The symmetric representation of lines in PG($\mathbb{F}^3 \otimes \mathbb{F}^3$)

Tomasz Popiel

Queen Mary University of London & The University of Western Australia joint work with Michel Lavrauw

Finite Geometries: Fifth Irsee Conference

11 September 2017

Motivation

Tensors have many applications:

- complexity theory (e.g. Strassen's algorithm for matrix multiplication);
- quantum information, entanglement, coding;
- data analysis (chemistry, biology, physics . . .);
- signal processing (e.g. source separation) . . .
- ... and finite geometry, e.g. finite semifields.

Motivation (continued)

An expression

$$\tau = \sum_{i=1}^{r} v_{1i} \otimes \cdots \otimes v_{mi}$$

is a decomposition of $\tau \in V_1 \otimes \cdots \otimes V_m$ into "fundamental tensors".

Questions:

- Existence what is the smallest possible r (the rank of τ)?
- Uniqueness.
- Algorithms (including approximation, 'noisy' data) . . .

Another question: orbits

 $GL(V_1) \times \cdots \times GL(V_m)$ acts on rank-1 tensors in $V = V_1 \otimes \cdots \otimes V_m$:

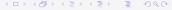
$$(v_1 \otimes \cdots \otimes v_m)^{(g_1,\ldots,g_m)} = v_1^{g_1} \otimes \cdots \otimes v_m^{g_m}.$$

If some V_i are equal then one can also permute components; in particular, if $V_1 = \cdots = V_m$ then all of Sym_m acts via

$$(v_1 \otimes \cdots \otimes v_m)^{\pi} = v_{\pi(1)} \otimes \cdots \otimes v_{\pi(m)}.$$

How many "different" tensors are there under the full stabiliser of the set of rank-1 tensors?

Application: for m = 3, orbits of certain tensors correspond to isotopism classes of presemifields (Lavrauw, 2013).



Existing results

 $\underline{m=2}\ V(a,K)\otimes V(b,K)\cong a\times b$ matrices over K, i.e.

$$v \otimes w = vw^T = \begin{bmatrix} v_1 w_1 & \dots & v_1 w_b \\ \vdots & \ddots & \vdots \\ v_a w_1 & \dots & v_a w_b \end{bmatrix},$$

so rank = matrix rank, and there is one orbit for each rank.

 $\underline{m=3}$ is much harder, often depends on field and/or dimensions:

- $K = \mathbb{F}_p$ (Brahana, Thrall, 1930's); p = 2 (Glynn et al. 2006, Havlicek et al. 2012);
- $K = \mathbb{C}$ (Thrall–Chanler, Kac, Kaśkiewicz–Weyman, Nurmiev, Parfenov, Buczyński–Landsberg; 1930's–2010's);
- $K^2 \otimes K^3 \otimes K^r$, $r \ge 1$, K algebraically closed, real or finite (Lavrauw–Sheekey, 2014–2017).

Geometry, subspaces

Consider m = 2 again, and take $K = \mathbb{F}_q$.

Projectively, the rank-1 tensors in $V=\mathbb{F}_q^a\otimes\mathbb{F}_q^b$ correspond to the Segre variety $S_{a,b}(\mathbb{F}_q)\subset \mathsf{PG}(V)\cong\mathsf{PG}(ab-1,q)$, i.e. the image of

$$\mathsf{PG}(\mathbb{F}_q^a) \times \mathsf{PG}(\mathbb{F}_q^b) \to \mathsf{PG}(V)$$
$$(\langle v \rangle, \langle w \rangle) \mapsto \langle v \otimes w \rangle.$$

The setwise stabiliser in GL(V) of the rank-1 tensors induces a subgroup $G \leq PGL(V)$, the setwise stabiliser of $S_{a,b}(\mathbb{F}_q)$.

What are the orbits of subspaces of PG(V) under this group?

