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Some motivation

Let Y be a subset of Fm×n
q such that every nonzero difference

has rank at least d .

Singleton bound: |Y | ≤ qm(n−d+1) for m ≥ n.

Proof: Two matrices inY must differ in any n− d + 1 columns.

We will explore:

Symmetric matrices,

Hermitian matrices,

Alternating matrices,

Quadratic forms (or cosets of alternating matrices),

. . . and connections to other objects.
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Association schemes

In coding theory and related subjects, an association

scheme (such as the Hamming scheme) should mainly

be viewed as a “structured space” in which the objects

of interest (such as codes, or designs) are living.

— Delsarte & Levenshtein, 1998
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A simple example

4

26

1

5 3

D1=

(
0 J − I

J − I 0

)
D2=

(
J − I 0

0 J − I

)
D3=

(
0 I

I 0

)
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A simple example

4

26

1

5 3

D1=

(
0 J − I

J − I 0

)
D2=

(
J − I 0

0 J − I

)
D3=

(
0 I

I 0

)

(D1D2)x ,y = #z with (D1)x ,z = 1 and (D2)z,y = 1

=


1 for (D1)x ,y = 1

0 for (D2)x ,y = 1

2 for (D3)x ,y = 1

D1D2 = 1 · D1 + 0 · D2 + 2 · D3
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A simple example

4

26

1

5 3

D1=

(
0 J − I

J − I 0

)
D2=

(
J − I 0

0 J − I

)
D3=

(
0 I

I 0

)

The matrices I ,D1,D2,D3 generate a commutative algebra:

D1D2 = D2D1 = D1 + 2D3 D2
1 = 2I + D2

D1D3 = D3D1 = D2 D2
2 = 2I + D2

D2D3 = D3D2 = D1 D2
3 = I

3



(Symmetric) association schemes

Color the complete graph on a vertex set X with n colors and

let D1, . . . ,Dn be the corresponding adjacency matrices.

Algebraic definition

The tuple (D0 = I ,D1, . . . ,Dn) forms an association scheme

on X if the vector space generated by D0,D1, . . . ,Dn over R
is a (commutative) matrix algebra.

This algebra is called the Bose-Mesner algebra.

Combinatorial definition

The tuple (D0 = I ,D1, . . . ,Dn) forms an asso-

ciation scheme on X if the number of triangles

depends only on the graph containing (x , y). x y

z

Di Dj
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P- and Q-numbers

Commutativity of the Bose-Mesner algebra implies that all

matrices in the algebra can be simultaneoulsy diagonalised.

Hence there exists an idempotent basis E0,E1, . . . ,En:

n∑
k=0

Ek = I , EjEk = δjkEk .

Change of basis:

Di =
n∑

k=0

Pi(k)Ek |X | · Ek =
n∑

i=0

Qk(i)Di .

The number Pi(k) is an eigenvalue of Di whose eigenspace is

the column space of Ek .
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Subsets and inner distribution

4

26

3

1

5

Inner distribution: 1
4
(4, 6, 4, 2)T .
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Subsets and duality

Take a subset Y of the vertex set X with characteristic vector u:

ux =

{
1 for x ∈ Y

0 otherwise.

Inner distribution: a = (ai), where ai = 1
|Y | · u

TDiu.

Dual distribution: a′ = Qa. Then a′k = |X |
|Y | · u

TEku.

Simple (and important) fact

The entries in the dual distribution are nonnegative.

Proof: Ek has eigenvalues 0 or 1, so is positive semidefinite.
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A linear program

4

26

1

5 3

Q =


1 1 1 1

2 −1 −1 2

2 1 −1 −2

1 −1 1 −1



What are the largest independent sets Y in the blue graph?

Linear program: Maximize |Y | = 1 + a2 + a3 subject to

2− a2 + 2a3 ≥ 0

2− a2 − 2a3 ≥ 0

1 + a2 − a3 ≥ 0

Unique solution: a = (1, 0, 2, 0)T .
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Linear programming and duality

Primary LP problem:

Choose x ∈ Rs×1 that maximises cx subject to x ≥ 0, Ax ≥ −b.

Dual LP problem:

Choose y ∈ R1×n that minimises yb subject to y ≥ 0, yA ≤ −c .

Useful facts.

Let x and y be feasible solutions to the primary and dual LP

problem, respectively. Then

cx ≤ −yAx ≤ yb.

In particular, every feasible solution to the dual problem gives

an upper bound for the optimum in the primary problem.

Moreover, cx = yb if and only if x and y are both optimal

solutions.

9
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Translation schemes

Now suppose that the ambient space X has the structure of

an abelian group (X ,+).

An association scheme on X is a translation scheme if there is

a partition X0,X1, . . . ,Xn of X such that, for every i ,

(Di)x ,y = 1 ⇔ x − y ∈ Xi .

