EKR-Sets in Finite Buildings

Bernhard Mühlherr (JLU Gießen)

Irsee, September 2017

The EKR-problem

Let M be a finite set and $R \subseteq M \times M$ a reflexive and symmetric relation.

We put

- ▶ $\mathbf{Y} := \{ Y \subseteq X \mid (A, B) \in R \text{ for all } A, B \in Y \};$
- $e(R) := \max\{|Y| \mid Y \in \mathbf{Y}\};$
- ▶ $\mathcal{E}(R) := \{ Y \in \mathbf{Y} \mid |Y| = e(R) \}.$

An element of $\mathcal{E}(R)$ is called an *EKR-set for R*.

The EKR-problem

Let M be a finite set and $R \subseteq M \times M$ a reflexive and symmetric relation.

We put

- ▶ $\mathbf{Y} := \{ Y \subseteq X \mid (A, B) \in R \text{ for all } A, B \in Y \};$
- $e(R) := \max\{|Y| \mid Y \in \mathbf{Y}\};$
- ▶ $\mathcal{E}(R) := \{ Y \in \mathbf{Y} \mid |Y| = e(R) \}.$

An element of $\mathcal{E}(R)$ is called an *EKR-set for R*.

Problem: Determine e(R) and describe the EKR-sets for R.

The standard example

Let

- ▶ X be a finite set, n := |X| and $k < \frac{n}{2}$;
- ▶ $M := \{Y \subseteq X \mid |Y| = k\};$
- $R := \{ (A, B) \in M \times M \mid A \cap B \neq \emptyset \}.$

The standard example

Let

- ▶ X be a finite set, n := |X| and $k < \frac{n}{2}$;
- ▶ $M := \{Y \subseteq X \mid |Y| = k\};$
- $R := \{ (A, B) \in M \times M \mid A \cap B \neq \emptyset \}.$

For $p\in X$ let $M_p:=\{A\in M\mid p\in A\}$ and note that $|M_p|=\binom{n-1}{k-1}.$

The standard example

Let

- ▶ X be a finite set, n := |X| and $k < \frac{n}{2}$;
- ▶ $M := \{Y \subseteq X \mid |Y| = k\};$
- $P := \{ (A, B) \in M \times M \mid A \cap B \neq \emptyset \}.$

For $p\in X$ let $M_p:=\{A\in M\mid p\in A\}$ and note that $|M_p|=\binom{n-1}{k-1}.$

Theorem (Erdös-Ko-Rado):

- (i) $e(R) := \binom{n-1}{k-1}$;
- (ii) $\mathcal{E}(R) := \{ M_p \mid p \in X \}.$

The EKR-problem for projective Spaces and polar Spaces

Let X be a finite projective or a finite non-degenerate polar space of rank n.

Let

- ▶ M be the set of all (singular) subspaces of rank k,
- $R := \{ (A, B) \in M \times M \mid A \cap B \neq \emptyset \}.$

The EKR-problem for projective Spaces and polar Spaces

Let X be a finite projective or a finite non-degenerate polar space of rank n.

Let

- M be the set of all (singular) subspaces of rank k,
- $P := \{ (A, B) \in M \times M \mid A \cap B \neq \emptyset \}.$

Remarks:

- 1. Contributions from several authors;
- 2. X is a building of type A_n (resp. C_n, D_n).

Buildings of type A_n are precisely the flag complexes of projective spaces of dimension n.

Buildings of type A_n are precisely the flag complexes of projective spaces of dimension n.

Let K be a field, $1 \le n \in \mathbf{N}$ and $\dim_K X = n+1$. We put

$$\mathsf{Vert}(X) := \{ U \leq_{\mathcal{K}} X \mid \{0\} \neq U \neq X \}$$

and we have a type function

$$\mathsf{typ}: \mathsf{Vert}(X) \to \mathcal{S}, \, U \mapsto \dim_{\mathcal{K}} U,$$

where
$$S = \{1, ..., n\}$$
.

Buildings of type A_n are precisely the flag complexes of projective spaces of dimension n.

