The structure of the minimum size supertail of a subspace partition

Esmeralda L. Năstase Xavier University

Joint work with P. Sissokho Illinois State University

September 13, 2017

- ightharpoonup V = V(n,q) the vector space of dimension n over GF(q).
- ▶ A subspace partition or partition \mathcal{P} of V, is a collection of subspaces $\{W_1, \ldots, W_k\}$ s.t.

$$\blacktriangleright V = W_1 \cup \cdots \cup W_k$$

$$\qquad \qquad W_i \cap W_j = \{ \mathbf{0} \} \text{ for } i \neq j.$$

- ightharpoonup V = V(n,q) the vector space of dimension n over GF(q).
- ▶ A subspace partition or partition \mathcal{P} of V, is a collection of subspaces $\{W_1, \ldots, W_k\}$ s.t.

$$\blacktriangleright V = W_1 \cup \cdots \cup W_k$$

$$W_i \cap W_j = \{ \mathbf{0} \} \text{ for } i \neq j.$$

• size of a subspace partition $\mathcal P$ is the number of subspaces in $\mathcal P$.

Applications

- translation planes
- error-correcting codes
- orthogonal arrays
- designs

Let \mathcal{P} be any partition of V.

▶ \mathcal{P} has type $[d_1^{n_1}, \dots, d_m^{n_m}]$, if for each i, there are $n_i > 0$ subspaces of dim d_i in \mathcal{P} , and $d_1 < d_2 < \dots < d_m$.

Problem

▶ What are the necessary and sufficient conditions for the existence of a partition of *V* of a given type?

Every partition \mathcal{P} of V satisfies:

▶ packing condition

$$\sum_{i=1}^{m} n_i (q^{d_i} - 1) = q^n - 1$$

Every partition \mathcal{P} of V satisfies:

packing condition

$$\sum_{i=1}^{m} n_i (q^{d_i} - 1) = q^n - 1$$

dimension condition

$$U, W \in \mathcal{P}, \quad U \neq W \implies \dim(U) + \dim(W) \leq n$$

Every partition \mathcal{P} of V satisfies:

packing condition

$$\sum_{i=1}^{m} n_i (q^{d_i} - 1) = q^n - 1$$

dimension condition

$$U, W \in \mathcal{P}, \quad U \neq W \implies \dim(U) + \dim(W) \leq n$$

► Heden and Lehmann (2012) derived some other necessary conditions

Let $\mathcal P$ be a partition of V of type $[d_1^{n_1},\dots,d_m^{n_m}].$

• $\sigma_q(n,s)$ = the min size of any partition of V(n,q) in which the largest subspace has dim s.

Let \mathcal{P} be a partition of V of type $[d_1^{n_1}, \ldots, d_m^{n_m}]$.

- $\sigma_q(n,s)$ = the min size of any partition of V(n,q) in which the largest subspace has dim s.
- ▶ For any s such that $d_1 < s \le d_m$, the set ST of subspaces in \mathcal{P} of dim less than s and with greatest subspace dim t is called the st-supertail of \mathcal{P} .

Theorem (Heden, Lehmann, N., and Sissokho, 2011-2). Let n, m, s, and r_s be integers such that $1 \le r_s < s$, $m \ge 1$, and $n = ms + r_s$. Then

$$\sigma_q(n,s) = egin{cases} q^s + 1 & ext{for } 3 \leq n < 2s, \ \\ q^{s+r_s} \sum\limits_{i=0}^{m-2} q^{is} + q^{\lceil rac{s+r_s}{2}
ceil} + 1 & ext{for } n \geq 2s. \end{cases}$$

Definitions Applications Motivation The Minimum Size The Supertail

Theorem (Heden, Lehmann, N., and Sissokho, 2013). Let \mathcal{P} be a partition of V of type $[d_1^{n_1}, \ldots, d_m^{n_m}]$. If ST is an st-supertail of \mathcal{P} , then

$$|ST| \geq \sigma_q(s,t)$$
.