1

05

4

3 2

A translation scheme on

(Z6,+) with the partition

X0 = {0}
X1 = {1, 5}
X2 = {2, 4}
X3 = {3}.
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Duality of translation schemes

There is a partition X ′0,X
′
1, . . . ,X

′
n of the character group X ′

of X such that∑
x∈Xi

x ′(x) is constant for all x ′ ∈ X ′k .

This partition defines an association scheme on X ′, called the

dual translation scheme.

The P- and Q-numbers are given by the character sums

Pk(i) =
∑
x∈Xi

x ′(x) for x ′ ∈ X ′k ,

Qi(k) =
∑
x ′∈X ′k

x ′(x) for x ∈ Xi .

The role of the P- and the Q-numbers are swapped in the

dual translation scheme.
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Subsets in translation schemes

A subset Y in a translation scheme on X is additive if (Y ,+)

is a subgroup of (X ,+).

The annihilator of an additive subset Y is

Y ◦ = {x ′ ∈ X ′ : x ′(x) = 1 for all x ∈ Y }.

Generalised MacWilliams identities

If Y is an additive subset of X with dual distribution (a′k),

then (a′k/|Y |) is the inner distribution of Y ◦.

For additive subsets Y , we have the divisibility constraints

ai ∈ Z, a′k/|Y | ∈ Z.
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q-Hamming schemes

Hamming scheme

Hamt(n) on the set of n-tuples over a set of size t.

Two tuples are i -th associates if their Hamming distance is i .

Bilinear forms scheme

Mat(m, n, q) on the set of m × n matrices over Fq.

Hermitian forms scheme

Her(n, q) on the set of n × n Hermitian matrices over Fq2 .

Alternating forms scheme

Alt(m, q) on the set of m ×m alternating matrices over Fq.

Two matrices are i -th associates if their difference has rank i

(or 2i for Alt(m, q)).

All are self-dual translation schemes.

13
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P- and Q-numbers

The P- and Q-numbers satisfy a three-term-recurrence, whose

solution is determined by generalised Krawtchouk polymials:

Pi(k) = Qk(i) =
k∑

j=0

(−1)k−jb(k−j
2 )
[
n − j

n − k

]
b

[
n − i

j

]
b

(cbn)j ,

where

b = 1 and c = t in Hamt(n),

b = q and c = qm−n in Mat(m, n, q), where m ≥ n

(Delsarte 1978),

b = −q and c = −1 in Her(n, q) (Carlitz-Hodges 1955,

Stanton 1981, S. 2017),

b = q2 and c = q or c = 1/q and n = bm/2c in Alt(m, q)

(Delsarte-Goethals 1975).
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Bounds for d -codes

A subset Y in a q-Hamming scheme is a d-code if all nonzero

differences of elements in Y have rank at least d .

Theorem (Singleton bound).

If
[

k
d−1

]
b
≥ 0 for all k ≤ n, then every d-code Y satisfies

|Y | ≤ (cbn)n−d+1,

and in case of equality, the inner distribution (ai) of Y

satisfies

an−i =
n−d∑
j=i

(−1)j−ib(j−i
2 )
[
j

i

]
b

[
n

j

]
b

((cbn)n+d−j−1 − 1).

If the condition does not hold, then the bound still holds for

additive codes.
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Bounds for d -codes in Her(n, q)

Theorem (S. 2017).

For odd d , every d-code Y in Her(n, q) satisfies

|Y | ≤ qn(n−d+1).

In case of equality, the inner distribution of Y is determined.

For even d , the bound still holds for additive codes.

The bounds are tight, except possibly when n and d are even.
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Constructions of optimal additive codes

Every Hermitian form H : Fq2n × Fq2n → Fq2 can be uniquely

written as

H(x , y) = Tr(yqL(x)),

where

L(x) =
n∑

i=1

aix
q2i ∈ Fq2n [x ], an−i+1 = aq

2n−2i+1

i .

Constructions of additive d-codes of size qn(n−d+1):

For odd n and odd d , take a1 = · · · = ad = 0.

For odd n and even d , take a(n−d+3)/2 = · · · a(n+1)/2 = 0.

For even n and odd d , take a(n−d+3)/2 = · · · an/2 = 0.

For even n and even d , I don’t know, except when d ∈ {2, n}.
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Constructions in the non-additive case

Theorem
(Gow-Lavrauw-Sheekey-Vanhove 2014, S. 2017).

Let n be even and let Z be a set of qn matrices over Fq2 of

size n/2× n/2 with the property that A− B is nonsingular

for all distinct A,B ∈ Z . Let

Y =

{(
I A∗

A AA∗

)
: A ∈ Z

}
∪
{(

O O

O I

)}
,

Then Y is an n-code in Her(n, q) of size qn + 1.
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LP bounds

Theorem (S. 2017).

