Cameron-Liebler sets in different settings

Leo Storme

Ghent University
Department of Mathematics
Belgium

Kloster Irsee, September 13, 2017

OUTLINE

- CAMERON-LIEBLER SETS IN FINITE PROJECTIVE SPACES
- 2 CAMERON-LIEBLER SETS IN FINITE CLASSICAL POLAR SPACES
- ${f 3}$ Cameron-Liebler sets for ordered ${m q}$ -tuples

INTRODUCTORY REMARKS

- Many links with Erdős-Ko-Rado problems.
- Algebraic techniques: of great importance for Cameron-Liebler problems.

Cameron-Liebler sets in finite classical polar spaces
Cameron-Liebler sets for ordered q-tuples

OUTLINE

- CAMERON-LIEBLER SETS IN FINITE PROJECTIVE SPACES
- 2 CAMERON-LIEBLER SETS IN FINITE CLASSICAL POLAR SPACES
- 3 Cameron-Liebler sets for ordered q-tuples

DEFINITION

Cameron-Liebler line sets in PG(3, q): arise from attempt of Cameron and Liebler to classify collineation groups of PG(n, q), $n \ge 3$, that have equally many orbits on lines and on points.

DEFINITION

Spread of PG(3, q): set of $q^2 + 1$ lines partitioning point set of PG(3, q).

Classical example: Regular spread.

Cameron-Liebler sets in finite classical polar spaces
Cameron-Liebler sets for ordered α-tuples

DEFINITION

- A: incidence matrix of points and lines of PG(3, q).
- χ : characteristic vector of set of lines of PG(3, q).

Equivalent definitions for CL sets in PG(3, q)

DEFINITION

Cameron-Liebler set of lines \mathcal{L} of PG(3, q):

- There exists integer x such that \mathcal{L} shares x lines with every spread of PG(3, q).
- There exists integer x such that \mathcal{L} shares x lines with every regular spread of PG(3, q).
- There exists integer x such that for every line ℓ of PG(3, q):

$$|\{m \in \mathcal{L} \setminus \{\ell\} | m \text{ meets } \ell\}| = x(q+1) + (q^2-1)\chi(\ell).$$

Equivalent definitions for CL sets in PG(3, q)

DEFINITION

Cameron-Liebler set of lines \mathcal{L} of PG(3, q):

• There exists integer x such that for every incident point-plane pair (P, π) of PG(3, q):

$$|\operatorname{Star}(P) \cap \mathcal{L}| + |\operatorname{Line}(\pi) \cap \mathcal{L}| = x + (q+1)|\operatorname{Pencil}(P,\pi) \cap \mathcal{L}|.$$

 There exists integer x such that for every pair of disjoint lines ℓ and m of PG(3, q):

$$|\{n \in \mathcal{L} | n \text{ meets } \ell \text{ and } m\}| = x + q(\chi(\ell) + \chi(m)).$$

• $\chi \in \text{row}(A) \ (\Leftrightarrow \chi \in \text{ker}(A^T)^{\perp}).$

CLASSICAL EXAMPLES

- Set L_P of lines through point P: CL-set with x = 1.
- Set L_{π} of lines in plane π : CL-set with x=1.

Cameron-Liebler sets in finite classical polar spaces
Cameron-Liebler sets for ordered α-tuples

CLASSICAL EXAMPLES

- $L_P \cup L_\pi$, with $P \notin \pi$: CL-set with x = 2.
- Complement of preceding examples.

Cameron-Liebler sets in finite classical polar spaces
Cameron-Liebler sets for ordered q-tuples

CL-SETS OF BRUEN AND DRUDGE

Elliptic quadric $Q^-(3, q)$

Cameron-Liebler sets in finite classical polar spaces
Cameron-Liebler sets for ordered α-tuples

CL-SETS OF BRUEN AND DRUDGE

Tangent plane to point of $Q^-(3, q)$

CL-SETS OF BRUEN AND DRUDGE

- $Q^{-}(3, q)$, q odd: quadratic form Q.
- $v \notin Q^{-}(3, q)$:
 - set S: Q(v) non-zero square.
 - set NS: Q(v) non-square.

