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Problem: Determine e(R) and describe the EKR-sets for R.
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Theorem (Erdés-Ko-Rado):

0 ery=(; 1)
(i) E(R) = {My | p € X},
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Let X be a finite projective or a finite non-degenerate polar space
of rank n.

Let
» M be the set of all (singular) subspaces of rank k,
» R:={(A,B)e Mx M|ANB #0}.

Remarks:
1. Contributions from several authors;
2. X is a building of type A, (resp. C,, D).
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Buildings of type A,
Buildings of type A, are precisely the flag complexes of projective
spaces of dimension n.

Let K beafield, 1 <ne N and dimxk X =n+ 1.
We put
Vert(X) :={U <k X | {0} # U # X}

and we have a type function
typ : Vert(X) — S, U — dimg U,
where S = {1,...,n}.
We call U, W € Vert(X)
> incident : < U C W or W C U,
» opposite = UNW = {0} and U+ W = X;

> in general position
< JU' incident with U and opposite to W;

> close :< U is not in general position to W.
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The simplicial building associated with X

A flag of X is a clique of the incidence graph on Vert(X) and
Flag(X) denotes the set of flags of X.

There is a natural type function typ : Flag(X) — 2°.

A(X) := (Flag(X), C) is a simplicial complex called the building
associated with X.

On the set Flag(X) we have
» an incidence relation;
> an opposition relation;
> a relation of being in general position;

> a relation of being close.



Spherical buildings

Let A := (F, Q) be a spherical building over the type set S.
Then we have:

> a type function typ : F — 2°;

» an incidence and opposition relation on F from which one
deduces the relation of being in general position and being
close.



Spherical buildings

Let A := (F, Q) be a spherical building over the type set S.
Then we have:

> a type function typ : F — 2°;

» an incidence and opposition relation on F from which one
deduces the relation of being in general position and being
close.

The EKR-problem for finite buildings
Let A = (F, Q) be a finite (and hence spherical) building with
typeset Sand let ) £ J C S.
We put
M :={F e F | typ(F) = J}

and
R:={(F,G) e Mx M| F and G are close }.
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Finite buildings of type A, are projective spaces over some F,. The
EKR-problem is solved for the cases

» |J| =1 (essentially due to Hsieh 1975);
» J = {1, n} (Blokhuis, Brouwer, Giiven 2014).
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» |J| =1 (essentially due to Hsieh 1975);
» J = {1, n} (Blokhuis, Brouwer, Giiven 2014).

Finite buildings of type C, or D, are polar spaces associated with a
non-degenerate sesquilinear or quadratic form on some vector
space over Fy. The EKR-problem is solved for the cases

» J = {1} easy;

» J = {n} (Pepe, Storme, Vanhove 2011, almost all cases);

» J = {2} (Metsch 2016, g > 2(n — 1));

» J={n—1,n} for Dp-buildings with n even (lhringer, Metsch,
M. 2016, partial for g = 2).
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Finite buildings of type F4 are metasymplectic spaces over F (i.e.
related to the groups F4(q) or 2E4(q)).
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Buildings of exceptional type

Finite buildings of type F4 are metasymplectic spaces over F (i.e.
related to the groups F4(q) or 2E4(q)).

Klaus Metsch solved the case J = {1} (which provides also the
solution to J = {4}).

The cases J = {1} and J = {6} for Es(q) are easy.

Observation: In almost cases, for which one knows the solution of
the EKR-problem, the EKR-sets are contained in a ball of radius 7.
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Balls of radius 7 in spherical buildings

Let A = (F, Q) be a spherical building over the type set S.

Then there is a natural gallery distance on the set of flags

dist : F x F — N, (A, B) > dist(A, B).

For A € F we put
A% :={B € F | B is opposite to A}.
The ball of radius 5 around A is defined as

Bz (A) :={B € F | dist(B, A) < dist(B, A°)}.

jus
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A strong version of Tits' center conjecture for spherical
buildings

Let A = (F,C) be a spherical building with type set S.
Since there is a distance on F it is possible to define convex
subsets of F.

Conjecture: Let K C F be convex. Then one of the following
holds:

(A) K is a subbuilding of A;

(B) there exists C € F such that K C Bz (C).

This conjecture is known to be true
» if |S| < 3 (Balser, Lytchak 2005);
» if Ais of type A, (Ramos-Cuevas 2015).
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The EKR-problem and the center conjecture

1. The version of the center conjecture given on the previous slide
corresponds to a question of Kleiner and Leeb (1997).

2. There is a weaker version of the center conjecture due to Tits
(1962) and Serre (2002) whose proof was accomplished by
Ramos-Cuevas in 2013.

Earlier contributions: Serre (2002); M., Tits (2006); Leeb,
Ramos-Cuevas (2011); Parker, Tent (2012).

3. The proof for the weaker version of the center conjecture is not
particularly illuminating for attacking its stronger version.

The proofs for the EKR-results obtained so far are constructive and
might provide useful hints for attacking the conjecture above.
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Does the following hold?

Let A = (F, Q) be a finite building with type set S.

Let £ C F be an EKR-set of J-flags (for some ) £ J C S).
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A question about EKR-sets in finite buildings

Does the following hold?

Let A = (F, Q) be a finite building with type set S.

Let £ C F be an EKR-set of J-flags (for some ) £ J C S).
Then we have one of the following:

(A) & corresponds to a subbuilding;

(B) & is contained in a ball of radius 7

Remark: Proving this is probably easier than proving the strong
version of the center conjecture, because the arguments used so far
always provide the center of the ball of radius 5.



