Graph decompositions in projective geometries

Anamari Nakić

University of Zagreb

Joint work with Marco Buratti and Alfred Wassermann

Irsee, September 2017

Steiner system over finite field

Definition (Steiner system)

A t-(v, k, 1) Steiner system is a pair $(\mathcal{P}, \mathcal{B})$ such that

- $ightharpoonup \mathcal{P}$ is the set of v points
- $ightharpoonup \mathcal{B}$ is a set of k-subsets of \mathcal{P}
- each t-subset of P in 1 block.
- ▶ P. Cameron. Locally symmetric designs. Geom. Dedicata 3, 56-76, 1974.
- P. Delsarte. Association schemes and t-designs in regular semilattices. J. Combin. Theory Ser. A 20(2), 230-243, 1976.

Definition (Steiner system)

A t-(v,k,1) Steiner system over \mathbb{F}_q is a pair $(\mathcal{P},\mathcal{B})$ such that

- $ightharpoonup \mathcal{P}$ is the set of points of $\mathsf{PG}(\mathbb{F}_q^v)$
- $ightharpoonup \mathcal{B}$ is a set of (k-1)-dimensional subspaces $\mathrm{PG}(\mathbb{F}_q^v)$
- each (t-1)-dimensional subspace is contained in 1 block.

Steiner system over finite field

Definition (Steiner system)

A t-(v,k,1) Steiner system over \mathbb{F}_q is a pair $(\mathcal{P},\mathcal{B})$ such that

- $ightharpoonup \mathcal{P}$ is the set of points of $\mathsf{PG}(\mathbb{F}_q^v)$
- $ightharpoonup \mathcal{B}$ is a set of (k-1)-dimensional subspaces $\mathrm{PG}(\mathbb{F}_q^v)$
- lacktriangle each (t-1)-dimensional subspace is contained in 1 block.

- ▶ t = 1 : (k 1)-spread:
- each point is contained in one block

Theorem

A 1-(v, k, 1) design over \mathbb{F}_q exists if ans only if k|v.

Steiner system over finite field

Definition (Steiner system)

A t-(v,k,1) Steiner system over \mathbb{F}_q is a pair $(\mathcal{P},\mathcal{B})$ such that

- $lacksymbol{\mathcal{P}}$ is the set of points of $\mathsf{PG}(\mathbb{F}_q^v)$
- lacksquare $\mathcal B$ is a set of (k-1)-dimensional subspaces $\mathrm{PG}(\mathbb F_q^v)$
- lacktriangle each (t-1)-dimensional subspace is contained in 1 block.

- ▶ t = 2 : (1, k 1)-spread:
- each line is contained in one block

Theorem (Braun, Etzion, Ostergaard, Vardy, Wassermann, 2017)

A 2-(13,3,1) Steiner system over \mathbb{F}_2 exists.

Graph decompositions

Definition (Graph decomposition)

- ▶ A decomposition \mathcal{D} of a graph G is a collection of subgraphs of G (blocks) whose edges partition E(G).
- ▶ One says that \mathcal{D} is a (G, Γ) -design if $B \simeq \Gamma$, $\forall B \in \mathcal{D}$.

Figure: $(\mathbb{K}_{2,2,2}, \mathbb{K}_3)$ -design.

Designs and graph decompositions

Remark

2-(v, k, 1) Steiner system

 \Leftrightarrow

decomposition of \mathbb{K}_v into cliques of size k

Figure: 2-(7,3,1) design and $(\mathbb{K}_7,\mathbb{K}_3)$ -design.

Graph decomposition over finite field

Definition (Steiner system)

A 2-(v,k,1) Steiner system over \mathbb{F}_q is a pair $(\mathcal{P},\mathcal{B})$ such that

- $ightharpoonup \mathcal{P}$ is the set of points of $\mathsf{PG}(\mathbb{F}_q^v)$
- $ightharpoonup \mathcal{B}$ is a set of (k-1)-dimensional subspaces $\mathrm{PG}(\mathbb{F}_q^v)$
- each line is contained in 1 block.
- identify the points of $\mathsf{PG}(\mathbb{F}_q^v)$ with the elements of the Singer Group $S_{[v]_q}:=\mathbb{F}_{q^v}^*/\mathbb{F}_q^*$
- $lackbox{} [\mathbb{K}_v]_q$ is the complete graph whose vertices are the points of $\mathrm{PG}(\mathbb{F}_q^v)$

Definition (Graph decomposition over finite field)

Let G be a graph with $V(G) = V([\mathbb{K}_v]_q)$.

We say that a (G, Γ) -design \mathcal{D} is over \mathbb{F}_q if V(B) is a subspace of $\mathrm{PG}(\mathbb{F}_q^v) \ \forall B \in \mathcal{D}$.