CL-SETS OF BRUEN AND DRUDGE

CL-SETS OF BRUEN AND DRUDGE

- S_0 : set of skew lines to $Q^-(3; q)$.
- $S_{1,S}$: set of tangent lines through $P \in Q^-(3,q)$ and points of S in $T_P(Q^-(3,q))$.
- $S_{1,NS}$: set of tangent lines through $P \in Q^{-}(3,q)$ and points of NS in $T_{P}(Q^{-}(3,q))$.
- $S_0 \cup S_{1,S}$ and $S_0 \cup S_{1,NS}$: CL-set with $x = (q^2 + 1)/2$.

OTHER EXAMPLES

- Derivation construction of Gavrilyuk, Matkin, Penttila, and Cossidente, Pavese: $x = (q^2 + 1)/2$.
- CL-set \mathcal{L} with $x = (q^2 1)/2$ by De Beule, Demeyer, Metsch, Rodgers and Feng, Momihara, Xiang.
- Plane π contains no lines of \mathcal{L} : \mathcal{L} union Line(π): CL-set with $x = (q^2 + 1)/2$.

MODULAR EQUALITY OF GAVRILYUK-METSCH

THEOREM (GAVRILYUK, METSCH)

Cameron-Liebler line set $\mathcal L$ with parameter x. Then for every plane π and every point P:

$$\begin{pmatrix} x \\ 2 \end{pmatrix} + n(n-x) \equiv 0 \pmod{q+1},$$

where n is number of lines of \mathcal{L} through P in plane π .

THEOREM (GAVRILYUK, METSCH)

There is no Cameron-Liebler set in PG(3, q), q odd, with parameter x, where $x \equiv 3 \pmod{4}$.

EQUIVALENT DEFINITIONS FOR CL K-SETS

DEFINITION (RODGERS, STORME, VANSWEEVELT)

Let \mathcal{L} be set of k-spaces in PG(2k + 1, q) with characteristic function χ . Then the following are equivalent:

- Integer x for which $|\mathcal{L} \cap \mathcal{S}| = x$ for every k-spread in PG(2k + 1, q).
- Integer x for which $|\mathcal{L} \cap \mathcal{S}| = x$ for every regular k-spread in PG(2k + 1, q).
- $\chi \in \text{row}(A) \iff \chi \in \text{ker}(A^T)^{\perp}$.
- Integer x such that for every k-space π , number of elements of \mathcal{L} disjoint from π is $(x - \chi(\pi))q^{(k+1)k}$.
- Integer x such that $\chi \frac{\chi}{a^{k+1}+1}j$ is eigenvector of K for eigenvalue $\tau = -q^{(k+1)k}$.

NOTATION

$$\left[\begin{array}{c} n+1 \\ k+1 \end{array}\right]_{q} = \prod_{i=0}^{k} \frac{q^{n+1-i}-1}{q^{i+1}-1}.$$

(Number of k-spaces in PG(n, q))

ERDŐS-KO-RADO RESULTS

THEOREM (RODGERS, STORME, VANSWEEVELT)

Cameron-Liebler k-set of PG(2k + 1, q) with parameter x = 1 is either:

- all k-spaces through one point P.
- all k-spaces in one hyperplane H.

THEOREM

Largest Erdős-Ko-Rado sets of k-spaces in PG(2k + 1, q) have size $\begin{bmatrix} 2k + 1 \\ k + 1 \end{bmatrix}_q$ and are equal to either: all k-spaces through one point P or all k-spaces in one hyperplane H.

CAMERON-LIEBLER k-SETS WITH PARAMETER x = 2

THEOREM (RODGERS, STORME, VANSWEEVELT)

Cameron-Liebler k-set of PG(2k+1,q) with parameter x=2 is union of:

- all k-spaces through one point P,
- all k-spaces in one hyperplane H,

with $P \notin H$.

CAMERON-LIEBLER 2-SETS IN PG(5, q) AND EKR-SETS

THEOREM

Let S be set of planes of PG(5, q) pairwise intersecting non-trivially. Then

- either $|S| = \begin{bmatrix} 5 \\ 2 \end{bmatrix}_q$ and S consists of all planes through fixed point P or all planes in fixed hyperplane H of PG(5,q).
- (Blokhuis, Brouwer and Szőnyi) If $|S| > q^5 + 2q^4 + 3q^3 + 2q^2 + q + 1$, then S is contained in a preceding example.

