^n}^*\right\}.$$

Then

$$a_0=b_0, (1)$$

and for k = 1, 2, ..., n - 1 it holds that

$$a_k a_{n-k}^{q^k} = b_k b_{n-k}^{q^k}, (2)$$

for k = 2, 3, ..., n - 1 it holds that

$$a_1 a_{k-1}^q a_{n-k}^{q^k} + a_k a_{n-1}^q a_{n-k+1}^{q^k} = b_1 b_{k-1}^q b_{n-k}^{q^k} + b_k b_{n-1}^q b_{n-k+1}^{q^k}.$$
(3)

Theorem

Let $T = \{(x, \overline{Tr_{q^n/q}(x)}) \colon x \in \mathbb{F}_{q^n}\} \subset \mathsf{PG}(1, q^n) = \mathsf{PG}(W, \mathbb{F}_{q^n})$. For each \mathbb{F}_q -subspace U of W it turns out $L_U = L_T$ only if $T = \lambda U$ for some $\lambda \in \mathbb{F}_{q^n}^*$.

Lemma

Let $f(x) = \sum_{i=0}^{n-1} a_i x^{q^i}$ and $g(x) = \sum_{i=0}^{n-1} b_i x^{q^i}$ be two q-polynomials over \mathbb{F}_{q^n} , such that $L_f = L_g$, i.e.

$$\left\{\frac{f(x)}{x}: x \in \mathbb{F}_{q^n}^*\right\} = \left\{\frac{g(x)}{x}: x \in \mathbb{F}_{q^n}^*\right\}.$$

Then

$$a_0=b_0, (1)$$

and for k = 1, 2, ..., n - 1 it holds that

$$a_k a_{n-k}^{q^k} = b_k b_{n-k}^{q^k},$$
 (2)

for k = 2, 3, ..., n-1 it holds that

$$a_1 a_{k-1}^q a_{n-k}^{q^k} + a_k a_{n-1}^q a_{n-k+1}^{q^k} = b_1 b_{k-1}^q b_{n-k}^{q^k} + b_k b_{n-1}^q b_{n-k+1}^{q^k}.$$
(3)

Theorem

Let $T = \{(x, \overline{T_{q^n/q}(x)}) \colon x \in \mathbb{F}_{q^n}\} \subset \mathsf{PG}(1, q^n) = \mathsf{PG}(W, \mathbb{F}_{q^n})$. For each \mathbb{F}_q -subspace U of W it turns out $L_U = L_T$ only if $T = \lambda U$ for some $\lambda \in \mathbb{F}_{q^n}^*$. Hence, L_T simple.

Summing up:

Summing up:

• L_T is simple for each n

Summing up:

- L_T is simple for each n
- For n > 4 there are non-simple linear sets (linear sets of Lunardon-Polverino and linear sets of pseudoregulus type)

Summing up:

- L_T is simple for each n
- For n > 4 there are non-simple linear sets (linear sets of Lunardon-Polverino and linear sets of pseudoregulus type)

 $n = 2 \rightarrow$ Baer sublines (simple)

Summing up:

- L_T is simple for each n
- For n > 4 there are non-simple linear sets (linear sets of Lunardon-Polverino and linear sets of pseudoregulus type)
- $n = 2 \rightarrow$ Baer sublines (simple)
- $n = 3 \rightarrow$ Pseudoregulus type (simple) Clubs (simple)

Summing up:

- L_T is simple for each n
- For n > 4 there are non-simple linear sets (linear sets of Lunardon-Polverino and linear sets of pseudoregulus type)
- $n = 2 \rightarrow$ Baer sublines (simple)
- $n = 3 \rightarrow$ Pseudoregulus type (simple) Clubs (simple)

Question

What happens for n = 4?

Theorem

Linear sets of rank 4 of PG(1, q^4), with maximum field of linearity \mathbb{F}_q , are simple.

Theorem

Linear sets of rank 4 of PG(1, q^4), with maximum field of linearity \mathbb{F}_q , are simple.

Sketch of Proof.

Theorem

Linear sets of rank 4 of PG(1, q^4), with maximum field of linearity \mathbb{F}_q , are simple.

Sketch of Proof.

Simplicity is PFL-invariant, so we can consider linear sets of type $L_f = L_{U_f}$, $U_f = \{(x, f(x)) : x \in \mathbb{F}_{\sigma^4}\}$, with $f(x) = \sum_{i=0}^4 a_i x^{\sigma^i}$

Theorem

Linear sets of rank 4 of PG(1, q^4), with maximum field of linearity \mathbb{F}_q , are simple.

Sketch of Proof.