Constructions for graph decompositions over finite fields

- \blacktriangleright A 2-(v, k, 1) Steiner system over \mathbb{F}_q is a $([\mathbb{K}_v]_q, [\mathbb{K}_k]_q)$ -design over \mathbb{F}_q
- ▶ 2-(13,3,1) is a $([\mathbb{K}_{13}]_2, \mathbb{K}_7)$ -design over \mathbb{F}_2
- ► Reduce the search space: impose automorphism group
- Constructions for CYCLIC graph decompositions over finite fields

 \blacktriangleright ($[\mathbb{K}_7]_2$, \mathbb{K}_7)-design over \mathbb{F}_2

$$\rightsquigarrow$$

 $381 = 3 \cdot 127 \text{ blocks}$

Braun, Nakic, Kiermaier, 2016: is does not exist

 \blacktriangleright ($[\mathbb{K}_7]_2, C_7$)-design over \mathbb{F}_2

 \rightsquigarrow 1143 = 9 · 127 blocks

 $ightharpoonup ([\mathbb{K}_7]_2, Q_3 - v)$ -design over \mathbb{F}_2

 $889 = 7 \cdot 127 \text{ blocks}$

Constructions for CYCLIC graph decompositions over finite fields

- the Singer Group $S_{[v]_q} := \mathbb{F}_{q^v}^*/\mathbb{F}_q^*$
- ▶ Let G be a Cayley graph on $S_{[v]_q}$ and let Ω be its connection set:

$$V(G) = S_{[v]_q}; \quad \{x, y\} \in E(G) \iff xy^{-1} \in \Omega$$

▶ For any subgraph B of G we set $Q(B) = \{xy^{-1}, yx^{-1} : \{x,y\} \in E(B)\}$

Definition

A collection ${\mathcal F}$ of subgraphs of G is a (G,Γ) -QF if we have:

- ▶ $B \simeq \Gamma$ for every $B \in \mathcal{F}$
- $\bigcup_{B \in \mathcal{F}} Q(B) = \Omega.$

A (G,Γ) -QF is over \mathbb{F}_q if V(B) is a subspace of $\mathrm{PG}(\mathbb{F}_q^v)$, for every $B\in\mathcal{F}.$

Constructions for CYCLIC graph decompositions over finite fields

Proposition

If \mathcal{F} is a (G,Γ) -QF, then

$$dev\mathcal{F} := \{ g \cdot B \mid g \in S_{[v]_g}; \ B \in \mathcal{F} \}$$

is a CYCLIC (G,Γ) -design.

If \mathcal{F} is over \mathbb{F}_q , then $dev\mathcal{F}$ is over \mathbb{F}_q as well.

Examples

- $([\mathbb{K}_7]_2, C_7)$ -design over \mathbb{F}_2
- $lackbox{(}[\mathbb{K}_7]_2,Q_3-v) ext{-design over }\mathbb{F}_2$
- $([\mathbb{K}_4]_3, P_{40})$ -design over \mathbb{F}_3
- $([\mathbb{K}_4]_3, M_{40})$ -design over \mathbb{F}_3

Example:($[\mathbb{K}_7]_2, C_7$)-design over \mathbb{F}_2

- $[\mathbb{K}_7]_2$ is the Cayley graph on $S_{[7]_2}$ with connection set $S_{[7]_2}\setminus\{1\}$
- ▶ 1143 blocks
- ▶ find a $([\mathbb{K}_7]_2, C_7)$ -QF over \mathbb{F}_2 with 9 cycles

- lacktriangle select the set Π of all planes of $\mathrm{PG}(\mathbb{F}_2^7)$ passing through the identity
- lacktriangle "translate" everything in the language of $\mathbb{Z}_{127} \simeq S_{[7]_2}$ (Log)
- ▶ find a (\mathbb{Z}_{127}, C_7) -DF such that
 - every block is an arrangement of a suitable $Log(\pi), \pi \in \Pi$
- \blacktriangleright a bit of counting: choose 9 blocks out of $|\Pi|\cdot\frac{6!}{2}=93\cdot360=33480$