Cameron-Liebler sets in finite classical polar spaces
Cameron-Liebler sets for ordered q-tuples

ERDŐS-KO-RADO RESULTS

THEOREM

Largest Erdős-Ko-Rado sets of k-spaces in PG(2k+1,q) have size $\begin{bmatrix} 2k+1 \\ k+1 \end{bmatrix}_q$ and are equal to either: all k-spaces through one point P or all k-spaces in one hyperplane H.

THEOREM (BLOKHUIS, BROUWER, SZŐNYI)

Let \mathcal{L} be Erdős-Ko-Rado set of k-spaces in PG(2k + 1, q), with k + 1 < $q \log q - q$ and $|\mathcal{L}| > \frac{1}{2}q^{(k+1)k}$, then all k-spaces of \mathcal{L} pass through one point P or lie in one hyperplane H.

Cameron-Liebler sets in finite classical polar spaces
Cameron-Liebler sets for ordered q-tuples

Cameron-Liebler sets in finite classical polar spaces
Cameron-Liebler sets for ordered q-tuples

RESULTS FOR GENERAL k

THEOREM (METSCH)

Let \mathcal{L} be Cameron-Liebler 2-set in PG(5, q), with parameter x. Then it is not possible that $3 \le x < q/3$.

THEOREM (METSCH)

Let \mathcal{L} be Cameron-Liebler k-set in PG(2k+1,q), $3 < k < q \log q - q - 1$, $q \ge q_0$, with parameter x. Then it is not possible that $3 \le x < q/5$.

OUTLINE

- CAMERON-LIEBLER SETS IN FINITE PROJECTIVE SPACES
- CAMERON-LIEBLER SETS IN FINITE CLASSICAL POLAR SPACES
- 3 CAMERON-LIEBLER SETS FOR ORDERED *q*-TUPLES

FINITE CLASSICAL POLAR SPACES

- Hyperbolic quadric $Q^+(2n+1,q)$: $X_0X_1 + X_2X_3 + \cdots + X_{2n}X_{2n+1} = 0$,
- Elliptic quadric $Q^-(2n+1,q)$: $f(X_0,X_1)+X_2X_3+\cdots+X_{2n}X_{2n+1}=0$, $f(X_0,X_1)$ irreducible homogeneous quadratic equation over \mathbb{F}_q ,
- Parabolic quadric Q(2n, q): $X_0^2 + X_1X_2 + X_3X_4 + \cdots + X_{2n-1}X_{2n} = 0$,
- Hermitian variety $H(n, q^2)$: $X_0^{q+1} + \cdots + X_n^{q+1} = 0$,
- Symplectic polar space W(2n+1,q): defined by totally isotropic spaces under symplectic polarity.

CAMERON-LIEBLER SETS IN FINITE CLASSICAL POLAR SPACES

- Hyperbolic quadric Q⁺(2n+1,q): points, lines, ..., n-spaces,
- Elliptic quadric $Q^-(2n+1,q)$: points, lines, ..., (n-1)-spaces,
- Parabolic quadric Q(2n, q): points, lines, ..., (n-1)-spaces,
- Hermitian variety $H(n, q^2)$: points, lines, ..., $\lfloor (n-1)/2 \rfloor$ -spaces,
- Symplectic polar space W(2n+1,q): points, lines, ..., n-spaces.

GENERATORS ON HYPERBOLIC QUADRIC

• Set of generators Ω on $Q^+(2n+1,q)$ can be partitioned into two equivalence classes Ω_1 and Ω_2 :

$$\Pi_1 \sim \Pi_2 \Leftrightarrow \dim(\Pi_1 \cap \Pi_2) \equiv n \pmod{2}.$$

- Ω₁: Latin generators.
 Ω₂: Greek generators.
- For $Q^+(4n+1,q)$, generators of Ω_1 pairwise intersect (EKR-set).
- For $Q^+(4n+1,q)$, generators of Ω_2 pairwise intersect (EKR-set).

GENERATORS IN FINITE CLASSICAL POLAR SPACES

- Finite classical polar space rank N: generators have dimension N – 1.
- Finite classical polar space: parameters (q, q^e) :
 - $\mathbf{0}$ q = size finite field,
 - 2 $q^e + 1$ = number of generators through codimension one space to generator.
- Example: $Q^+(2n+1,q)$: parameters (q,q^0) . ((n-1)-space on $Q^+(2n+1,q)$ lies in two generators.)