Existing results

 $\underline{a} = b = 2$ (Lavrauw–Sheekey, 2014) The setwise stabiliser of

$$S_{2,2}(\mathbb{F}_q)=Q^+(3,q)\subset\mathsf{PG}(3,q)$$

has 4 orbits on lines of PG(3, q).

 $\underline{a=2,\,b=3}$ (Lavrauw–Sheekey, 2017) 7 orbits on lines/solids of $PG(\mathbb{F}_q^2\otimes\mathbb{F}_q^3)$, 11 orbits on planes.

a = b = 3 (Lavrauw–Sheekey, 2015) 14 orbits on lines of $PG(\mathbb{F}_q^3 \otimes \mathbb{F}_q^3)$. Planes, etc. will be harder.

Proofs. Appropriate contraction spaces of tensors in $\mathbb{F}_q^2 \otimes \mathbb{F}_q^k \otimes \mathbb{F}_q^k$, $k \in \{2,3\}$, are in one-to-one correspondence with tensor orbits.

Symmetric subspace representatives

Now for n = a = b consider the Veronese variety

$$\mathcal{V}_n(\mathbb{F}_q) \subset \mathcal{S}_{n,n}(\mathbb{F}_q),$$

i.e. the image of the map induced by

$$\mathbb{F}_q^n \to \mathbb{F}_q^n \otimes \mathbb{F}_q^n$$
$$V \mapsto V \otimes V.$$

If we think of elements of $S_{n,n}(\mathbb{F}_q)$ as being represented by $n \times n$ matrices, then elements of $\mathcal{V}_n(\mathbb{F}_q)$ are symmetric matrices.

Symmetric subspace representatives (continued)

Recall: $G \leq \mathsf{PGL}(\mathbb{F}_q^n \otimes \mathbb{F}_q^n)$, stabiliser of $S_{n,n}(\mathbb{F}_q) \subset \mathsf{PG}(n^2-1,q)$.

Two questions:

- **1** Which *G*-subspace orbits have symmetric representatives, i.e. which are represented in $\langle \mathcal{V}_n(\mathbb{F}_q) \rangle \leq \mathsf{PG}(n^2-1,q)$?
- Which of those orbits split under the action of the setwise stabiliser of $\langle \mathcal{V}_n(\mathbb{F}_q) \rangle$?

n = 2

- $\mathcal{V}_2(\mathbb{F}_q)$ is a conic in $Q^+(3,q) = S_{2,2}(\mathbb{F}_q) \subset \mathsf{PG}(3,q)$.
- Line orbits in $\langle \mathcal{V}_2(\mathbb{F}_q) \rangle \cong \mathsf{PG}(2,q)$ under the setwise stabiliser $\mathsf{PGL}(2,q) \leqslant \mathsf{PGL}(3,q)$ of the conic? (There are 3.)

n=3: line orbits in $\langle \mathcal{V}_3(\mathbb{F}_q) \rangle$

For n = 3 we have $\mathcal{V}_3(\mathbb{F}_q) \subset \mathsf{PG}(5,q) \leqslant \mathsf{PG}(\mathbb{F}_q^3 \otimes \mathbb{F}_q^3)$, represented by symmetric 3×3 matrices.

Setwise stabiliser $H \leq PGL(6, q)$, $H \cong PGL(3, q)$, induced by $g \in GL(3, q)$ acting on symmetric 3×3 matrices A via $A^g = gAg^{\top}$.

Theorem (Lavrauw-P., 2017+)

- 11 of the 14 line orbits in $PG(\mathbb{F}_q^3 \otimes \mathbb{F}_q^3)$ are represented in $\langle \mathcal{V}_3(\mathbb{F}_q) \rangle$;
- 4 of these 11 orbits split into (exactly) two H-orbits;
- different orbits split depending on whether q is even or odd;
- unique H-orbit of constant rank-3 lines.