Example: $([\mathbb{K}_7]_2, C_7)$ -design over \mathbb{F}_2

▶ here are the nine cycles of the required ($[\mathbb{K}_7]_2, C_7$)-QF:

$$\begin{split} &C_1 = (1,g,g^3,1+g,g+g^3,1+g+g^3,1+g+g^3,1+g^3) \\ &C_2 = (1,1+g,g,g+g^2+g^4+g^5,1+g^2+g^4+g^5,1+g+g^2+g^4+g^5,g^2+g^4+g^5). \\ &C_3 = (1,g+g^5,1+g+g^5,g+g^2,1+g^2+g^5,g^2+g^5,1+g+g^2). \\ &C_4 = (1,g^4+g^6,1+g^2+g^4+g^6,1+g^2,g^2,g^2+g^4+g^6,1+g^4+g^6). \\ &C_5 = (1,1+g^2,1+g+g^2+g^3+g^4,1+g+g^3+g^4,g+g^3+g^4,g^2,g+g^2+g^3+g^4) \\ &C_6 = (1,1+g+g^2+g^3+g^6,g+g^2+g^6,1+g+g^2+g^6,1+g^3,g^3,g+g^2+g^3+g^6). \\ &C_7 = (1,g+g^6,g^3,1+g+g^3+g^6,1+g^3,1+g+g^6,g+g^3+g^6). \\ &C_8 = (1,g+g^2+g^3+g^5+g^6,g^2,g+g^3+g^5+g^6,1+g^2,1+g+g^2+g^3+g^5+g^6). \\ &C_9 = (1,1+g^2+g^4+g^5+g^6,g^3+g^4,g^2+g^3+g^5+g^6,1+g^2,1+g+g^2+g^3+g^5+g^6). \\ &C_9 = (1,1+g^2+g^4+g^5+g^6,g^3+g^4,g^2+g^3+g^5+g^6,1+g^2+g^4+g^5+g^6,1+g^2+g^3+g^5+g^6). \\ &C_9 = (1,1+g^2+g^4+g^5+g^6,g^3+g^4,g^2+g^3+g^5+g^6,1+g^2+g^4+g^5+g^6,1+g^2+g^3+g^5+g^6). \\ &C_9 = (1,1+g^2+g^4+g^5+g^6,g^3+g^4,g^2+g^3+g^5+g^6,1+g^2+g^4+g^5+g^6,1+g^2+g^3+g^5+g^6). \\ &C_9 = (1,1+g^2+g^4+g^5+g^6,g^3+g^4+g^2+g^3+g^5+g^6,1+g^2+g^3+g^5+g^6). \\ &C_9 = (1,1+g^2+g^4+g^5+g^6,g^3+g^4+g^5+g^6,g^3+g^4+g^5+g^6,1+g^2+g^3+g^5+g^6). \\ &C_9 = (1,1+g^2+g^4+g^5+g^6,g^3+g^4+g^5+g^6,g^3+g^4+g^5+g^6,1+g^2+g^3+g^5+g^6). \\ &C_9 = (1,1+g^2+g^4+g^5+g^6,g^3+g^3+g^5+g^6,1+g^2+g^3+g^5+g^6,1+g^3+g^5+g^6). \\ &C_9 = (1,1+g^2+g^4+g^5+g^6,g^3+g^3+g^4+g^5+g^6,1+g^3+g^5+g^6,1+g^3+g^5+g^6). \\ &C_9 = (1,1+g^2+g^4+g^5+g^6,g^3+g^3+g^4+g^5+g^5+g^6,1+g^3+g^5+g^6,1+g^3+g^5+g^6). \\ &C_9 = (1,1+g^2+g^4+g^5+g^6,g^3+g^4+g^5+g^6,1+g^3+g^5+g^6,1+g^3+g^5+g^6). \\ &C_9 = (1,1+g^2+g^4+g^5+g^6,g^3+g^5+g^6,1+g^3+g^5+g^6). \\ &C_9 = (1,1+g^2+g^4+g^5+g^6,g^3+g^5+g^6,1+g^5+g^6,1+g^5+g^6,1+g^5+g^6,1+g^5+g^6,1+g^5+g^6,1+g^5+g^6,1+g^5+g^6,1+g^5+g^6,1+g^5+g^6,1+g^5+g^6,1+g^5+g^6,1+g^5+$$

▶ by the action of the Singer group $S_{[7]_2}$ we obtain $9\cdot 127=1143$ blocks of $([\mathbb{K}_7]_2,C_7)$ -design over \mathbb{F}_2

Example: $([\mathbb{K}_7]_2, Q_3 - v)$ -design over \mathbb{F}_2

- $[\mathbb{K}_7]_2$ is the Cayley graph on $S_{[7]_2}$ with connection set $S_{[7]_2}\setminus\{1\}$
- ▶ 889 blocks
- ▶ find a $([\mathbb{K}_7]_2, Q_3 v)$ -QF over \mathbb{F}_2 with 7 $Q_3 v$

- lacktriangle select the set Π of all planes of $\mathrm{PG}(\mathbb{F}_2^7)$ passing through the identity
- lacktriangle "translate" everything in the language of $\mathbb{Z}_{127} \simeq S_{[7]_2}$ (Log)
- ▶ find a $(\mathbb{Z}_{127}, Q_3 v)$ -DF such that
 - every block is an arrangement of a suitable $Log(\pi), \pi \in \Pi$
 - ▶ the image of $Frob(S_{[7]_2})$ under Log
- \blacktriangleright a bit of counting: choose 1 block out of $|\Pi| \cdot 7 \cdot \frac{6!}{6} = 93 \cdot 840 = 78120$

