# On the metric dimension of affine planes, biaffine planes and generalized quadrangles

#### Marcella Takáts

(Eötvös Loránd University, Budapest)
Joint work with Daniele Bartoli, Tamás Héger and
György Kiss

Fifth Irsee Conference 10-16 September 2017 Irsee, Germany Let G=(V,E) be a simple graph. d(x,y): distance of x and  $y,\,x,y\in V$   $S=\{s_1,s_2,\ldots,s_k\}$  vertex set



$$d(x, s_1)$$

$$d(x, s_2)$$

$$\cdots$$

 $d(x, s_k)$ 

 $\boldsymbol{x}$  is resolved by  $\boldsymbol{S}$  if its distance list is different from all the other distance lists

## Definition (Resolving set)

The subset  $S = \{s_1, \ldots, s_k\} \subset V$  is a resolving set, if the ordered distance lists  $(d(x, s_1), \ldots, d(x, s_k))$  are different for all  $x \in V$ .

#### In other words:

$$S = \{s_1, \dots, s_k\} \subset V \text{ is a resolving set } \iff \forall x, y \in V \ \exists z \in S \colon d(x, z) \neq d(y, z).$$

#### Definition (Metric dimension)

The metric dimension  $\mu(G)$  is the size of the smallest resolving set in G.

#### Definition (Metric basis)

The metric basis of G is a resolving set for G of size  $\mu(G)$ .

Let  $G = (A \cup B, E)$  be a bipartite graph.

split resolving set:

 $S_A \subset A$  resolves B $S_B \subset B$  resolves A



 $S_A$  and  $S_B$  are called semi-resolving sets.

Incidence graphs of partial linear spaces (point-line incidence structures): projective planes, affine planes, biaffine planes, generalized quadrangles



#### metric dimension:

- first introduced by Harary and Melter and (independently) by Slater in the 1970s
- a survey of Bailey and Cameron (2011)
- distance regular graphs: natural class of graphs to consider

## Definition (Distance regular graph)

G(V,E) with diameter d is distance regular if  $\forall i: 0 \leq i \leq d$  for any  $x,y \in V$ , d(x,y)=i the number of neighbours of x at distances i-1,i,i+1 from y depend only on i.

• interesting classes of distance regular graphs: d=2 strongly regular graphs, distance transitive graphs (i.e. for any  $x,y,x',y'\in V$  s. t. d(x,y)=d(x',y')  $\exists$  automorphism  $g\colon x^g=x',\,y^g=y'$ )

## Definition (Distance regular graph)

G(V,E) with diameter d is distance regular if  $\forall i: 0 \leq i \leq d$  for any  $x,y \in V$ , d(x,y)=i the number of neighbours of x at distances i-1,i,i+1 from y depend only on i.

- method of Robert Bailey  $\Longrightarrow$  imprimitive distance regular graphs, except some cases, e.g. bipartite graphs with d=3,4
- 2011: Bailey asked for the metric dimension of the incidence graphs of finite projective planes
- 2012: Tamás Héger, M. T.: answered

- 2015: Bailey's computer calculations on small distance regular graphs; some missing cases, e.g. the incidence graph of the Desarguesian biaffine plane of order 7 and GQ(4,4)
- 2015: György Kiss asked for the metric dimension of the incidence graphs of other point-line geometries
- 2017: Daniele Bartoli, T. Héger, Gy. Kiss, M. T.: answer for affine planes, partial results for biaffine planes and generalized quadrangles

# Congratulations to Daniele for Kirkman medal!

## Incidence graphs of partial linear spaces:

- projective planes: distance regular graphs
- PG(2,q): distance transitive graphs
- biaffine planes: distance regular graphs

## Resolving sets:

- nice combinatorial point-line incidence structures
- natural connection with blocking sets and (almost) double blocking sets
- thus we can use stability results for blocking sets

## Notation and preliminaries

 $G=(\mathcal{P},\mathcal{L},E)$ : incidence graph of a partial linear space  $(P,\ell)$  edge  $\Leftrightarrow P\in \ell$ 



$$S=(\mathcal{P}_S\cup\mathcal{L}_S) \text{ resolving set in }\Pi \Longleftrightarrow \\ S \text{ is a resolving set in the incidence graph}$$

$$d(P,\ell) = 1 \text{ or } 3, \ d(\ell_1,\ell_2) = 2 \text{ or } 4, \ d(P_1,P_2) = 2 \text{ or } 4$$

# Notation and preliminaries

- Π: partial linear space (projective, affine, biaffine plane, generalized quadrangle)
- $S = \mathcal{P}_S \cup \mathcal{L}_S$ : set in the incidence graph of  $\Pi$
- ullet PQ: line joining two distinct points P and Q
- [P]: set of lines through a point P
- $[\ell]$ : set of points on a line  $\ell$
- P is incident with a line  $\ell \leftrightarrow P$  blocks  $\ell$  and  $\ell$  covers P
- blocking set, covering set
- inner points, inner lines; outer points, outer lines
- tangent line  $\longleftrightarrow$  1-covered point
- skew line ←→ not covered point

#### Lemma

Let  $S = \mathcal{P}_S \cup \mathcal{L}_S$ ,  $\ell$  be a line in  $\Pi$ . If  $|[\ell] \cap \mathcal{P}_S| \ge 2$  then  $\ell$  is resolved by S.

