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Set systems

An intersecting 3-set system from {1, . . . , 6}:

123 124 125 126 134
135 136 234 235 236

In this system, every set has at least 2 elements from {1, 2, 3}.

Another intersecting 3-set system from {1, . . . , 6}:

123 124 125 126 134
135 136 145 146 156

The second type of set system has many names:
Trivially intersecting or Dictatorship
I prefer canonically intersecting for the set of all k-sets that contain
a fixed element.
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Erdős-Ko-Rado Theorem

Theorem
Let F be a t-intersecting k-set system on an n-set. If n > f(k, t), then

1 |F| ≤
(
n−t
k−t
)
,

2 and F meets this bound if and only if it is canonically
t-intersecting.

1961 - Erdős, Ko and Rado had f(k, t) ≥ t+ (k − t)
(
k
t

)3
.

1978 - Frankl proved f(k, t) = (t+ 1)(k − t+ 1) when t is large.
1984 - Wilson gave an algebraic proof of the bound for all t.
1997 - Ahslwede and Khachatrian detemined the largest system
for all values of t, k and n.
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We can ask the same question for other objects

Object Definition of intersection
k-Sets a common element
Blocks in a design a common element
Multisets a common element
Vector spaces over a field a common 1-D subspace
Lines in a partial geometry a common point
Integer sequences same entry in same position
Permutations both map i to j
Permutations a common cycle
Set Partitions a common class
Tilings a tile in the same place
Cocliques in a graph a common vertex
Triangulations of a polygon a common triangle

What is the size and structure of the largest set of intersecting objects?
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General Framework

Each object is made of k atoms.
Object Atoms
Sets elements from {1, . . . , n}
Integer sequences pairs (i, a) (entry a is in position i)
Permutations pairs (i, j) (the permutation maps i to j)
Permutations cycle
Set partitions subsets (cells in the partition)

Two objects intersect if they contain a common atom.
A canonically intersecting set is the set of all objects that contain a
fixed atom.

Objects have the EKR property if a canonically intersecting set is the
largest intersecting set.
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Simple Counting—Kernel Method

Say we have objects and each object has k atoms.

1 Let P (1) be the number of objects with a fixed atom; and P (2) the
number with 2 fixed atoms.

2 A is a non-canonical family of intersecting objects.
3 Assume {a1, a2, . . . , ak} is an object in A.
4 Ai be all the objects in A that contain the atom ai.
5 Since A is not canonical, for every i, there is an object
B = {b1, . . . , bk} in A with no ai.

6 Each object in Ai must contain one of the k atoms that are in B.
7 So |Ai| ≤ kP (2), and |A| ≤ k(kP (2)).

The objects have the EKR property, if

k2P (2) < P (1).
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Simple Counting Bound

For uniform k-partitions of {1, . . . , k`} this is

k2 1

(k − 2)!

k∏
i=2

(
n− i`
`

)
<

1

(k − 1)!

k∏
i=1

(
n− i`
`

)
.

Need (k − 1)k2 <
(
n−`
`

)
(Works for all ` > 2).

For blocks in a 2-(n,m, 1) design this bound is

m2 ≤ n− 1

m− 1

So any such design with m3 −m2 + 1 < n has the EKR property.



When Counting Fails

1 For permutations this never works since

k2P (2) = n2(n− 2)! > (n− 1)! = P (1).

2 For triangulations of a convex polygon the counting never works
since

k2P (2) = (n− 3)2C(n− 4) > C(n− 3) = P (1)

In these examples the number of atoms in an object is not independent
from the total number of atoms.
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Left-compression

Erdős, Ko and Rado used a compression operation.

In each k-set, replace j with a smaller i, unless the new set is
already in the system.
Sets are smaller in the colexicographic order (system has more
structure).
It doesn’t change the size of the system.
If the original system was intersecting, the new system is too.

(5→ 1)-Compression

{1, 2, 3} → {1, 2, 3}
{1, 2, 4} → {1, 2, 4}
{3, 4, 5} → {1, 3, 4}
{2, 5, 6} → {1, 2, 6}
{2, 3, 5} → {2, 3, 5}
{1, 2, 5} → {1, 2, 5}
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Compression

Compression advantages:
Ahslwede and Khachatrian’s proof uses compression.
Talbot used a clever compression to show the seperated sets
have the EKR property.
Holroyd, Talbot, and Borg use compression to prove that the
cocliques in a family of graphs have EKR property.
Ku and Wong used compression for cycle-intersecting
permutations and set partitions.

Compression pitfalls:
The obvious compressions for permutations and perfect
matchings are not 1-1 (Purdy’s thesis).
There are published paper mistakenly claiming to have a
compression for both vectors spaces and permutations.
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Derangement Graphs

For a set of objects, define the derangement graph
the vertices are the objects,
two vertices are adjacent if they are not intersecting.
A coclique in the graph is an intersecting set of objects.