Theorem (Heden, Lehmann, N., and Sissokho, 2013). Let \mathcal{P} be a partition of V of type $[d_1^{n_1}, \ldots, d_m^{n_m}]$. If ST is an st-supertail of \mathcal{P} , then

$$|ST| \geq \sigma_q(s,t)$$
.

Corollary. If $s \ge 2t$ and $|ST| = \sigma_q(s, t)$, then the union of the subspaces in ST forms a subspace of dim s.

Definitions Applications Motivation The Minimum Size The Supertail

Question: If t < s < 2t and $|ST| = \sigma_q(s, t) = q^t + 1$, does the union of the subspaces in ST form a subspace?

Question: If t < s < 2t and $|ST| = \sigma_q(s, t) = q^t + 1$, does the union of the subspaces in ST form a subspace?

Theorem [Heden, 2009]. Let \mathcal{P} be a partition of V of type

$$[d_1^{n_1},\ldots,d_m^{n_m}].$$

If ST is the tail of \mathcal{P} , i.e., all subspaces in ST have the same dim $d_1=t,$ s.t.

$$|ST| = q^t + 1$$
 and $d_2 = s < 2t$,

then the subspaces of ST form a subspace of dim 2t.

Theorem [N. and Sissokho, 2017] Let \mathcal{P} be a partition of V of type $[d_1^{n_1},\ldots,d_m^{n_m}]$, and let ST be an st-supertail of \mathcal{P} s.t. $|ST|=\sigma_q(s,t)$ and t< s< 2t. If one of the following conditions holds

- (i) ST contains subspaces of at most 2 different dimensions
- (ii) s = 2t 1
- (iii) All the subspaces in $P \setminus ST$ have the same dimension s,

then the union of the subspaces in ST forms a subspace W, and either

- (a) $d_1 = t$, $n_1 = q^t + 1$, and dim W = 2t, or
- (b) $d_1 = a$ and $d_2 = t$, with $n_1 = q^t$ and $n_2 = 1$, and $\dim W = a + t$.

Lemma 1 (Beutelspacher, Bu, Schönheim). Let d be an integer such that $1 \le d \le n/2$. Then V(n,q) admits a partition with

- ▶ 1 subspace of dim n d, and
- $ightharpoonup q^{n-d}$ subspaces of dim d.

Lemma 2. Let \mathcal{P} be a partition of V. If $d_1 \leq t < s < 2t$, $s = t + r_t$ and ST is an st-supertail of \mathcal{P} of size $\sigma_q(s,t)$, then $d_1 > r_t$.

Lemma 2. Let \mathcal{P} be a partition of V. If $d_1 \leq t < s < 2t$, $s = t + r_t$ and ST is an st-supertail of \mathcal{P} of size $\sigma_q(s, t)$, then $d_1 \geq r_t$.

Lemma 3. Let \mathcal{P} be a partition of V. If $d_1 \leq t < s < 2t$ and ST is an st-supertail of \mathcal{P} of size $\sigma_q(s,t)$, then there exists an integer k s.t.

$$\sum_{i=1}^t n_i(q^i-1) = kq^s - 1.$$

Introduction
Auxiliary Results
Main Theorem
Future Work

Lemma 4. Let \mathcal{P} be a partition of V with an st-supertail ST of type $[t^1, a^{q^t}]$. Then the union of the subspaces in ST forms a subspace of dim t + a.

Lemma 4. Let \mathcal{P} be a partition of V with an st-supertail ST of type $[t^1, a^{q^t}]$. Then the union of the subspaces in ST forms a subspace of dim t+a.

Lemma 5. Let $n=ms+r_s$ and $s=t+r_t$, with $1 \le r_s < s$ and $1 \le r_t < t$. Let $\ell_q(n,s) = \frac{q^n-q^{s+r_s}}{q^s-1}$ and let $\mathcal P$ be a partition of V(n,q) with an st-supertail ST of size $\sigma_q(s,t)$.

If s the largest subspace dim of \mathcal{P} and $n_s = \ell_q(n, s)$, then the union of the subspaces in ST is a subspace W of dimension $s + r_s$.