Let K be a field, $1 \le n \in \mathbf{N}$ and $\dim_K X = n + 1$. We put

$$Vert(X) := \{ U \leq_{\mathcal{K}} X \mid \{0\} \neq U \neq X \}$$

and we have a type function

$$\mathsf{typ}: \mathsf{Vert}(X) \to \mathcal{S}, \, U \mapsto \mathsf{dim}_K \, U,$$

where $S = \{1, \dots, n\}$. We call $U, W \in Vert(X)$

▶ incident : $\Leftrightarrow U \subseteq W$ or $W \subseteq U$;

Buildings of type A_n are precisely the flag complexes of projective spaces of dimension n.

Let K be a field, $1 \le n \in \mathbf{N}$ and $\dim_K X = n + 1$. We put

$$Vert(X) := \{ U \leq_{\mathcal{K}} X \mid \{0\} \neq U \neq X \}$$

and we have a type function

$$\mathsf{typ}: \mathsf{Vert}(X) \to \mathcal{S}, \, U \mapsto \mathsf{dim}_K \, U,$$

where $S = \{1, ..., n\}$. We call $U, W \in Vert(X)$

- ▶ incident : $\Leftrightarrow U \subseteq W$ or $W \subseteq U$;
- ▶ opposite : $\Leftrightarrow U \cap W = \{0\}$ and U + W = X;

Buildings of type A_n are precisely the flag complexes of projective spaces of dimension n.

Let K be a field, $1 \le n \in \mathbf{N}$ and $\dim_K X = n+1$. We put

$$\mathsf{Vert}(X) := \{ U \leq_{\mathsf{K}} X \mid \{0\} \neq U \neq X \}$$

and we have a type function

$$\mathsf{typ}: \mathsf{Vert}(X) \to \mathcal{S}, \, U \mapsto \mathsf{dim}_{\mathcal{K}} \, U,$$

where $S = \{1, ..., n\}$. We call $U, W \in Vert(X)$

- ▶ incident : $\Leftrightarrow U \subseteq W$ or $W \subseteq U$;
- ▶ opposite : $\Leftrightarrow U \cap W = \{0\}$ and U + W = X;
- in general position
 :⇔ ∃U' incident with U and opposite to W;

Buildings of type A_n are precisely the flag complexes of projective spaces of dimension n.

Let K be a field, $1 \le n \in \mathbf{N}$ and $\dim_K X = n + 1$. We put

$$\mathsf{Vert}(X) := \{ U \leq_{\mathsf{K}} X \mid \{0\} \neq U \neq X \}$$

and we have a type function

$$\mathsf{typ}: \mathsf{Vert}(X) \to \mathcal{S}, \, U \mapsto \mathsf{dim}_K \, U,$$

where $S = \{1, ..., n\}$. We call $U, W \in Vert(X)$

- ▶ incident : $\Leftrightarrow U \subseteq W$ or $W \subseteq U$;
- ▶ opposite : $\Leftrightarrow U \cap W = \{0\}$ and U + W = X;
- ▶ in general position $:\Leftrightarrow \exists U'$ incident with U and opposite to W;
- ▶ close : $\Leftrightarrow U$ is not in general position to W.

The simplicial building associated with X

A flag of X is a clique of the incidence graph on Vert(X) and Flag(X) denotes the set of flags of X.

There is a natural type function typ : $Flag(X) \rightarrow 2^{S}$.

The simplicial building associated with X

A flag of X is a clique of the incidence graph on Vert(X) and Flag(X) denotes the set of flags of X.

There is a natural type function typ : $\operatorname{Flag}(X) \to 2^{S}$.

 $\Delta(X) := (\operatorname{Flag}(X), \subseteq)$ is a simplicial complex called *the building* associated with X.

The simplicial building associated with X

A flag of X is a clique of the incidence graph on Vert(X) and Flag(X) denotes the set of flags of X.

There is a natural type function typ : $\operatorname{Flag}(X) \to 2^{S}$.

 $\Delta(X) := (\operatorname{Flag}(X), \subseteq)$ is a simplicial complex called *the building* associated with X.

On the set Flag(X) we have

- an incidence relation;
- an opposition relation;
- a relation of being in general position;
- a relation of being close.

Spherical buildings

Let $\Delta := (\mathcal{F}, \subseteq)$ be a spherical building over the type set S. Then we have:

- ▶ a type function typ : $\mathcal{F} \to 2^{\mathcal{S}}$;
- ▶ an incidence and opposition relation on F from which one deduces the relation of being in general position and being close.