Object Derangement graph
Sets Kneser graph
Vector spaces q-Kneser graph
Integer sequences n-Hamming graph
Permutations Derangement graph

What is the size of the maximum coclique in the derangement graph?

Which cocliques achieve this bound?
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Graph Homomorphism

A graph homomorphism is a map f : V (X)→ V (Y ) such that if x1, x2

are adjacent in X, then f(x1) and f(x2) are adjacent in Y .

{1,3}

{2,4}

{3,5}

{1,4}
{2,5}

{4,5}

{1,5}

{1,2}

{2,3}

{3,4}
−→

{1,3}

{2,4}

{3,3}

{1,4}
{2,2}

{4,4}

{1,1}

{1,2}

{2,3}

{3,4}

Derangement graph for sets Derangement graph for multisets
K(5, 2) M(4, 2)

If X is a spanning subgraph of Y , then α(Y ) ≤ α(X).

There is a homomorphism from K(n, k)→M(n− k + 1, k), which
implies that the multisets have the (strict) EKR property.
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Fractional Chromatic Number

If X is a vertex-transitive graph, then the fractional chromatic number is

χf (X) =
|V (X)|
α(X)

.

If X → Y , then χf (X) ≤ χf (Y ).

Theorem
If X → Y , and X and Y are vertex transitive then

α(Y ) ≤ |V (Y )|α(X)

|V (X)|
.



Fractional Chromatic Number

If X is a vertex-transitive graph, then the fractional chromatic number is

χf (X) =
|V (X)|
α(X)

.

If X → Y , then χf (X) ≤ χf (Y ).

Theorem
If X → Y , and X and Y are vertex transitive then

α(Y ) ≤ |V (Y )|α(X)

|V (X)|
.



Circulant Graphs

Define C(n, k) to be graph with vertices cyclic k-intervals from
{1, . . . , n} and two intervals are adjacent if they are disjoint.

{9,10,1}

{10,1,2}
{1,2,3}

{2,3,4}

{3,4,5}

{4,5,6}

{5,6,7}
{6,7,8}

{7,8,9}

{8,9,10}

Figure: The graph C(10, 3).

C(n, k) is a subgraph of
K(n, k).
C(n, k) is vertex transitive.
α(C(n, k)) = k.
χf (C(n, k)) = n

k .

There is a homomorphism C(n, k)→ K(n, k):

χf (K(n, k)) ≥ n

k
→ α(K(n, k)) ≤ k

n

(
n

k

)
=

(
n− 1

k − 1

)
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Clique-Coclique Bound

If X is vertex-transitive, then Kω(X) → X and

ω(X) = χf (Kω(X)) ≤ χf (X) =
|V (X)|
α(X)

Theorem
If X is a vertex-transitive graph then

α(X)ω(X) ≤ |V (X)|.

If equality holds, then every maximum coclique and every maximum
clique intersect.
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Clique-Coclique Bound Examples

1 For length-n integer sequences with entries from Zq

α(X) =
qn

q
= qn−1.

2 For perfect matchings (1-factorization is a clique),

α(M(2k)) =
(2k − 1)!!

2k − 1
= (2k − 3)!!

3 For permutations (sharply 1-transitive set is a clique)

α(Γn) =
n!

n
= (n− 1)!



Permutation Groups

Let G ≤ Sym(n),
1 ΓG denotes the derangement

graph for a group G.
2 Vertices σ, π ∈ G are adjacent

if and only if πσ−1 is a
derangment.

e
(1, 2, 3, 4)

(2, 4)

(1, 2)(3, 4)
(1, 3)(2, 4)

(1, 4, 3, 2)

(1, 3)

(1, 4)(2, 3)

The graph ΓD(4).

Properties of ΓG:
ΓG is vertex transitive.
If G has a sharply 1-transitive set, then G has the EKR property.
ΓG is a normal Cayley graph.
ΓG is a graph in the conjugacy class scheme.
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Conjugacy Class Scheme

Define a family of graphs Xi:
the vertices are the elements of the group G;
σ and π are adjacent if πσ−1 is in the i-th conjugacy class.

The conjugacy class scheme for D4.
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A1 (πσ−1 is conjugate to (1, 3).) A2 (πσ−1 is conjugate to (1, 2)(3, 4).)
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Conjugacy Class Scheme

Define a family of graphs Xi:
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Clique-Coclique bound in an Association Scheme

Set up:
1 A = {A0, A1, . . . , Ad} an association scheme,
2 T is a subset of {1, . . . , d}, and
3 X is the graph of

∑
i∈T Ai.

Calculations:
C is a clique in X, with characteristic vector x.
S is a coclique in X, with characteristic vector y.