Dually, let P be a point in  $\Pi$ . If  $|[P] \cap \mathcal{L}_S| \ge 2$  then P is resolved by S.

- Points and lines in S are resolved (trivial)
- (At least) 2-secants are resolved
- (At least) 2-covered points are resolved

We have to distinguish:

- ullet tangents and skew lines (to  $\mathcal{P}_S$ )
- 1-covered points and not covered points (by  $\mathcal{L}_S$ )

"Almost" double blocking sets: resolving sets for lines

# Projective planes

#### Proposition (T. Héger, M. Takáts, 2012)

The metric dimension of a projective plane of order  $q \ge 23$  is 4q-4.

• List of the metric basises (resolving sets of size 4q-4) if  $q \geq 23$ .

## Proposition (T. Héger, P. Szilárd)

The metric dimension of any projective plane of order  $q \ge 13$  is 4q-4.

## Projective planes

#### **Proposition**

 $S = \mathcal{P}_S \cup \mathcal{L}_S$  is a resolving set in a finite projective plane if and only if the following properties hold for S:

- P1 There is at most one outer line skew to  $\mathcal{P}_S$ .
- P1' There is at most one outer point not covered by  $\mathcal{L}_S$ .
- P2 Through every inner point there is at most one outer line tangent to  $\mathcal{P}_S$ .
- P2' On every inner line there is at most one outer point that is 1-covered by  $\mathcal{L}_S$ .

# Example



# Projective planes



And we need 2 more objects in addition: 2 lines or 1 point and 1 line surprisingly many (more than 30) different types





## Projective planes

- purely combinatorial methods, works for all projective planes
- open question: metric dimension if q is small ( $q \le 13$ )

Fano plane: 
$$\mu(PG(2,2)) = 5$$

 $\mu(\mathrm{PG}(2,4)) = 10$  construction: hyperoval









- purely combinatorial methods
- we can deduce it from the projective case
- incidence graph is not distance regular
- note:  $d(\ell_1, \ell_2) = 2$  or 4 in the incidence graph
- d is a covered direction,
   if L<sub>S</sub> contains a line with direction d

## **Proposition**

- $S = \mathcal{P}_S \cup \mathcal{L}_S$  is a resolving set for an affine plane if and only if the following properties hold for S:
  - A1 There is at most one not covered outer point.
  - A1' On every inner line, there is at most one 1-covered outer point.
  - A2 For each covered direction d, there is at most one outer skew line with direction d. There is at most one outer skew line having a not covered direction.
  - A2' For each inner point, there is at most one tangent line having not covered direction.

## **Proposition**

Let  $S=\mathcal{P}_S\cup\mathcal{L}_S$  be a resolving set for the affine plane  $\Pi$ , and suppose that there is a direction  $d\in\ell_\infty$  that contains at least two lines of  $\mathcal{L}_S$ . Let  $\overline{\mathcal{P}_S}=\mathcal{P}_S\cup([\ell_\infty]\setminus\{d\})$ . Then  $\overline{S}=(\overline{\mathcal{P}_S},\mathcal{L}_S)$  is a resolving set for  $\overline{\Pi}$ .

## Proposition

Let  $S = \mathcal{P}_S \cup \mathcal{L}_S$  be a resolving set for an arbitrary affine plane  $\Pi$  of order q. If  $|S| \leq 3q - 4$  then  $|\mathcal{L}_S| \geq 2q - 3$ .

#### Theorem

Let  $\Pi$  be an arbitrary affine plane of order  $q \geq 13$ . Then the metric dimension of  $\Pi$  is 3q-4.

 List of the metric basises: derived from the projective metric basises.



We need 1 more object in addition: only 4 different types



#### Definition

 $B_q$ : biaffine plane of order q derived from an affine plane of order q by removing a parallel class of lines





- q<sup>2</sup> points, q<sup>2</sup> lines
- each point is incident with q lines,
   each line is incident with q points
- for a non-incident  $(P, \ell)$ : there is exactly one line through P not intersecting  $\ell$ , there is exactly one point lying on  $\ell$  not collinear with P
- q parallel classes, q non-adjacency classes, each containing q elements
- uniquely embeddedable into a projective plane of order q
- incidence graph is distance regular

Biaffine planes are also called flag-type elliptic semiplanes (due to Dembowski)

- semiplane:
  - $\forall 2$  points are connected with  $\leq 1$  line
  - for a non-incident  $(P,\ell)$ : there is at most one line through P not intersecting  $\ell$ , there is at most one point lying on  $\ell$  not collinear with P
  - ullet every vertex has degree  $\geq 3$  in the incidence graph

elliptic: incidence graph is regular From a projective plane throw out a

- whole line (line and the points incident with it)
- whole pencil (point and the lines incident with it)

Flag-type: the deleted point and line are incident Antiflag-type: not incident

Let  $S = \mathcal{P}_S \cup \mathcal{L}_S$  be a vertex set of a biaffine plane.