For even d , every d-code Y in Her(n, q) satisfies

|Y | ≤ qn(n−d+1) qn(qn−d+1+(−1)n)−(−1)n(qn−d+2−(−1)n)
qn−d+1(q+1)

.

For d = n, this is |Y | ≤ q2n−1 − qn + qn−1 (Thas 1992).

Some numbers for 2-codes in Her(2, q):

q Largest add. code Largest code LP SDP

2 4 5 6 5

3 9 15 21 17

4 16 24 52 43

5 25 47 105 89
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The unique 2-code in Her(2, 3) of size 15

For every of the 15 pairs of matrices over F9[
0 0

0 0

]
,

[
1 0

0 1

]
,

[
1 θ3

θ2 0

]
,

[
0 θ2

θ3 0

]
,

[
1 θ−2

θ−3 0

]
,

[
0 θ−3

θ−2 0

]
take the third point on the line (M. Schmidt 2016).

{1,2}

{1,3}

{1,4}

{1,5}

{1,6}

{4,6}

{2,5}

{3,6}

{2,4}

{3,5}

{2,6}

{2,3}

{3,4}
{4,5}

{5,6}
The Cremona-Richmond

configuration.
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Partial spreads in the Hermitian polar space

Partial spread in H(2n − 1, q2): Collection of n-dimensional

subspaces in H(2n − 1, q2) with pairwise trivial intersection.

There exists a partial spread in H(2n − 1, q2) of size N + 1 if

and only if there exists an n-code in Her(n, q) of size N .

The correspondence is: Y 7→ {〈O | I 〉} ∪ {〈I |M〉 : M ∈ Y }.

Corollary (Vanhove 2009).

For odd n, the size of a partial spread in H(2n − 1, q2) is at

most qn + 1.

For even n, several bounds have been obtained by

(De Beule-Klein-Metsch-Storme 2008, Ihringer 2014,

M. Schmidt 2016, Ihringer-Sin-Xiang 2018).
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Bounds for d -codes in Alt(m, q)

Theorem (Delsarte-Goethals 1975).

Every d-code Y in Alt(m, q) satisfies

|Y | ≤

{
qm((m−1)/2−d+1) for odd m

q(m−1)(m/2−d+1) for even m.

This bound is tight when m is odd.
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Kerdock sets, spreads and beyond

Two equivalent objects:

Kerdock set: An n-code of size q2n−1 in Alt(2n, q).

Orthogonal spread: Collection of q2n−1 + 1 (2n)-dimensional

subspaces in Q+(4n − 1, q) with pairwise trivial intersection.

The correspondence is Y 7→ {〈O | I 〉} ∪ {〈I |M〉 : M ∈ Y }.

For even q, many constructions are known. For odd q,

constructions are known only when n = 2 and q 6≡ 1 (mod 3)

(Kantor 1982) or q prime (Conway-Kleidman-Wilson 1988).

For odd q and n > 2, no nontrivial d-codes in Alt(2n, q)

meeting the LP bound are known to exist.
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Additive codes in Alt(m, q)

For odd m, there are always additive d-codes in Alt(m, q) that

meet the Singleton bound, whereas for even m, all known

constructions are not additive.

Conjecture (Cooperstein 1997).

Every additive d-code Y in Alt(2n, q) satisfies

|Y | ≤ q2n(n−d+1/2).

Proved for d = 2 (Heineken 1977), d = n (Nyberg 1991), and

d = n − 1 (Gow 2017).

There are constructions meeting the bound.
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APN functions

An almost perfect nonlinear (APN) function is a function

f : F2m → F2m such that

f (x + a)− f (x) = b

has at most two solutions for all a, b ∈ F2m with a 6= 0.

The Gold function: f (x) = x3.

Observation (Edel 2009).

Every quadratic APN function corresponds to a minimal

additive 1-design in Alt(m, q) and vice versa.

Among all projections onto F2 of f (x + a)− f (x)− f (a), we

see every value of F2 equally often ⇔ a′1 = 0.
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Nonlinearity of APN functions

The possible inner distributions are directly related to

questions about nonlinearities of APN functions.

Most known APN functions have the same nonlinearity

spectrum.

The exceptions are: Two infinite nonquadratic families and

one sporadic quadratic example for m = 6 due to Dillon.

For odd m, the inner distribution is determined.

For m = 6, there are exactly two different inner distributions:

(1, 0, 21, 42), (1, 1, 16, 46).