Example: $([\mathbb{K}_7]_2, Q_3 - v)$ -design over \mathbb{F}_2

▶ here is $Q_3 - v$ required $([\mathbb{K}_7]_2, Q_3 - v)$ -QF:

▶ by the action of the Singer group $S_{[7]_2}$ and $Frob(S_{[7]_2})$ we obtain $7\cdot 127=889$ blocks of $([\mathbb{K}_7]_2,Q_3-v)$ -design over \mathbb{F}_2

Example: $([\mathbb{K}_5]_3, P_{40})$ -design over \mathbb{F}_3

- ▶ $[\mathbb{K}_5]_3$ is the Cayley graph on $S_{[5]_3}$ with connection set $S_{[5]_3} \setminus \{1\}$
- ▶ 121 blocks
- ▶ find a ([\mathbb{K}_5]₃, P_{40})-QG over \mathbb{F}_3

- ▶ take any hyperplane of $PG(\mathbb{F}_3^5)$
- lacktriangle "translate" everything in the language of $\mathbb{Z}_{121} \simeq S_{[5]_3}$ (Log)
- $B = \{0, 1, 2, 3, 5, 6, 7, 10, 11, 15, 17, 18, 22, 28, 30, 36, 39, 46, 47, 49, 51, 61, 69, 70, 71, 74, 75, 77, 79, 86, 88, 89, 93, 95, 101, 102, 106, 109, 112, 115\}$
- ▶ find a $(\mathbb{Z}_{121}, P_{40})$ -DG with vertex set B
- $ightharpoonup > 10^{30}$ possible rearrangements of the points

Example: $([\mathbb{K}_5]_3, P_{40})$ -design over \mathbb{F}_3

 $ightharpoonup (\mathbb{Z}_{121}, P_{40})$ -DG with vertex set B exists

by the action of the Singer group $S_{[5]_3}$ we obtain 121 blocks of $([\mathbb{K}_5]_3, P_{40})$ -design over \mathbb{F}_3

Example: $([\mathbb{K}_5]_3, M_{40})$ -design over \mathbb{F}_3

- ▶ $[\mathbb{K}_5]_3$ is the Cayley graph on $S_{[5]_3}$ with connection set $S_{[5]_3} \setminus \{1\}$
- ▶ find a $([\mathbb{K}_5]_3, M_{40})$ -QG over \mathbb{F}_3

- take any hyperplane of $PG(\mathbb{F}_3^5)$
- lacktriangle "translate" everything in the language of $\mathbb{Z}_{121} \simeq S_{[5]_3}$ (Log)
- $B = \{0,1,2,3,5,6,7,10,11,15,17,18,22,28,30,36,39,46,47,49,51,61,69,70,71,74,75,77,79,86,88,89,93,95,101,102,106,109,112,115\}$
- ▶ find a $(\mathbb{Z}_{121}, M_{40})$ -DG with vertex set B
- $ightharpoonup > 10^{30}$ possible rearrangements of the points

Example: $([\mathbb{K}_5]_3, M_{40})$ -design over \mathbb{F}_3

 $ightharpoonup (\mathbb{Z}_{121}, M_{40})$ -DG with vertex set B exists

 \blacktriangleright by the action of the Singer group $S_{[5]_3}$ we obtain 121 blocks of $([\mathbb{K}_5]_3,M_{40})\text{-design over }\mathbb{F}_3$

Related problem in differences

 $ightharpoonup ([\mathbb{K}_4]_3, P_{40})$ -design

- $B = \{0,1,2,3,5,6,7,10,11,15,17,18,22,28,30,36,39,46,47,49,51,61,69,70,71,74,75,77,79,86,88,89,93,95,101,102,106,109,112,115\}$
- $\Delta B = \mathbb{Z}_{121} \setminus \{0\}$
- ▶ Base block is a (121, 40, 13) Singer difference set in $S_{[5]_3}$

Remark

- Let D be a $(\frac{q^v-1}{q-1}, \frac{q^{v-1}-1}{q-1}, \frac{q^{v-2}-1}{q-1})$ Singer difference set
- ▶ Let Γ be a graph of order $\frac{q^{v-1}-1}{q-1}$
- If there exists $B \simeq \Gamma$ such that

$$V(B) = D$$
 and $\Delta B = \mathbb{Z}_{(q^v - 1)/(q - 1)} \setminus \{0\}$

ullet then devB is a $([\mathbb{K}_v]_q,\Gamma)$ -design over \mathbb{F}_q

Thank you!