Spherical buildings

Let $\Delta := (\mathcal{F}, \subseteq)$ be a spherical building over the type set S. Then we have:

- ▶ a type function typ : $\mathcal{F} \to 2^{S}$;
- an incidence and opposition relation on F from which one deduces the relation of being in general position and being close.

The EKR-problem for finite buildings

Let $\Delta = (\mathcal{F}, \subseteq)$ be a finite (and hence spherical) building with type set S and let $\emptyset \neq J \subseteq S$.

We put

$$M:=\{F\in\mathcal{F}\mid \operatorname{typ}(F)=J\}$$

and

$$R := \{(F, G) \in M \times M \mid F \text{ and } G \text{ are close } \}.$$

Known results

Finite buildings of type A_n are projective spaces over some F_q . The EKR-problem is solved for the cases

- ▶ |J| = 1 (essentially due to Hsieh 1975);
- ▶ $J = \{1, n\}$ (Blokhuis, Brouwer, Güven 2014).

Known results

Finite buildings of type A_n are projective spaces over some F_q . The EKR-problem is solved for the cases

- ▶ |J| = 1 (essentially due to Hsieh 1975);
- ▶ $J = \{1, n\}$ (Blokhuis, Brouwer, Güven 2014).

Finite buildings of type C_n or D_n are polar spaces associated with a non-degenerate sesquilinear or quadratic form on some vector space over F_a . The EKR-problem is solved for the cases

- → J = {1} easy;
- ▶ $J = \{n\}$ (Pepe, Storme, Vanhove 2011, almost all cases);
- ▶ $J = \{2\}$ (Metsch 2016, $q \ge 2(n-1)$);
- ▶ $J = \{n-1, n\}$ for D_n -buildings with n even (Ihringer, Metsch, M. 2016, partial for q = 2).

Buildings of exceptional type

Finite buildings of type F_4 are metasymplectic spaces over F_q (i.e. related to the groups $F_4(q)$ or ${}^2E_6(q)$).

Klaus Metsch solved the case $J = \{1\}$ (which provides also the solution to $J = \{4\}$).

Buildings of exceptional type

Finite buildings of type F_4 are metasymplectic spaces over F_q (i.e. related to the groups $F_4(q)$ or ${}^2E_6(q)$).

Klaus Metsch solved the case $J=\{1\}$ (which provides also the solution to $J=\{4\}$).

The cases $J = \{1\}$ and $J = \{6\}$ for $E_6(q)$ are easy.

Buildings of exceptional type

Finite buildings of type F_4 are metasymplectic spaces over F_q (i.e. related to the groups $F_4(q)$ or ${}^2E_6(q)$).

Klaus Metsch solved the case $J=\{1\}$ (which provides also the solution to $J=\{4\}$).

The cases $J = \{1\}$ and $J = \{6\}$ for $E_6(q)$ are easy.

Observation: In almost cases, for which one knows the solution of the EKR-problem, the EKR-sets are contained in a ball of radius $\frac{\pi}{2}$.

Let $\Delta = (\mathcal{F}, \subseteq)$ be a spherical building over the type set S.

Let $\Delta = (\mathcal{F}, \subseteq)$ be a spherical building over the type set S. Then there is a natural gallery distance on the set of flags

$$\mathsf{dist}: \mathcal{F} \times \mathcal{F} \to \mathbf{N}, (A, B) \mapsto \mathsf{dist}(A, B).$$

Let $\Delta = (\mathcal{F}, \subseteq)$ be a spherical building over the type set \mathcal{S} . Then there is a natural gallery distance on the set of flags

$$\mathsf{dist}: \mathcal{F} \times \mathcal{F} \to \mathbf{N}, (A, B) \mapsto \mathsf{dist}(A, B).$$

For $A \in \mathcal{F}$ we put

$$A^{op} := \{B \in \mathcal{F} \mid B \text{ is opposite to } A\}.$$

Let $\Delta = (\mathcal{F}, \subseteq)$ be a spherical building over the type set S. Then there is a natural gallery distance on the set of flags

$$\mathsf{dist}: \mathcal{F} \times \mathcal{F} \to \mathbf{N}, (A, B) \mapsto \mathsf{dist}(A, B).$$

For $A \in \mathcal{F}$ we put

$$A^{op} := \{ B \in \mathcal{F} \mid B \text{ is opposite to } A \}.$$

The ball of radius $\frac{\pi}{2}$ around A is defined as

$$B_{\frac{\pi}{2}}(A) := \{B \in \mathcal{F} \mid \operatorname{dist}(B, A) \leq \operatorname{dist}(B, A^{\operatorname{op}})\}.$$

A strong version of Tits' center conjecture for spherical buildings

Let $\Delta=(\mathcal{F},\subseteq)$ be a spherical building with type set S. Since there is a distance on \mathcal{F} it is possible to define *convex subsets* of \mathcal{F} .

