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Motivation

Tensors have many applications:
@ complexity theory (e.g. Strassen’s algorithm for matrix
multiplication);
@ quantum information, entanglement, coding;
@ data analysis (chemistry, biology, physics .. .);
@ signal processing (e.g. source separation) ...

@ ... and finite geometry, e.g. finite semifields.
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Motivation (continued)

An expression
.
=3 i@ @ Vi
i=1
is a decomposition of 7 € V4 ® --- ® V), into “fundamental tensors”.

Questions:

@ Existence — what is the smallest possible r (the rank of 7)?
@ Uniqueness.

@ Algorithms (including approximation, ‘noisy’ data) . ..
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Another question: orbits
GL(Vq) x -+ x GL(Vp) actson rank-1 tensorsin V=V, ®---® Vp:
(V4 @ -+ @ Vpp)(g1-rm) = i@ v
If some V; are equal then one can also permute components; in
particular, if V; = --. = Vj, then all of Sym,, acts via
Q@ V)™ = V(1) ® -+ @ V(m)-

How many “different” tensors are there under the full stabiliser of the
set of rank-1 tensors?

Application: for m = 3, orbits of certain tensors correspond to
isotopism classes of presemifields (Lavrauw, 2013).
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Existing results
m=2V(a K)® V(b,K) = ax bmatrices over K, i.e.

Viwg ... ViWp
vew=w'=| i - 1|,

Va W1 e Va Wb

so rank = matrix rank, and there is one orbit for each rank.

m = 3 is much harder, often depends on field and/or dimensions:
@ K =Ty (Brahana, Thrall, 1930’s); p = 2 (Glynn et al. 2006,
Havlicek et al. 2012);
@ K = C (Thrall-Chanler, Kac, Kaskiewicz—Weyman, Nurmiev,
Parfenov, Buczynski—Landsberg; 1930’s—2010’s);

@ K@ K3® K', r > 1, K algebraically closed, real or finite
(Lavrauw—Sheekey, 2014-2017).
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Geometry, subspaces

Consider m = 2 again, and take K = I,

Projectively, the rank-1 tensors in V = Fg IFg correspond to the
Segre variety S, p(Fq) C PG(V) = PG(ab — 1, q), i.e. the image of

PG(F2) x PG(FJ) — PG(V)
((v), (W) = (v w).

The setwise stabiliser in GL( V) of the rank-1 tensors induces a
subgroup G < PGL(V), the setwise stabiliser of S p(Fq).

What are the orbits of subspaces of PG( V) under this group?
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Existing results

a = b = 2 (Lavrauw—Sheekey, 2014) The setwise stabiliser of

S22(Fg) = Q7 (3,9) € PG(3,q)

has 4 orbits on lines of PG(3, q).

a =2, b = 3 (Lavrauw—Sheekey, 2017) 7 orbits on lines/solids of
PG(FZ ® F3), 11 orbits on planes.

a= b = 3 (Lavrauw—Sheekey, 2015) 14 orbits on lines of PG(F} ® F3).
Planes, etc. will be harder.

Proofs. Appropriate contraction spaces of tensors in IE‘% ® Fg Q FX,
k € {2,3}, are in one-to-one correspondence with tensor orbits.
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Symmetric subspace representatives

Now for n = a = b consider the Veronese variety
Vn(Fq) C Spn(Fq),
i.e. the image of the map induced by
Fg — Fq®Fg
Vi VR V.
If we think of elements of S, ,(Fg) as being represented by n x n

matrices, then elements of V,(FF4) are symmetric matrices.
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Symmetric subspace representatives (continued)

Recall: G < PGL(Fj ® Fj), stabiliser of S, n(Fg) € PG(n* — 1, ).

Two questions:

@ Which G-subspace orbits have symmetric representatives, i.e.

which are represented in (Vn(F,)) < PG(n? —1,q)?

@ Which of those orbits split under the action of the setwise
stabiliser of (Vn(Fq))?

n=2
@ V,(Fq) is a conic in Q" (3, q) = Sz2(Fq) C PG(3, q).

@ Line orbits in (V»(Fq)) = PG(2, g) under the setwise stabiliser
PGL(2, g) < PGL(3, g) of the conic? (There are 3.)
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n = 3: line orbits in (V3(Fy))

For n = 3 we have V3(Fq) C PG(5,q) < PG(F} ® F3), represented by
symmetric 3 x 3 matrices.

Setwise stabiliser H < PGL(6, q), H = PGL(3, g), induced by
g € GL(3, g) acting on symmetric 3 x 3 matrices A via A9 = gAg".

Theorem (Lavrauw—P., 2017+)

e 11 of the 14 line orbits in PG(F3 © F3) are represented in (V3(Fq));
@ 4 of these 11 orbits split into (exactly) two H-orbits;

@ different orbits split depending on whether q is even or odd;

@ unique H-orbit of constant rank-3 lines.
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Some data

Tensor # symmetric line-orbit  splits? rank

orbit’ representatives distribution
05 q(q+1)(q +q+1) [2,9—-1,0]
06 (q+1)( +q+1) [1,q,0]
0g (P +q+1) yes [1,1,9-1]
0g q(g® - 1)(q+1) [1,0,q]
010 %Q(q3—1) [an+170]
012 g°(g° +q+1) geven [0,g+1,0]
013 (g —1)(q+1) yes  [0,2,q—1]
o1 §q(®—1)(¢°-1) qodd [0,3,9-2]
015 3G°(°*-1)(¢°-1) qodd  [0,1,q]
016 (@ -1)(g+1) qgeven [0,1,q]
017 3PP -1)(?-1) [0,0,q +1]

'In the notation of Lavrauw—Sheekey (2015).
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More data: line stabilisers in H = PGL(3, q)

Tensor orbit Common line orbit Additional line orbit
Os Eg : 062771 1 Co
Os El+2 0271
Os Cq-1x0%(2,9),g=+1(4) Cq-1 xOT(2,q), g=£1(4)
Eq x Cq—1, q even Cq-1 x SL(2,9), g even
Og Eg : Cq_1
010 Eg : O_(2, q)
012 GL(2,q), g odd
EZ : GL(2,q), g even EZ:Eq: Cq1,qeven
013 Cq,1 X Cg, qodd Cq,1 X Cz
Eq: Cq-1,qeven Eq, g even
014 C2:Sym,, g = 1(4) C2:Coq=1(4)
C2:Cp,q=3(4) C2 : Sym,, g = 3(4)
Symg, g even
015 C2, g odd C2
Co, g even
O16 Eq : Cq_1, q odd
EZ : C4-1, q even EZ, g even
017 Cs
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Historical context

Lines in (V3(F4)) correspond to pencils of conics in PG(2, g), i.e. pairs
of ternary quadratic forms over Fy.

For g odd, these were classified by Dickson (1908). Our proof has
advantages, e.g. don’t need to treat g = 0,1,2 (mod 3) separately.

For g even, Campbell (1927) gives a list of inequivalent pencils of
conics, but does not attempt a full classification. We fill this gap.?

Indeed, our approach is largely field independent. We also obtain the
classification for algebraically closed fields and the real numbers, and
in particular recover Jordan’s (1906—1907) classification for C and R.

2The complete classification is stated without proof in Hirschfeld’s Projective
geometries of finite fields (Oxford UP, 1998).
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