- Simplicity is PFL-invariant, so we can consider linear sets of type $L_f = L_{U_f}$, $U_f = \{(x, f(x)) : x \in \mathbb{F}_{q^4}\}$, with $f(x) = \sum_{i=0}^4 a_i x^{q^i}$
- 2 Let $g(x) = \sum_{i=0}^4 b_i x^{q^i}$ such that $L_f = L_g$. By technical lemma we have

$$a_0 = b_0, \ a_1 a_3^q = b_1 b_3^q, \ a_2^{q^2+1} = b_2^{q^2+1}, \ a_1^{q+1} a_2^{q^2} + a_2 a_3^{q+q^2} = b_1^{q+1} b_2^{q^2} + b_2 b_3^{q+q^2}$$

Theorem

Linear sets of rank 4 of PG(1, q^4), with maximum field of linearity \mathbb{F}_q , are simple.

Sketch of Proof.

- Simplicity is PFL-invariant, so we can consider linear sets of type $L_f = L_{U_f}$, $U_f = \{(x, f(x)) : x \in \mathbb{F}_{\sigma^4}\}$, with $f(x) = \sum_{i=0}^4 a_i x^{q^i}$
- 2 Let $g(x) = \sum_{i=0}^4 b_i x^{q^i}$ such that $L_f = L_g$. By technical lemma we have

$$a_0 = b_0, \ a_1 a_3^q = b_1 b_3^q, \ a_2^{q^2 + 1} = b_2^{q^2 + 1}, \ a_1^{q + 1} a_2^{q^2} + a_2 a_3^{q + q^2} = b_1^{q + 1} b_2^{q^2} + b_2 b_3^{q + q^2}$$

3 Also, for n = 4, we have

$$\begin{split} N_{q^{n}/q}(a_{1}) + N_{q^{n}/q}(a_{2}) + N_{q^{n}/q}(a_{3}) + a_{1}^{1+q^{2}} a_{3}^{q+q^{3}} + a_{1}^{q+q^{3}} a_{3}^{1+q^{2}} + \mathcal{T}_{q^{4}/q} \left(a_{1} a_{2}^{q+q^{2}} a_{3}^{q^{3}} \right) = \\ N_{q^{n}/q}(b_{1}) + N_{q^{n}/q}(b_{2}) + N_{q^{n}/q}(b_{3}) + b_{1}^{1+q^{2}} b_{3}^{q+q^{3}} + b_{1}^{q+q^{3}} b_{3}^{1+q^{2}} + \mathcal{T}_{q^{4}/q} \left(b_{1} b_{2}^{q+q^{2}} b_{3}^{q^{3}} \right) \end{split}$$

Theorem

Linear sets of rank 4 of PG(1, q^4), with maximum field of linearity \mathbb{F}_q , are simple.

Sketch of Proof.

- Simplicity is PFL-invariant, so we can consider linear sets of type $L_f = L_{U_f}$, $U_f = \{(x, f(x)) : x \in \mathbb{F}_{\sigma^4}\}$, with $f(x) = \sum_{i=0}^4 a_i x^{\sigma^i}$
- ① Let $g(x) = \sum_{i=0}^4 b_i x^{q^i}$ such that $L_f = L_g$. Then there exists $\lambda \in \mathbb{F}_{q^4}^*$ such that

$$U_g = \lambda U_f$$
 or $U_g = \lambda U_{\hat{f}}$.

Theorem

Linear sets of rank 4 of PG(1, q^4), with maximum field of linearity \mathbb{F}_q , are simple.

Sketch of Proof.

- Simplicity is PFL-invariant, so we can consider linear sets of type $L_f = L_{U_f}$, $U_f = \{(x, f(x)) : x \in \mathbb{F}_{\sigma^4}\}$, with $f(x) = \sum_{i=0}^4 a_i x^{q^i}$
- ① Let $g(x) = \sum_{i=0}^4 b_i x^{q^i}$ such that $L_f = L_g$. Then there exists $\lambda \in \mathbb{F}_{q^4}^*$ such that

$$U_g = \lambda U_f$$
 or $U_g = \lambda U_{\hat{f}}$.

Hence the Γ L-class of L_f is at most 2.

Theorem

Linear sets of rank 4 of PG(1, q^4), with maximum field of linearity \mathbb{F}_q , are simple.

Sketch of Proof.

- Simplicity is PFL-invariant, so we can consider linear sets of type $L_f = L_{U_f}$, $U_f = \{(x, f(x)) : x \in \mathbb{F}_{\sigma^4}\}$, with $f(x) = \sum_{i=0}^4 a_i x^{q^i}$
- ① Let $g(x) = \sum_{i=0}^4 b_i x^{q^i}$ such that $L_f = L_g$. Then there exists $\lambda \in \mathbb{F}_{q^4}^*$ such that

$$U_g = \lambda U_f$$
 or $U_g = \lambda U_f$.

Hence the Γ L-class of L_f is at most 2.