ERDŐS-KO-RADO PROBLEM IN FINITE CLASSICAL POLAR SPACES

Problem:

- What are largest sets of generators in finite classical polar space P, pairwise intersecting non-trivially?
- All generators of P through fixed point (point-pencil = p.-p.).

ERDŐS-KO-RADO PROBLEM IN FINITE CLASSICAL POLAR SPACES

Problem:

- What are largest sets of generators in finite classical polar space P, pairwise intersecting non-trivially?
- Sometimes different largest Erdős-Ko-Rado sets.
- *W*(5, *q*), *q* odd: Largest Erdős-Ko-Rado sets of planes:
 - all planes of W(5, q), q odd, through given point,
 - all planes of W(5, q), q odd, intersecting given plane π in line, including π .

W(5,q), q odd

RESULTS FOR FINITE CLASSICAL POLAR SPACES

Polar space	Maximum size	Classification
$Q^{-}(2n+1,q)$	$(q^2+1)\cdots(q^n+1)$	pp.
Q(4n, q)	$(q+1)\cdots(q^{2n-1}+1)$	pp.
$Q(4n+2,q), n \geq 2$	$(q+1)\cdots(q^{2n}+1)$	pp., Latins $Q^{+}(4n + 1, q)$
Q(6, q)	$(q+1)(q^2+1)$	pp., Latins $Q^+(5, q)$, base
$Q^+(4n+1,q)$	$(q+1)\cdots(q^{2n}+1)$	all Latins
Latins $Q^+(4n+3, q)$, $n \ge 2$	$(q+1)\cdots(q^{2n}+1)$	pp.
Latins $Q^+(7,q)$	$(q+1)(q^2+1)$	pp., meeting Greek in plane
$ W(4n+1,q), n \geq 2, $ q odd	$(q+1)\cdots(q^{2n}+1)$	pp.
$W(4n+1,q), n \geq 2,$ q even	$(q+1)\cdots(q^{2n}+1)$	pp., Latins $Q^{+}(4n + 1, q)$
W(5, q), q odd	$(q+1)(q^2+1)$	pp., base,
W(5, q), q even	$(q+1)(q^2+1)$	pp., base, Latins $Q^+(5, q)$
W(4n + 3, q)	$(q+1)\cdots(q^{2n+1}+1)$	pp.
H(2n, q ²)	$(q^3+1)(q^5+1)\cdots(q^{2n-1}+1)$	pp.
$H(4n+3,q^2)$	$(q+1)(q^3+1)\cdots(q^{4n+1}+1)$	pp.
$H(4n+1, q^2), n \ge 2$	$< \Omega /(q^{2n+1}+1)$?
$H(5, q^2)$	$q(q^4+q^2+1)+1$	base

CL-SETS OF GENERATORS IN CLASSICAL POLAR SPACES

DEFINITION

Let \mathcal{L} be set of k-spaces in PG(2k + 1, q) with characteristic function χ . Then following are equivalent:

- Some integer x for which $|\mathcal{L} \cap \mathcal{S}| = x$ for every k-spread in PG(2k+1,q).
- Some integer x for which $|\mathcal{L} \cap \mathcal{S}| = x$ for every regular k-spread in PG(2k + 1, q).
- $\chi \in \text{row}(A) \ (\Leftrightarrow \chi \in \text{ker}(A^T)^{\perp}).$
- Some integer x such that for every k-space π , number of elements of \mathcal{L} disjoint from π is $(x \chi(\pi))q^{(k+1)k}$.
- Some integer x such that $\chi \frac{x}{q^{k+1}+1}j$ is eigenvector of K for eigenvalue $\tau = -q^{(k+1)k}$.

EIGENSPACES OF GRAPH Γ_j

• Γ_j : $\Pi_1 \sim_j \Pi_2$ if and only if

$$\dim(\Pi_1 \cap \Pi_2) = \dim \Pi_1 - j = \dim \Pi_2 - j.$$

- A_i: symmetric matrix: real eigenvalues.
- $\mathbb{R}\Omega = V_0 \perp V_1 \perp \cdots \perp V_N$.
- V_0, \ldots, V_N are eigenspaces for all graphs $\Gamma_0, \ldots, \Gamma_N$.