Theorem Let \mathcal{P} be a partition of V of type $[d_1^{n_1}, \ldots, d_m^{n_m}]$, and let ST be an st-supertail of \mathcal{P} with t < s < 2t and size $\sigma_a(s, t)$.

(i) If ST has subspaces of at most 2 different dimensions then the union of subspaces in ST forms a subspace W.

Proof.

▶ If ST has only subspaces of dim $t \Rightarrow$ result holds by Heden's Theorem, and dim W = 2t.

Proof.

- ▶ If ST has only subspaces of dim $t \Rightarrow$ result holds by Heden's Theorem, and dim W = 2t.
- Suppose ST has subspaces of dimensions a and t. Since s < 2t, we have $\sigma_q(s,t) = q^t + 1$ by Theorem 1. Thus,

$$|ST|=n_t+n_a=q^t+1,$$

and from Lemma 3,

$$n_t(q^t-1) + n_a(q^a-1) = kq^s-1.$$

Since $s = t + r_t$,

$$n_t = \frac{q^t(kq^{r_t-a}-1)}{q^{t-a}-1} + 1.$$

$$n_t = rac{q^t (kq^{r_t-a}-1)}{q^{t-a}-1} + 1 \Rightarrow (q^{t-a}-1) \mid (kq^{r_t-a}-1).$$

$$n_t = rac{q^t (kq^{r_t-a}-1)}{q^{t-a}-1} + 1 \Rightarrow (q^{t-a}-1) \mid (kq^{r_t-a}-1).$$

Hence $n_t = q^t \cdot c + 1$, where c is either 0 or 1 since $n_t \leq q^t + 1$.

$$n_t = rac{q^t(kq^{r_t-a}-1)}{q^{t-a}-1} + 1 \Rightarrow (q^{t-a}-1) \mid (kq^{r_t-a}-1).$$

Hence $n_t = q^t \cdot c + 1$, where c is either 0 or 1 since $n_t \leq q^t + 1$.

▶ If c = 0, then $n_t = 1$ and $n_a = q^t$. Hence by Lemma 4 the union of the subspaces in ST is a subspace W of dim t + a.

$$n_t = rac{q^t \left(kq^{r_t-a}-1
ight)}{q^{t-a}-1} + 1 \Rightarrow \left(q^{t-a}-1
ight) \mid \left(kq^{r_t-a}-1
ight).$$

Hence $n_t = q^t \cdot c + 1$, where c is either 0 or 1 since $n_t \leq q^t + 1$.

- ▶ If c = 0, then $n_t = 1$ and $n_a = q^t$. Hence by Lemma 4 the union of the subspaces in ST is a subspace W of dim t + a.
- ▶ If c = 1, then $n_t = q^t + 1$ and $n_a = 0$ and hence, by Heden's Theorem, the union of the subspaces in ST form a subspace W of dim 2t.

Theorem. Let \mathcal{P} be a partition of V of type $[d_1^{n_1}, \ldots, d_m^{n_m}]$, and let ST be an st-supertail of \mathcal{P} with t < s < 2t and of size $\sigma_a(s, t)$.

(ii) If s = 2t - 1, then the union of subspaces in ST forms a subspace W.

Proof. If s=2t-1, then it follows from Lemma 2 that the smallest subspace dim in ST is $a \geq t-1$. Thus, ST contains subspaces of at most two different dimensions, namely t and t-1. Now the theorem follows from part (i).

Theorem Let \mathcal{P} be a partition of V of type $[d_1^{n_1}, \ldots, d_m^{n_m}]$, and let ST be an s-supertail of \mathcal{P} with t < s < 2t and size $\sigma_q(s, t)$.

- (iii) If all the subspaces in $\mathcal{P}\setminus ST$ have dim s<2t then the union of the subspaces in ST form a subspace W and either
- (a) $d_1 = t$, $n_1 = q^t + 1$, and dim W = 2t, or
- (b) $d_1 = a$ and $d_2 = t$, with $n_1 = q^t$ and $n_t = 1$, and $\dim W = a + t$.