A strong version of Tits' center conjecture for spherical buildings

Let $\Delta = (\mathcal{F}, \subseteq)$ be a spherical building with type set S.

Since there is a distance on $\mathcal F$ it is possible to define *convex* subsets of $\mathcal F$.

Conjecture: Let $\mathcal{K} \subseteq \mathcal{F}$ be convex. Then one of the following holds:

- (A) \mathcal{K} is a subbuilding of Δ ;
- (B) there exists $C \in \mathcal{F}$ such that $\mathcal{K} \subseteq B_{\frac{\pi}{2}}(C)$.

A strong version of Tits' center conjecture for spherical buildings

Let $\Delta = (\mathcal{F}, \subseteq)$ be a spherical building with type set S.

Since there is a distance on $\mathcal F$ it is possible to define *convex* subsets of $\mathcal F$.

Conjecture: Let $\mathcal{K} \subseteq \mathcal{F}$ be convex. Then one of the following holds:

- (A) \mathcal{K} is a subbuilding of Δ ;
- (B) there exists $C \in \mathcal{F}$ such that $\mathcal{K} \subseteq B_{\frac{\pi}{2}}(C)$.

This conjecture is known to be true

- ▶ if $|S| \le 3$ (Balser, Lytchak 2005);
- if Δ is of type A_n (Ramos-Cuevas 2015).

The EKR-problem and the center conjecture

1. The version of the center conjecture given on the previous slide corresponds to a question of Kleiner and Leeb (1997).

The EKR-problem and the center conjecture

- 1. The version of the center conjecture given on the previous slide corresponds to a question of Kleiner and Leeb (1997).
- 2. There is a weaker version of the center conjecture due to Tits (1962) and Serre (2002) whose proof was accomplished by Ramos-Cuevas in 2013.

Earlier contributions: Serre (2002); M., Tits (2006); Leeb, Ramos-Cuevas (2011); Parker, Tent (2012).

The EKR-problem and the center conjecture

- 1. The version of the center conjecture given on the previous slide corresponds to a question of Kleiner and Leeb (1997).
- 2. There is a weaker version of the center conjecture due to Tits (1962) and Serre (2002) whose proof was accomplished by Ramos-Cuevas in 2013.

Earlier contributions: Serre (2002); M., Tits (2006); Leeb, Ramos-Cuevas (2011); Parker, Tent (2012).

3. The proof for the weaker version of the center conjecture is not particularly illuminating for attacking its stronger version.

The proofs for the EKR-results obtained so far are constructive and might provide useful hints for attacking the conjecture above.

A question about EKR-sets in finite buildings

Does the following hold?

Let $\Delta = (\mathcal{F}, \subseteq)$ be a finite building with type set S. Let $\mathcal{E} \subseteq \mathcal{F}$ be an EKR-set of J-flags (for some $\emptyset \neq J \subseteq S$).

Then we have one of the following:

- (A) ${\mathcal E}$ corresponds to a subbuilding;
- (B) ${\mathcal E}$ is contained in a ball of radius $\frac{\pi}{2}$

A question about EKR-sets in finite buildings

Does the following hold?

Let $\Delta = (\mathcal{F}, \subseteq)$ be a finite building with type set S. Let $\mathcal{E} \subseteq \mathcal{F}$ be an EKR-set of J-flags (for some $\emptyset \neq J \subseteq S$).

Then we have one of the following:

- (A) $\mathcal E$ corresponds to a subbuilding;
- (B) ${\mathcal E}$ is contained in a ball of radius $\frac{\pi}{2}$

Remark: Proving this is probably easier than proving the strong version of the center conjecture, because the arguments used so far always provide the center of the ball of radius $\frac{\pi}{2}$.