•

$$V_0 = \langle (1, \ldots, 1) \rangle.$$

ROW(A)

THEOREM

 $\mathbb{R}\Omega = V_0 \perp V_1 \perp \cdots \perp V_N$.

Let A be point-generator incidence matrix of P, then

$$row(A) = V_0 \perp V_1$$
.

TYPE I

Type I:
$$Q^-(2d+1,q)$$
, $Q(4n,q)$, $Q^+(4n+1,q)$, $W(4n-1,q)$ and $H(n,q^2)$.

Let *P* be finite classical polar space of type I, let *A* be point-generator incidence matrix.

Let $\mathcal L$ be set of generators of P with characteristic vector χ and let

$$x = \frac{|\mathcal{L}|}{\prod_{i=0}^{d-2} (q^{e+i} + 1)}.$$

Then following statements are equivalent:

TYPE I

Type I:
$$Q^-(2d+1,q)$$
, $Q(4n,q)$, $Q^+(4n+1,q)$, $W(4n-1,q)$ and $H(n,q^2)$.

• For each fixed generator π of P, number of generators of $\mathcal L$ disjoint from π equals

$$(x-(\chi)_{\pi})q^{(d-1)(d-2)/2+e(d-1)}$$
.

- The vector $\chi \frac{\chi}{q^{i+e-1}+1}j$ is contained in eigenspace of K for eigenvalue $-q^{(d-1)(d-2)/2+e(d-1)}$. (K = generator disjointness matrix)
- $\chi \in \text{row}(A) \ (\Leftrightarrow \chi \in (\text{ker}(A))^{\perp}).$

TYPE I

Type I:
$$Q^-(2d+1,q)$$
, $Q(4n,q)$, $Q^+(4n+1,q)$, $W(4n-1,q)$ and $H(n,q^2)$.

If *P* has spread *S*, then also following two equivalences:

- $|\mathcal{L} \cap S| = x$ for every spread S of P.
- $|\mathcal{L} \cap S| = x$ for every spread $S \in C$ of P, with C class of spreads which is union of orbits under group acting transitively on pairs of disjoint generators of P.

Type II: $Q^+(2d-1,q)$, d even. Similar definitions, but restrict to \mathcal{G} : one class of generators of $Q^+(2d-1,q)$, d even.

Type III: Q(4n + 2, q), all q, and W(4n + 1, q), q even. Let P be finite classical polar space of type III, let B be incidence matrix of generators and hyperbolic classes of P. Then

$$row(B) = V_0 \perp V_1 \perp V_d.$$

Type III: Q(4n+2,q), all q, and W(4n+1,q), q even. Let B be incidence matrix of generators and hyperbolic classes of P, let K be generator disjointness matrix of P. Let $\mathcal L$ be set of generators of P with characteristic vector χ and let

$$x = \frac{|\mathcal{L}|}{\prod_{i=1}^{d-2} (q^i + 1)}.$$

Then following statements are equivalent:

Type III: Q(4n+2, q), all q, and W(4n+1, q), q even.

• For each fixed generator π of P, number of generators of $\mathcal L$ disjoint from π equals

$$(x-(\chi)_{\pi})q^{(d-1)(d-2)/2}$$
.

- The vector $\chi \frac{\chi}{q^d+1}j$ is contained in eigenspace of K for eigenvalue $-q^{d(d-1)/2}$.
- $\chi \in \text{row}(B) \ (\Leftrightarrow \chi \in (\text{ker}(B))^{\perp}).$

Type III: Q(4n+2,q), all q, and W(4n+1,q), q even. If P has spread S, then also following two equivalences:

- $|\mathcal{L} \cap S| = x$ for every spread S of P.
- $|\mathcal{L} \cap S| = x$ for every spread $S \in C$ of P, with C class of spreads which is union of orbits under group acting transitively on pairs of disjoint generators of P.

EXAMPLES OF CAMERON-LIEBLER SETS

All generators of P through fixed point (point-pencil = p.-p.) is Cameron-Liebler set with x = 1.

EXAMPLES OF CAMERON-LIEBLER SETS

- Partial ovoid = set of points sharing at most one point with every generator.
- Ovoid = set of points sharing one point with every generator.
- Partial ovoid of size x defines Cameron-Liebler set with parameter x.