For m = 8, there at least three different inner distributions:

(1, 0, 0, 85, 170), (1, 0, 1, 80, 174), (1, 0, 2, 75, 178).
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Two (nonclassical) association schemes

Sym(m, q): m ×m symmetric matrices over Fq

Qua(m, q): cosets of m ×m alternating matrices over Fq

The group F×q × GLm(Fq) acts on Sym(m, q) and Qua(m, q) by

((λ, L), S) 7→ λ · LSLT

((λ, L), [A]) 7→ [λ · LALT ].

In each case there is one orbit for each odd rank and two

orbits for each nonzero even rank.

These orbits define two translation association association

schemes with m + bm/2c+ 1 classes.
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P- and Q-numbers

The character group of Sym(m, q) can be identified with

Qua(m, q) and Qua(m, q) and Sym(m, q) are dual to each

other. In particular, Sym(m, q) is self-dual for odd q.

Theorem (S. 2015, 2017).

The P- and Q-numbers of Sym(m, q) and Qua(m, q) can be

expressed as linear combinations of generalised Krawtchouk

polynomials.

Special cases (Bachoc-Serra-Zemor 2017) and recurrence

relations (Feng-Wang-Ma-Ma 2008) were known before.
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A nice form of the duality

Sym(m, q) Qua(m, q)

As = a2s+ + a2s− + a2s−1 A′r = a′2r+ + a′2r− + a′2r−1

Bs = a2s+ + a2s− + a2s+1 B ′r = a′2r+ + a′2r− + a′2r+1

Cs = q−s(a2s+ − a2s−) (q odd) C ′r = q−r (a2r+ − a2r−)

Cs = a2s+ (q even)

Then

A′ = Qm+1A, B ′ = qm Qm C , C ′ = QmB,

where Qm is the Q-matrix of Alt(m, q).
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Bounds in Sym(m, q)

A′ = Qm+1A As = a2s+ + a2s− + a2s−1 A′r = a′2r+ + a′2r− + a′2r−1

C ′ = QmB Bs = a2s+ + a2s− + a2s+1 C ′r = q−r (a2r+ − a2r−).

Theorem (S. 2017).

For odd d , every d-code Y in Sym(m, q) satisfies

|Y | ≤

{
qm(m−d+2)/2 for even m − d ,

q(m+1)(m−d+1)/2 for odd m − d .

In case of equality, the inner distribution is determined.

For even d , the bound still holds for additive d-codes.

These bounds are tight.

The cases m − d ∈ {1, 2} were first obtained by (Gow 2014).
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Some numbers for Sym(m, 2)

(m, d) Largest add. code Largest code LP bound

(3, 2) 16 = 22 24

(4, 2) 256 ≥ 320 384

(5, 4) 64 ≥ 96 196

The constructions are from (M. Schmidt 2016).

The optimal 2-code in Sym(3, 2): Take the zero matrix

together with the 21 nonalternating matrices of rank 2.
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Bounds in Qua(m, q) for even q

A′ = Qm+1A As = a2s+ + a2s− + a2s−1 A′r = a′2r+ + a′2r− + a′2r−1

C ′ = QmB Bs = a2s+ + a2s− + a2s+1 C ′r= a′2r+ .

Theorem (S. 2017).

Let q be even and let Y be a d-code in Qua(m, q). Then

|Y | ≤


qm(m−d+2)/2 for odd m and odd d ,

q(m+1)(m−d+1)/2 for even m and odd d ,

q(m−1)(m−d+2)/2 for even m and even d ,

qm(m−d+1)/2 for odd m and even d .

These bounds are tight. If d is odd and equality holds, then

the inner distribution of Y is determined.
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Applications to coding theory

Qua(m, q) ∼= GRM(2,m)/GRM(1,m)

inner distribution ⇔ distance distribution

type rank minimum weight of coset

parabolic 2s + 1 qm−1(q − 1)− qm−s−1

elliptic 2s qm−1(q − 1)− qm−s−1

hyperbolic 2s (qm−1 − qm−s−1)(q − 1)
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Elliptic and hyperbolic d -codes

Theorem (S. 2017).

Let Y be an elliptic (2d)-code in Qua(2n, q). Then

|Y | ≤ q2n(n−d+1/2).

This bounds is tight, and if equality holds, then the inner

distribution of Y is determined.

The same bound holds for additive hyperbolic d-codes.
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Codes and their distance distributions

We obtain many optimal or best known codes and very general

theorems for the distance distribution of classes codes, for

which many special cases have been previously obtained:

For q = 2: (Berlekamp 1970), (Kasami 1971)

For odd q: (Feng & Luo 2008), (Luo & Feng 2008), (Y. Liu &

Yan 2013), (X. Liu & Luo 2014a), (X. Liu & Luo 2014b), (Y.

Liu, Yan & Ch. Liu 2014), (Zheng, Wang, Zeng & Hu 2014), . . .
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