Proof Sketch. Let $n = ms + r_s$ and $s = t + r_t < 2t$.

▶ Let
$$\ell_q(n,s) = \frac{q^n - q^{s+r_s}}{q^s - 1}$$
. Then,

$$n_s < \ell_q(n,s) + \frac{q^{r_s} + q^{r_s-1}}{2} + 1,$$

by the Drake and Freeman bound (1979), and the result of Theorem ${\bf 1}$

$$|\mathcal{P}| \ge \sigma_q(n,s) = \ell_q(n,s) + q^{\lceil \frac{s+r_s}{2} \rceil} + 1,$$

we derive that

$$|\mathcal{P} \setminus ST| = n_s = \ell_q(n, s)$$
 and $r_t + r_s \leq t$.

▶ By Lemma 5, $W = \bigcup_{X \in ST} X$ is a subspace of dim

$$s + r_s = t + r_t + r_s \le 2t.$$

Proof Sketch, cont.

▶ If $r_t + r_s = t$, then dim W = 2t and ST is a partition of W into subspaces of dim t only.

Proof Sketch, cont.

- ▶ If $r_t + r_s = t$, then dim W = 2t and ST is a partition of W into subspaces of dim t only.
- ▶ If $r_t + r_s < t$, then dim $W = t + r_t + r_s < 2t$ and ST is a partition of W with 1 subspace of dim t and q^t subspaces of dim $a = r_t + r_s$.

Remarks.

▶ If $r_t + r_s = t$, then $s + r_s = 2t$, and \mathcal{P} is of type $[s^{\ell_q(n,s)}, t^{q^t+1}]$, i.e. $|\mathcal{P}| = \sigma_q(n,s)$.

Remarks.

- ▶ If $r_t + r_s = t$, then $s + r_s = 2t$, and \mathcal{P} is of type $[s^{\ell_q(n,s)}, t^{q^t+1}]$, i.e. $|\mathcal{P}| = \sigma_q(n,s)$.
- ▶ If $r_t + r_s = t 1$, then \mathcal{P} is of type $[s^{\ell_q(n,s)}, t^1, (t-1)^{q^t}]$, i.e. $|\mathcal{P}| = \sigma_q(n,s)$.

Remarks.

- ▶ If $r_t + r_s = t$, then $s + r_s = 2t$, and \mathcal{P} is of type $[s^{\ell_q(n,s)}, t^{q^t+1}]$, i.e. $|\mathcal{P}| = \sigma_q(n,s)$.
- ▶ If $r_t + r_s = t 1$, then \mathcal{P} is of type $[s^{\ell_q(n,s)}, t^1, (t-1)^{q^t}]$, i.e. $|\mathcal{P}| = \sigma_q(n,s)$.
- ▶ Partitions of type $[s^{\ell_q(n,s)}, t^{q^t+1}]$ and $[s^{\ell_q(n,s)}, t^1, (t-1)^{q^t}]$ exist.

▶ If $r_t + r_s < t - 1$, then the resulting partitions are not necessarily of min size.

▶ If $r_t + r_s < t - 1$, then the resulting partitions are not necessarily of min size.

E.g. If n=34, m=3, s=11, $r_s=1$, t=7, and $r_t=4$, we can apply (several times) Lemma 1 to construct a partition \mathcal{P} of V(34,q) of type

$$[11^{q^{23}+q^{12}}, 7^1, 5^{q^7}]$$

which has size

$$|\mathcal{P}| = q^{23} + q^{12} + q^7 + 1 > \sigma_q(34, 11) = q^{23} + q^{12} + q^6 + 1.$$

Introduction Auxiliary Results Main Theorem Future Work

Conjecture

Let $\mathcal P$ be a partition of V of type $[d_1^{n_1},\ldots,d_m^{n_m}]$, and let ST be an st-supertail of $\mathcal P$ with t < s < 2t of size $\sigma_q(s,t)$. Then ST has only subspaces of at most 2 different dimensions.

Introduction Auxiliary Results Main Theorem Future Work

Thank you!