5 Prove that U_f and $U_{\hat{f}}$ are in the same ΓL(2, q^4)-orbit.

6 U_f and $U_{\hat{f}}$ are in the same ΓL(2, q^4)-orbit iff there exist $A, B, C, D ∈ \mathbb{F}_{q^4}$, AD - BC ≠ 0, and $\sigma = p^k$,

■ U_f and $U_{\hat{f}}$ are in the same ΓL(2, q^4)-orbit iff there exist $A, B, C, D \in \mathbb{F}_{q^4}$, $AD - BC \neq 0$, and $\sigma = p^k$, satisfying the following system of four equations

$$\begin{split} C + Da_0^{\sigma} - a_0 A &= Ba_0 a_0^{\sigma} + (Ba_1 a_1^{\sigma})^{q^3} + (Ba_2 a_2^{\sigma})^{q^2} + (Ba_3 a_3^{\sigma})^q, \\ Da_1^{\sigma} - (a_3 A)^q &= Ba_0 a_1^{\sigma} + (Ba_1 a_2^{\sigma})^{q^3} + (Ba_2 a_3^{\sigma})^{q^2} + (Ba_3 a_0^{\sigma})^q, \\ Da_2^{\sigma} - (a_2 A)^{q^2} &= Ba_0 a_2^{\sigma} + (Ba_1 a_3^{\sigma})^{q^3} + (Ba_2 a_0^{\sigma})^{q^2} + (Ba_3 a_1^{\sigma})^q, \\ Da_3^{\sigma} - (a_1 A)^{q^3} &= Ba_0 a_3^{\sigma} + (Ba_1 a_0^{\sigma})^{q^3} + (Ba_2 a_1^{\sigma})^{q^2} + (Ba_3 a_2^{\sigma})^q. \end{split}$$

■ U_f and $U_{\hat{f}}$ are in the same ΓL(2, q^4)-orbit iff there exist $A, B, C, D \in \mathbb{F}_{q^4}$, $AD - BC \neq 0$, and $\sigma = p^k$, satisfying the following system of four equations

$$\begin{split} C + Da_0^{\sigma} - a_0 A &= Ba_0 a_0^{\sigma} + (Ba_1 a_1^{\sigma})^{q^3} + (Ba_2 a_2^{\sigma})^{q^2} + (Ba_3 a_3^{\sigma})^q, \\ Da_1^{\sigma} - (a_3 A)^q &= Ba_0 a_1^{\sigma} + (Ba_1 a_2^{\sigma})^{q^3} + (Ba_2 a_3^{\sigma})^{q^2} + (Ba_3 a_0^{\sigma})^q, \\ Da_2^{\sigma} - (a_2 A)^{q^2} &= Ba_0 a_2^{\sigma} + (Ba_1 a_3^{\sigma})^{q^3} + (Ba_2 a_0^{\sigma})^{q^2} + (Ba_3 a_1^{\sigma})^q, \\ Da_3^{\sigma} - (a_1 A)^{q^3} &= Ba_0 a_3^{\sigma} + (Ba_1 a_0^{\sigma})^{q^3} + (Ba_2 a_1^{\sigma})^{q^2} + (Ba_3 a_2^{\sigma})^q. \end{split}$$

Determine $A, B, C, D \in \mathbb{F}_{q^4}$ and $\sigma = p^k$ is not hard.

1 O U_f and U_f are in the same ΓL(2, q^4)-orbit iff there exist $A, B, C, D ∈ \mathbb{F}_{q^4}$, AD - BC ≠ 0, and $\sigma = p^k$, satisfying the following system of four equations

$$\begin{split} C + Da_0^{\sigma} - a_0 A &= Ba_0 a_0^{\sigma} + (Ba_1 a_1^{\sigma})^{q^3} + (Ba_2 a_2^{\sigma})^{q^2} + (Ba_3 a_3^{\sigma})^q, \\ Da_1^{\sigma} - (a_3 A)^q &= Ba_0 a_1^{\sigma} + (Ba_1 a_2^{\sigma})^{q^3} + (Ba_2 a_3^{\sigma})^{q^2} + (Ba_3 a_0^{\sigma})^q, \\ Da_2^{\sigma} - (a_2 A)^{q^2} &= Ba_0 a_2^{\sigma} + (Ba_1 a_3^{\sigma})^{q^3} + (Ba_2 a_0^{\sigma})^{q^2} + (Ba_3 a_1^{\sigma})^q, \\ Da_3^{\sigma} - (a_1 A)^{q^3} &= Ba_0 a_3^{\sigma} + (Ba_1 a_0^{\sigma})^{q^3} + (Ba_2 a_1^{\sigma})^{q^2} + (Ba_3 a_2^{\sigma})^q. \end{split}$$

