An inequality for the line—size sum in a finite linear space.

Vito Napolitano

Department of Mathematics and Physics Università degli Studi della Campania "Luigi Vanvitelli", Italy

FINITE GEOMETRIES
Fifth Irsee Conference, 10-16 September 2017

Outline

- Inequalities in finite linear spaces
- Finite linear spaces and cliques (partitions) of graphs
- 3 A weigthed inequality on the number of lines in finite linear spaces and clique partitions of complete graphs
- A generalization

Some inequalities in finite linear spaces

Let $\mathcal{P} \neq \emptyset$ (points), $\mathcal{L} \subseteq 2^{\mathcal{P}}$ (lines), $(\mathcal{P}, \mathcal{L})$ is a linear space if any pair of two distinct points belongs to exactly one line, every line has size at least two and there are at least two lines.

$$|\mathcal{P}| < \infty$$
, $\mathbf{v} := |\mathcal{P}|$ and $\mathbf{b} := |\mathcal{L}|$

• De Bruijn–Erdös (1948): $b \ge v$. Equality holds iff $(\mathcal{P}, \mathcal{L})$ is a (possibly degenerate) projective plane.

Some inequalities in finite linear spaces

Let *n* be the unique positive integer with $(n-1)^2 + (n-1) + 1 \le v \le n^2 + n + 1$, $v \ge 4$,

$$B(v) := \begin{cases} n^2 + n - 1, & \text{if } v = n^2 - n + 2 \text{ and } v \neq 4 \\ n^2 + n, & \text{if } n^2 - n + 3 \leq v \leq n^2 + 1 \text{ or } v = 4 \\ n^2 + n + 1, & \text{if } n^2 + 2 \leq v \end{cases}$$

• Erdös – Mullin – Sós – Stinson (1983): $b \ge B(v)$

For any non–incident point line pair (p, ℓ) $\pi(p, \ell) := the$ number of lines through p missing ℓ

• K. Metsch (1991): $b \ge v + \pi(p, \ell)$ for every non–incident point–line pair. (Proof of the Dowling–Wilson conjecture (1985))

 $orall \ell \in \mathcal{L}, \;\; i_\ell := ext{the number of lines meeting } \ell \; ext{and different from } \ell$

• Hanani (1954)–Varga (1985): If ℓ is a line of maximal size, then $i_{\ell} \geq v-1$ and equality holds iff $(\mathcal{P},\mathcal{L})$ is a (possibly degenerate) projective plane.

A *clique* of a simple graph G is a subset of mutually adjacent vertices

Graphs with large cliques have interesting geometric meanings:

- Geometrisable graphs: R.C. Bose, Strongly Regular Graphs, Partial Geometries and Partially Balanced Designs (1963)—Pacific J. Math.).
- Embeddability of finite linear spaces:

A. Beutelspacher-K.Metsch, Embedding finite linear spaces in projective planes, Annals Discrete Math. (1986) and Embedding finite linear spaces in projective planes II, D.M. (1987)

A *clique partition* \mathcal{C} of G is a family of cliques in G such that the endpoints of every edge of G lie in exactly one member of \mathcal{C} .

The minimum size of a clique partition of G is the *clique* partition number of G and is denoted by cp(G).

The sigma clique partition number of a graph G, denoted by scp(G), is the smallest integer s for which there exists a clique partition of G where the sum of the sizes of its cliques is equal to s.

The *complement* \overline{G} of a graph G = (V, E) is the graph with vertex set V and with edge set $[V]^2 \setminus E$ (that is all the 2-element subset of V not in E (recall: $E \subset [V]^2$)).

For every graph G with v vertices, the union of a clique partition of G and a clique partition of its complement G, form a linear space on *v* points.

The cocktail party graph T_v is the unique (v-2)-regular graph on v = 2n vertices u_i , 1 = 1, 2, ..., v with u_i nonadjacent to u_{i+n} for each $i=1,2,\ldots,n$ and all other pairs of vertices are adjacent.

The connection between linear spaces and clique partitions of graphs has been deployed to estimate cp(G), when G is some special graph such as $K_v - K_w$, the Cocktail party graphs and complement of paths and cycles.

Let $(\mathcal{P}, \mathcal{L})$ be a finite linear space. For every line ℓ let k_{ℓ} denote its size.

• Akbar Davoodi – Ramin Javadi – Behnaz Omoomi (D.M. 2016): $\sum_{\ell \in \mathcal{L}} k_{\ell} \geq 3v - 3$ and equality holds iff $(\mathcal{P}, \mathcal{L})$ is a degenerate projective plane.

In terms of clique partitions:

- Akbar Davoodi Ramin Javadi Behnaz Omoomi (D.M. 2016): Let \mathcal{C} be a clique partition of the complete graph K_n whose cliques are of size at most n-1. Then $\sum_{C \in \mathcal{C}} |C| \ge 3n-3$.
- Akbar Davoodi Ramin Javadi Behnaz Omoomi (D.M. 2016): For every graph G on n vertices except the empty and complete graph, we have $scp(G) + scp(\overline{G}) \ge 3n 3$.

Theorem (V.N., 2017 A.J.C.)

Let $(\mathcal{P},\mathcal{L})$ be a finite linear space on v points. Let $m\geq 2$ denote the minimum point degree. Then

$$\sum_{\ell\in\mathcal{L}}k_{\ell}\geq (v-m+1)(m+1).$$

The equality holds if and only if m = 2 and (P, L) is a degenerate-projective plane.