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The EKR-problem

Let M be a finite set and R ⊆ M ×M a reflexive and symmetric
relation.

We put

I Y := {Y ⊆ X | (A,B) ∈ R for all A,B ∈ Y };
I e(R) := max{|Y | | Y ∈ Y};
I E(R) := {Y ∈ Y | |Y | = e(R)}.

An element of E(R) is called an EKR-set for R.

Problem: Determine e(R) and describe the EKR-sets for R.
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The standard example

Let

I X be a finite set, n := |X | and k < n
2 ;

I M := {Y ⊆ X | |Y | = k};
I R := {(A,B) ∈ M ×M | A ∩ B 6= ∅}.

For p ∈ X let Mp := {A ∈ M | p ∈ A} and note that

|Mp| =

(
n − 1

k − 1

)
.

Theorem (Erdös-Ko-Rado):

(i) e(R) :=

(
n − 1

k − 1

)
;

(ii) E(R) := {Mp | p ∈ X}.
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The EKR-problem for projective Spaces and polar Spaces

Let X be a finite projective or a finite non-degenerate polar space
of rank n.

Let

I M be the set of all (singular) subspaces of rank k ,

I R := {(A,B) ∈ M ×M | A ∩ B 6= ∅}.

Remarks:

1. Contributions from several authors;

2. X is a building of type An (resp. Cn,Dn).
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Buildings of type An

Buildings of type An are precisely the flag complexes of projective
spaces of dimension n.

Let K be a field, 1 ≤ n ∈ N and dimK X = n + 1.
We put

Vert(X ) := {U ≤K X | {0} 6= U 6= X}

and we have a type function

typ : Vert(X )→ S ,U 7→ dimK U,

where S = {1, . . . , n}.
We call U,W ∈ Vert(X )

I incident :⇔ U ⊆W or W ⊆ U;

I opposite :⇔ U ∩W = {0} and U + W = X ;

I in general position
:⇔ ∃U ′ incident with U and opposite to W ;

I close :⇔ U is not in general position to W .
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The simplicial building associated with X

A flag of X is a clique of the incidence graph on Vert(X ) and
Flag(X ) denotes the set of flags of X .

There is a natural type function typ : Flag(X )→ 2S .

∆(X ) := (Flag(X ),⊆) is a simplicial complex called the building
associated with X .

On the set Flag(X ) we have

I an incidence relation;

I an opposition relation;

I a relation of being in general position;

I a relation of being close.
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Spherical buildings

Let ∆ := (F ,⊆) be a spherical building over the type set S .
Then we have:

I a type function typ : F → 2S ;

I an incidence and opposition relation on F from which one
deduces the relation of being in general position and being
close.

The EKR-problem for finite buildings
Let ∆ = (F ,⊆) be a finite (and hence spherical) building with
type set S and let ∅ 6= J ⊆ S .
We put

M := {F ∈ F | typ(F ) = J}

and
R := {(F ,G ) ∈ M ×M | F and G are close }.
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Known results

Finite buildings of type An are projective spaces over some Fq. The
EKR-problem is solved for the cases

I |J| = 1 (essentially due to Hsieh 1975);

I J = {1, n} (Blokhuis, Brouwer, Güven 2014).

Finite buildings of type Cn or Dn are polar spaces associated with a
non-degenerate sesquilinear or quadratic form on some vector
space over Fq. The EKR-problem is solved for the cases

I J = {1} easy;

I J = {n} (Pepe, Storme, Vanhove 2011, almost all cases);

I J = {2} (Metsch 2016, q ≥ 2(n − 1));

I J = {n− 1, n} for Dn-buildings with n even (Ihringer, Metsch,
M. 2016, partial for q = 2).
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Buildings of exceptional type

Finite buildings of type F4 are metasymplectic spaces over Fq (i.e.
related to the groups F4(q) or 2E6(q)).

Klaus Metsch solved the case J = {1} (which provides also the
solution to J = {4}).

The cases J = {1} and J = {6} for E6(q) are easy.

Observation: In almost cases, for which one knows the solution of
the EKR-problem, the EKR-sets are contained in a ball of radius π

2 .
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Balls of radius π
2 in spherical buildings

Let ∆ = (F ,⊆) be a spherical building over the type set S .

Then there is a natural gallery distance on the set of flags

dist : F × F → N, (A,B) 7→ dist(A,B).

For A ∈ F we put

Aop := {B ∈ F | B is opposite to A}.

The ball of radius π
2 around A is defined as

Bπ
2

(A) := {B ∈ F | dist(B,A) ≤ dist(B,Aop)}.
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A strong version of Tits’ center conjecture for spherical
buildings

Let ∆ = (F ,⊆) be a spherical building with type set S .

Since there is a distance on F it is possible to define convex
subsets of F .

Conjecture: Let K ⊆ F be convex. Then one of the following
holds:

(A) K is a subbuilding of ∆;

(B) there exists C ∈ F such that K ⊆ Bπ
2

(C ).

This conjecture is known to be true

I if |S | ≤ 3 (Balser, Lytchak 2005);

I if ∆ is of type An (Ramos-Cuevas 2015).
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The EKR-problem and the center conjecture

1. The version of the center conjecture given on the previous slide
corresponds to a question of Kleiner and Leeb (1997).

2. There is a weaker version of the center conjecture due to Tits
(1962) and Serre (2002) whose proof was accomplished by
Ramos-Cuevas in 2013.

Earlier contributions: Serre (2002); M., Tits (2006); Leeb,
Ramos-Cuevas (2011); Parker, Tent (2012).

3. The proof for the weaker version of the center conjecture is not
particularly illuminating for attacking its stronger version.

The proofs for the EKR-results obtained so far are constructive and
might provide useful hints for attacking the conjecture above.
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A question about EKR-sets in finite buildings

Does the following hold?

Let ∆ = (F ,⊆) be a finite building with type set S .
Let E ⊆ F be an EKR-set of J-flags (for some ∅ 6= J ⊆ S).

Then we have one of the following:

(A) E corresponds to a subbuilding;

(B) E is contained in a ball of radius π
2

Remark: Proving this is probably easier than proving the strong
version of the center conjecture, because the arguments used so far
always provide the center of the ball of radius π

2 .



A question about EKR-sets in finite buildings

Does the following hold?

Let ∆ = (F ,⊆) be a finite building with type set S .
Let E ⊆ F be an EKR-set of J-flags (for some ∅ 6= J ⊆ S).

Then we have one of the following:

(A) E corresponds to a subbuilding;

(B) E is contained in a ball of radius π
2

Remark: Proving this is probably easier than proving the strong
version of the center conjecture, because the arguments used so far
always provide the center of the ball of radius π

2 .