Determine $A,B,C,D\in\mathbb{F}_{q^4}$ and $\sigma=p^k$ is not hard. The delicate part is to show that

$$\begin{vmatrix} A & B \\ C & D \end{vmatrix} = AD - BC \neq 0$$

 $AD-BC \neq 0$ iff

 $AD - BC \neq 0$ iff a given projective subspace H of dimension at least 1 of

$$\Sigma := \{ \langle (x, x^q, x^{q^2}, x^{q^3}) \rangle_{q^4} \colon x \in \mathbb{F}_{q^4} \} = \operatorname{Fix} \xi \simeq \operatorname{PG}(3, q) \subset \Sigma^* = \operatorname{PG}(3, q^4)$$

 $AD - BC \neq 0$ iff a given projective subspace H of dimension at least 1 of

$$\Sigma:=\{\langle (x,x^q,x^{q^2},x^{q^3})\rangle_{q^4}\colon x\in\mathbb{F}_{q^4}\}=\operatorname{Fix}\xi\simeq\operatorname{PG}(3,q)\subset\Sigma^*=\operatorname{PG}(3,q^4)$$

is not contained in the quadric of Σ^*

$$Q: \left(\sum_{i=0}^{3} c_{i} X_{i}\right)^{2} + X_{0} (X_{1} a_{3}^{2q} + X_{2} + X_{3} a_{1}^{2q^{3}}) (N(a_{1}) - N(a_{3}))^{2} = 0,$$

where

$$\begin{split} c_0 &= a_1^{1+q^2+q^3} a_3^q - a_1^{q^3} a_3^{1+q+q^2}, \\ c_1 &= a_3^{2q+q^2+q^3} - a_1^{q+q^3} a_3^{q+q^2}, \\ c_2 &= a_3^{q+q^2+q^3} a_1^{q^2} - a_1^{q+q^2+q^3} a_3^{q^2}, \\ c_3 &= a_1^{q^2+q^3} a_3^{q+q^3} - a_1^{q+q^2+2q^3}. \end{split}$$

 $AD - BC \neq 0$ iff a given projective subspace H of dimension at least 1 of

$$\Sigma := \{ \langle (x, x^q, x^{q^2}, x^{q^3}) \rangle_{\sigma^4} \colon x \in \mathbb{F}_{\sigma^4} \} = \operatorname{Fix} \xi \simeq \operatorname{PG}(3, q) \subset \Sigma^* = \operatorname{PG}(3, q^4)$$

is not contained in the quadric of Σ^*

$$Q: \left(\sum_{i=0}^{3} c_{i} X_{i}\right)^{2} + X_{0} \left(X_{1} a_{3}^{2q} + X_{2} + X_{3} a_{1}^{2q^{3}}\right) \left(N(a_{1}) - N(a_{3})\right)^{2} = 0,$$

AIM: *H* ⊄ *Q*

 $AD - BC \neq 0$ iff a given projective subspace H of dimension at least 1 of

$$\Sigma := \{ \langle (x, x^q, x^{q^2}, x^{q^3}) \rangle_{q^4} \colon x \in \mathbb{F}_{q^4} \} = \operatorname{Fix} \xi \simeq \operatorname{PG}(3, q) \subset \Sigma^* = \operatorname{PG}(3, q^4)$$

is not contained in the quadric of Σ^*

$$Q: \left(\sum_{i=0}^{3} c_i X_i\right)^2 + X_0 (X_1 a_3^{2q} + X_2 + X_3 a_1^{2q^3}) (N(a_1) - N(a_3))^2 = 0,$$

Q has rank 3 or 2.

If Q has rank 3, then the vertex $V \notin H$. Also if $H \subset Q \Rightarrow H$ is a subline $\Rightarrow V \in \overline{H} \Rightarrow V$, V^{ξ} , V^{ξ^2} , $V^{\xi^3} \in \overline{H}$, a contradiction.

$${\mathcal H}\subset \Sigma={
m Fix}\ {\mathcal E}\simeq {
m PG}(3,q)\subset \Sigma^*$$

If Q has rank 3, then the vertex $V \notin H$. Also if $H \subset Q \Rightarrow H$ is a subline $\Rightarrow V \in \overline{H} \Rightarrow V$, V^{ξ} , V^{ξ^2} , $V^{\xi^3} \in \overline{H}$, a contradiction.

$$H \subset \Sigma = \text{Fix } \xi \simeq \text{PG}(3, q) \subset \Sigma^*$$

If Q has rank 2

There exists a point $R \in \ell \setminus H$, with $\langle R, R^{\xi}, R^{\xi^2}, R^{\xi^3} \rangle = \Sigma^*$. Also $R^{\xi} \in \ell \setminus H$. If $H \subset Q \Rightarrow H \subset \alpha$ or $H \subset \beta$. Suppose $H \subset \alpha \Rightarrow \alpha = \langle H, R \rangle = \alpha^{\xi}$, a contradiction.

THANK YOU FOR YOUR ATTENTION!