CHARACTERIZATION THEOREMS

THEOREM

Let \mathcal{P} be finite classical polar space of type I of rank d with parameter e, and let \mathcal{L} be Cameron-Liebler set of \mathcal{P} with parameter x.

The number of elements of $\mathcal L$ meeting a generator π in a (d-i-1)-space equals

$$\begin{pmatrix} (x-1) \begin{bmatrix} d-1 \\ i-1 \end{bmatrix}_q + q^{i+e-1} \begin{bmatrix} d-1 \\ i \end{bmatrix}_q \end{pmatrix} q^{(i-1)(i-2)/2 + (i-1)e}, \pi \in \mathcal{L}$$

$$x \begin{bmatrix} d-1 \\ i-1 \end{bmatrix}_q q^{(i-1)(i-2)/2 + (i-1)e}, \pi \notin \mathcal{L}.$$

Type	Polar space	condition	classification
I	$Q^{-}(2d+1,q)$	$x \leq q + 1$	x point-pencils or
			generators of $Q(2d, q)$ ($x = q + 1$)
	Q(4n, q)	$x \leq 2$	x point-pencils or
			generators of $Q^+(4n-1,q)$ ($x=2$)
I	$Q^{+}(4n+1,q)$	x = 1	point-pencil
I	$\mathcal{H}(2d-1,q^2)$	x = 1	point-pencil
- 1	$\mathcal{H}(2d, q^2)$	$x \leq q + 1$	x point-pencils or
			generators of $\mathcal{H}(2d-1,q^2)$ $(x=q+1)$
I	$\mathcal{W}(4n+3,q), q$ even	<i>x</i> ≤ 2	x point-pencils
			generators of $Q^+(4n+3,q)$ (x = 2)
1	$\mathcal{W}(4n+3,q), q \text{ odd}$	<i>x</i> ≤ 2	x point-pencils
II	one class of $Q^+(4n+3,q)$	x = 1	point-pencil
П	one class of $Q^+(7,q)$	$x \leq \frac{\sqrt{3}-1}{2}q$	x point-pencils or
	that admits a spread	_	x base-solids
III	$Q(4n+2,q), n \geq 2$	x = 1	point-pencil or hyperbolic class
III	Q(6,q)	x = 1	point-pencil, hyperbolic class
			or base plane
III	$W(4n+1,q), q \text{ even}, n \geq 2$	x = 1	point-pencil or hyperbolic class
III	$\mathcal{W}(5,q), q$ even	x = 1	point-pencil, hyperbolic class
			or base plane
	$W(4n+1,q), n \geq 2$		no characterisation known

THEOREM (DE BEULE AND DE BOECK)

Let $\mathcal P$ be finite classical polar space of rank $d \geq 3$ and parameter $e \geq 1$, embedded in projective space over $\mathbb F_q$ and let $\mathcal S$ be set of generators of $\mathcal P$ such that

(1) for every i = 0, ..., d, number of elements of S meeting generator π in (d - i - 1)-space equals

$$\begin{cases} \left(\begin{bmatrix} d-1 \\ i-1 \end{bmatrix}_q + q^i \begin{bmatrix} d-1 \\ i \end{bmatrix}_q \right) q^{\binom{i-1}{2} + ie - 1} & \text{if } \pi \in \mathcal{S} \\ \left(q^{e-1} + 1 \right) \begin{bmatrix} d-1 \\ i-1 \end{bmatrix}_q q^{\binom{i-1}{2} + (i-1)e} & \text{if } \pi \notin \mathcal{S} \end{cases}$$

THEOREM (DE BEULE AND DE BOECK)

- (II) for every point P of $\mathcal P$ there is generator $\pi \notin \mathcal S$ through P;
- (III) for every point P of \mathcal{P} and every generator $\pi \notin \mathcal{S}$ through P, there are either $(q^{e-1}+1) \begin{bmatrix} d-2 \\ j \end{bmatrix}_q q^{\binom{j}{2}+je}$ generators of \mathcal{L} through P meeting τ in (d-j-2)-space, for all $j=0,\ldots,d-2$, or there are no generators of \mathcal{L} through P meeting τ in (d-j-2)-space, for all $j=0,\ldots,d-2$.