Some data

Tensor orbit ¹	# symmetric line-orbit representatives	splits?	rank distribution
<i>O</i> ₅	$\frac{1}{2}q(q+1)(q^2+q+1)$		[2, q-1, 0]
<i>o</i> ₆	$(q+1)(q^2+q+1)$		[1, <i>q</i> , 0]
<i>o</i> ₈	$q^4(q^2+q+1)$	yes	[1, 1, q - 1]
<i>0</i> 9	$q(q^3-1)(q+1)$		[1, 0, <i>q</i>]
<i>o</i> ₁₀	$\frac{1}{2}q(q^3-1)$		[0, q+1, 0]
<i>0</i> ₁₂	$q^{2}(q^{2}+q+1)$	q even	[0, q+1, 0]
<i>0</i> ₁₃	$q^3(q^3-1)(q+1)$	yes	[0, 2, q-1]
014	$\frac{1}{6}q^3(q^3-1)(q^2-1)$	q odd	[0, 3, q - 2]
<i>0</i> ₁₅	$\frac{1}{2}q^3(q^3-1)(q^2-1)$	q odd	[0, 1, <i>q</i>]
<i>0</i> ₁₆	$q^2(q^3-1)(q+1)$	q even	[0, 1, <i>q</i>]
<i>0</i> ₁₇	$\frac{1}{3}q^3(q^3-1)(q^2-1)$		[0, 0, q+1]

¹In the notation of Lavrauw–Sheekey (2015).

More data: line stabilisers in H = PGL(3, q)

Tensor orbit	Common line orbit	Additional line orbit
<i>O</i> ₅	$E_q^2: C_{q-1}^2: C_2$	
<i>o</i> ₆	\dot{E}_{q}^{1+2} : C_{q-1}^{2}	
<i>o</i> ₈	$C_{q-1} imes O^\pm(2,q), q\equiv \pm 1(4)$	$C_{q-1} imes O^{\mp}(2,q), q \equiv \pm 1(4)$
	$E_q imes C_{q-1}, q$ even	$C_{q-1} imes \operatorname{SL}(2,q), q$ even
0 9	$E_q^2:C_{q-1}$	
O ₁₀	$E_q^2 : O^-(2,q)$	
O ₁₂	GL(2,q), q odd	
	E_q^2 : GL(2, q), q even	$E_{q}^{2}:E_{q}:C_{q-1},q$ even
<i>o</i> ₁₃	$C_{q-1} \times C_2$, q odd	$C_{q-1} imes C_2$
	E_q : C_{q-1},q even	E_q,q even
O ₁₄	C_2^2 : Sym ₃ , $q \equiv 1(4)$	$C_2^2: C_2, q \equiv 1(4)$
	$C_2^2: C_2, q \equiv 3(4)$	$C_2^2 : {\sf Sym}_3, q \equiv 3(4)$
	Sym ₃ , <i>q</i> even	
<i>o</i> ₁₅	C_2^2 , q odd	C_2^2
	C_2 , q even	
<i>o</i> ₁₆	E_q : C_{q-1} , q odd	
	E_{q}^{2} : C_{q-1} , q even	E_q^2 , q even
<i>O</i> ₁₇	C_3	

Historical context

Lines in $\langle \mathcal{V}_3(\mathbb{F}_q) \rangle$ correspond to pencils of conics in PG(2, q), i.e. pairs of ternary quadratic forms over \mathbb{F}_q .

For q odd, these were classified by Dickson (1908). Our proof has advantages, e.g. don't need to treat $q \equiv 0, 1, 2 \pmod{3}$ separately.

For *q* even, Campbell (1927) gives a list of inequivalent pencils of conics, but does not attempt a full classification. We fill this gap.²

Indeed, our approach is largely field independent. We also obtain the classification for algebraically closed fields and the real numbers, and in particular recover Jordan's (1906–1907) classification for $\mathbb C$ and $\mathbb R$.

²The complete classification is stated without proof in Hirschfeld's *Projective geometries of finite fields* (Oxford UP, 1998).

Und nun zur Kneipe!