M =
∑d

i=0
xTAix
vvi

Ai, N =
∑d

i=0
yTAiy
vvi

Ai.
So M ◦N = αI (scalar matrix). So

tr(MN) = sum(M ◦N) = αv, tr(M) tr(N) = αv2

Since M and N are p.s.d., we can show that
tr(MN) ≥ sum(M) sum(N)

v2
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Clique-Coclique bound

Putting these together we get:

sum(M)

tr(M)

sum(N)

tr(N)
≤ v.

Theorem
If A is an association scheme and S a coclique in

∑
i∈T Xi, then

|S| = sum(N)

tr(N)
≤ min

M
v

tr(M)

sum(M)

where M is positive semi-definite matrix in C[A] with M ◦N is a
constant matrix.

We don’t even need the clique, just the matrix!
Set M = A− τI, with τ least eigenvalue we get

|S| ≤ v

1− d
τ

.
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Delsarte-Hoffman Bound for cocliques

←

Theorem
If X is a union of graphs in an association scheme, then

α(X) ≤ |V (X)|
1− d

τ

where d the largest eigenvalue and τ is the least eigenvalue.

If equality holds in the ratio bound and vS is a characteristic vector for
a maximum coclique S, then

vS −
α(X)

|V (X)|
1

is an eigenvector for τ .
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Delsarte-Hoffman Bound for cliques

Theorem
If X is single graph in an association scheme, then

ω(X) ≤ 1− d

τ

where d the largest eigenvalue and τ is the least eigenvalue.

If equality holds in the ratio bound and vS is a characteristic vector for
a maximum clique S, then

vS −
ω(X)

|V (X)|
1

is an eigenvector for τ .



Delsarte-Hoffman Bound for cliques

Theorem
If X is single graph in an association scheme, then

ω(X) ≤ 1− d

τ

where d the largest eigenvalue and τ is the least eigenvalue.

If equality holds in the ratio bound and vS is a characteristic vector for
a maximum clique S, then

vS −
ω(X)

|V (X)|
1

is an eigenvector for τ .



An Example of the Strict EKR for a Design

The derived design from the Witt design is a 3-(22, 6, 1) design.

The block graph X for this design is strongly regular with
spectrum of X is {60(1),−3(55), 5(21)}, so the ratio bound on the
cliques of X is

ω(X) ≤ 1− 60

−3
= 21.

Each element is in exactly 21 blocks, so ω(X) = 21.
The canonical intersecting (so set of all blocks that contain a fixed
element) are the largest intersecting sets.

Is there a maximum set of intersecting blocks that is not canonical?
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Strict EKR property

Equality in the ratio bound means that if S is maximum
intersecting set then vS

characteristic vector
− |S|

n 1
balanced

is an eigenvector.

Define a matrix H to have the characteristic vectors of the
canonical cliques as its columns.

H =

1,...,6 7,...,22
fixed block {1, . . . , 6} 1 0

disjoint blocks 0 M
others X Y

Columns of H are in span of the τ -eigenspace and 1.
H has full rank (check HTH) so the columns span this space.
If S is a maximum intersecting set, then vS is a linear combination
of the columns of H.
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Strict EKR property

Hx =

1,...,6 7,...,22
fixed block 1 0

disjoint blocks 0 M
others X Y

(
x1

x2

)
=

 1
0
y′

 = vS .

Since none of the blocks disjoint from the fixed block can be in the
clique it must be that

(
0 M

)( x1

x2

)
= 06×1.

The set of all blocks that do not contain any of the points from the
fixed block forms a 2-(16, 6, 2) design; this implies that M is full
rank, so x2 = 0.
Every clique is canonical.
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Ratio Bound

The ratio bound holds with equality for
1 k-sets of an n-set (Johnson scheme),
2 k-dimensional subspaces (Grassmann scheme),
3 integer sequences (Hamming scheme),
4 perfect matchings (Perfect matching scheme),
5 permutations (Conjugacy class scheme).



2-Transitive Groups

This approach also works for many 2-transitive groups.

The eigenvalues of ΓG are

1
χ(1)

∑
σ∈Der(G)

χ(σ).

where χ is an irreducible character of G.

Consider the character χ(g) = fix(g)− 1.

− |Der(n)
n−1 is an eigenvalue for ΓG.

For many 2-transitive groups this gives the least eigenvalue:
Sym(n), Alt(n), PSL(2, q), PGL(2, q), PGL(3, q), the Mathieu
groups.
For other groups we can use a weighted adjacency matrix, like
Higman-Sims group, PSU(3, q).

Using this approach we can prove all 2-transitive groups have the EKR
property.
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Related Problems

There are lots and lots of related problems:
1 Find EKR theorems in more general settings.
2 What is the size of the largest t-intersecting set of objects?
3 What is the largest set of intersecting objects in which not all

contain a common element? (Hilton-Milner-type results)

4 What is the size of the largest bipartite subgraph of the
derangement graph?

5 What is the size of the largest triangle-free subgraph in the
derangement graph.

6 Are there interesting examples of object that do not have EKR
propery?
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