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Some inequalities in finite linear spaces

Let P 6= ∅ (points), L ⊆ 2P (lines), (P,L) is a linear space if
any pair of two distinct points belongs to exactly one line, every
line has size at least two and there are at least two lines.

|P| <∞, v := |P| and b := |L|

• De Bruijn–Erdös (1948): b ≥ v. Equality holds iff (P,L) is a
( possibly degenerate ) projective plane.
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Some inequalities in finite linear spaces

Let n be the unique positive integer with
(n − 1)2 + (n − 1) + 1 ≤ v ≤ n2 + n + 1, v ≥ 4,

B(v) :=


n2 + n − 1, if v = n2 − n + 2 and v 6= 4

n2 + n, if n2 − n + 3 ≤ v ≤ n2 + 1 or v = 4

n2 + n + 1, if n2 + 2 ≤ v

• Erdös – Mullin – Sós – Stinson (1983): b ≥ B(v)
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For any non–incident point line pair (p, `) π(p, `) := the
number of lines through p missing `

• K. Metsch (1991): b ≥ v + π(p, `) for every non–incident
point–line pair. (Proof of the Dowling–Wilson conjecture (1985))

∀` ∈ L, i` := the number of lines meeting ` and different from `

• Hanani (1954)–Varga (1985): If ` is a line of maximal size,
then i` ≥ v − 1 and equality holds iff (P,L) is a ( possibly
degenerate ) projective plane.
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A clique of a simple graph G is a subset of mutually adjacent
vertices

Graphs with large cliques have interesting geometric meanings:

- Geometrisable graphs: R.C. Bose, Strongly Regular Graphs,
Partial Geometries and Partially Balanced Designs
(1963)–Pacific J. Math.).

- Embeddability of finite linear spaces:

A. Beutelspacher–K.Metsch, Embedding finite linear spaces in
projective planes, Annals Discrete Math. (1986) and
Embedding finite linear spaces in projective planes II, D.M.
(1987)
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A clique partition C of G is a family of cliques in G such that the
endpoints of every edge of G lie in exactly one member of C.

The minimum size of a clique partition of G is the clique
partition number of G and is denoted by cp(G).

The sigma clique partition number of a graph G, denoted by
scp(G), is the smallest integer s for which there exists a clique
partition of G where the sum of the sizes of its cliques is equal
to s.

The complement G of a graph G = (V ,E) is the graph with
vertex set V and with edge set [V ]2 \ E (that is all the
2–element subset of V not in E (recall: E ⊂ [V ]2)).
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For every graph G with v vertices, the union of a clique partition
of G and a clique partition of its complement G, form a linear
space on v points.

The cocktail party graph Tv is the unique (v − 2)–regular graph
on v = 2n vertices ui , 1 = 1,2, . . . , v with ui nonadjacent to
ui+n for each i = 1,2, . . . ,n and all other pairs of vertices are
adjacent.

The connection between linear spaces and clique partitions of
graphs has been deployed to estimate cp(G), when G is some
special graph such as Kv − Kw , the Cocktail party graphs and
complement of paths and cycles.
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Let (P,L) be a finite linear space. For every line ` let k` denote
its size.

• Akbar Davoodi – Ramin Javadi – Behnaz Omoomi (D.M.
2016):

∑
`∈L

k` ≥ 3v − 3 and equality holds iff (P,L) is a

degenerate projective plane.

In terms of clique partitions:

• Akbar Davoodi – Ramin Javadi – Behnaz Omoomi (D.M.
2016): Let C be a clique partition of the complete graph Kn

whose cliques are of size at most n− 1. Then
∑
C∈C

|C| ≥ 3n− 3.

• Akbar Davoodi – Ramin Javadi – Behnaz Omoomi (D.M.
2016): For every graph G on n vertices except the empty and
complete graph, we have scp(G) + scp(G) ≥ 3n − 3.
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Theorem (V.N., 2017 A.J.C.)
Let (P,L) be a finite linear space on v points. Let m ≥ 2
denote the minimum point degree. Then∑

`∈L
k` ≥ (v −m + 1)(m + 1).

The equality holds if and only if m = 2 and (P,L) is a
degenerate–projective plane.
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