Then S is set of generators of classical polar space of rank d and with parameter e-1 embedded in P.

Type	Polar space	condition	classification
I	$Q^{-}(2d+1,q)$	$x \leq q + 1$	x point-pencils or
			generators of $Q(2d, q)$ ($x = q + 1$)
	Q(4n, q)	$x \leq 2$	x point-pencils or
			generators of $Q^+(4n-1,q)$ ($x=2$)
I	$Q^{+}(4n+1,q)$	x = 1	point-pencil
I	$\mathcal{H}(2d-1,q^2)$	x = 1	point-pencil
- 1	$\mathcal{H}(2d,q^2)$	$x \leq q + 1$	x point-pencils or
			generators of $\mathcal{H}(2d-1,q^2)$ $(x=q+1)$
I	$\mathcal{W}(4n+3,q), q$ even	<i>x</i> ≤ 2	x point-pencils
			generators of $Q^+(4n+3,q)$ (x = 2)
1	$\mathcal{W}(4n+3,q), q \text{ odd}$	<i>x</i> ≤ 2	x point-pencils
II	one class of $Q^+(4n+3,q)$	x = 1	point-pencil
П	one class of $Q^+(7,q)$	$x \leq \frac{\sqrt{3}-1}{2}q$	x point-pencils or
	that admits a spread	_	x base-solids
III	$Q(4n+2,q), n \geq 2$	x = 1	point-pencil or hyperbolic class
III	Q(6,q)	x = 1	point-pencil, hyperbolic class
			or base plane
III	$W(4n+1,q), q \text{ even}, n \geq 2$	x = 1	point-pencil or hyperbolic class
III	$\mathcal{W}(5,q), q$ even	x = 1	point-pencil, hyperbolic class
			or base plane
	$W(4n+1,q), n \geq 2$		no characterisation known

OUTLINE

- CAMERON-LIEBLER SETS IN FINITE PROJECTIVE SPACES
- 2 CAMERON-LIEBLER SETS IN FINITE CLASSICAL POLAR SPACES
- \odot Cameron-Liebler sets for ordered q-tuples

• F_q^d : set of *d*-tuples over $\{1, \ldots, q\}$.

•

$$x \sim_i y \Leftrightarrow d_H(x, y) = d - i$$
.

(x and y differ in i positions)

- **Spread:** set of *q d*-tuples, pairwise at distance *d*.
- Classical example:

CAMERON-LIEBLER SETS FOR ORDERED q-TUPLES

DEFINITION

Cameron-Liebler set with parameter x in F_q^d : set of d-tuples sharing x d-tuples with every spread.

Classical example:

```
1 * · · · *

: : : : :

x * · · · *
```


Cameron-Liebler sets for ordered q-tuples

THEOREM

For every x, with $1 \le x \le q$, there exists Cameron-Liebler set with parameter x in F_q^d .

Up to equivalence, equivalent to

```
1 * ··· *

: : : : :

X * ··· *
```

Symmetry group of F_q^d implies: spread contains precisely x elements of Cameron-Liebler set with parameter x, so q-x elements of spread not in Cameron-Liebler set.

Cameron-Liebler sets for ordered q-tuples

Proof:

Up to equivalence:

in Cameron-Liebler set with parameter x.

Cameron-Liebler sets for ordered q-tuples

Backward induction:

• Up to equivalence:

```
1 ··· 1 *
: : : : :
x ··· x *
```

in Cameron-Liebler set with parameter x (by finding spread with q-x other elements not in Cameron-Liebler set).

CAMERON-LIEBLER SETS FOR ORDERED q-TUPLES

Backward induction:

• Up to equivalence:

```
1 * ··· *
: : : : :
X * ··· *
```

in Cameron-Liebler set with parameter x (by finding spread with q-x other elements not in Cameron-Liebler set).

OPEN PROBLEMS

- Modular equality for Cameron-Liebler k-sets in PG(2k + 1, q)?
- Cameron-Liebler sets of generators in W(4n + 1, q), n > 2?
- Classification results for Cameron-Liebler sets with parameter x in finite classical polar spaces?
- · Cameron-Liebler sets in other settings?

Cameron-Liebler sets in finite projective spaces
Cameron-Liebler sets in finite classical polar spaces
Cameron-Liebler sets for ordered *q*-tuples

Thank you very much for your attention