#### Notation

- d is a covered direction,
   if L<sub>S</sub> contains a line with direction d.
- C is a blocked non-adjacency class, if  $\mathcal{P}_S$  contains a point from C.
- for a line  $\ell$ ,  $C(\ell)$ : parallel class containing  $\ell$
- for a point P, C(P): non-adjacency class containing P

## Proposition

 $S = \mathcal{P}_S \cup \mathcal{L}_S$  is a resolving set for a biaffine plane if and only if the following properties hold for S:

- B1 For each blocked class C, there is at most one uncovered outer point in C; furthermore, there is at most one outer uncovered point in the union of unblocked classes.
- B1' On each inner line, there is at most one 1-covered point lying in an unblocked class.
- B2 For each covered direction d, there is at most one skew outer line with direction d; furthermore, there is at most one outer skew line having an uncovered direction.
- B2' On each inner point, there is at most one tangent line with uncovered direction.

#### Lower bound:

## Proposition

Let S be a resolving set for  $B_q$ . Then  $|\mathcal{P}_S| \ge q - |S|/(q-1)$  and  $|\mathcal{L}_S| \ge q - |S|/(q-1)$ .

#### **Proposition**

For any biaffine plane  $B_q$  of order q, we have  $\mu(B_q) \geq 2q - 2$ .

Upper bound:

## Proposition

If 
$$q \ge 4$$
 then  $\mu(B_q) \le 3q - 6$ .

We give a construction of a resolving set of size 3q - 6.



## Sharpness of the bounds

#### Notation:

Let  $\tau(\Pi)$ : size of the smallest blocking set in a finite plane  $\Pi$ 

#### Construction:

- $\Pi_q$  projective plane, P point,  $\ell$  line
- $\Pi_q \setminus [\ell]$ : affine plane,  $\Pi_q \setminus [P]$ : dual affine plane  $(\Pi_q \setminus [P])^*$ : dual of  $\Pi_q \setminus [P]$
- Let  $\mathcal{B}$ : blocking set in  $\Pi_q \setminus [\ell]$ ,  $\mathcal{C}$ : covering set in  $\Pi_q \setminus [P]$ , assume that  $P \in \ell$ .
- Then  $B_{\ell,P} := \Pi_q \setminus ([\ell] \cup [P])$  is a biaffine plane.
- $\mathcal{B} \cup \mathcal{C}$ : resolving set in B; moreover,
- for any point  $Q \in \mathcal{B}$  and any line  $r \in \mathcal{C}$ ,  $(\mathcal{B} \setminus \{Q\}) \cup (\mathcal{C} \setminus \{r\})$ : resolving set for  $B_{\ell,P}$ ; hence

$$\mu(B_{\ell,P}) \le \tau((\Pi_q \setminus [P])^*) + \tau(\Pi_q \setminus [\ell]) - 2$$

## Sharpness of the bounds

$$\mu(B_{\ell,P}) \le \tau((\Pi_q \setminus [P])^*) + \tau(\Pi_q \setminus [\ell]) - 2$$

Let  $A_q$ : affine plane of order q

- General bound:  $\tau(A_q) \ge q + \sqrt{q} + 1$  its sharpness is wide open
- Recent result:  $\exists A_q$  (Hall plane) such that  $\tau(A_q) \leq 4q/3 + 5\sqrt{q}/3$  (De Beule, Héger, Szőnyi, Van de Voorde)

"Conjecture:" There exist a non-Desarguesian biaffine plane B such that  $\mu(B) \ll 3q$ .

No general bound?

# Desarguesian biaffine planes

BG(2,q): derived from AG(2,q) $\mathcal{P}_S$ : almost blocking set in  $B_q \Rightarrow$ we can use stability results

#### Definition

For a point  $P \in B_q$  and a point-set  $\mathcal{X}$ , let the index of P with respect to  $\mathcal{X}$ ,  $\operatorname{ind}_{\mathcal{X}}(P)$ , be the number of skew lines through P to  $\mathcal{X}$ .

#### Result (Blokhuis-Brouwer)

Let  $\mathcal{B}$  be a blocking set of PG(2,q). Then each essential point of  $\mathcal{B}$  is incident with at least  $2q + 1 - |\mathcal{B}|$  tangents to  $\mathcal{B}$ .

#### Result (Szőnyi–Weiner)

Let  $\mathcal B$  be a set of points in  $\mathrm{PG}(2,q)$ , q=p prime, with at most  $\frac32(q+1)-\varepsilon$  points. Suppose that the number  $\delta$  of skew lines to  $\mathcal B$  is less than  $\left(\frac23(\varepsilon+1)\right)^2/2$ . Then there is a line that contains at least  $q-\frac{2\delta}{q+1}$  points of  $\mathcal B$ .

#### Result (Szőnyi-Weiner)

Let  $\mathcal B$  be a set of points in  $\operatorname{PG}(2,q),\,q=p^h,\,h\geq 2$ . Denote the number of skew lines to  $\mathcal B$  by  $\delta$  and suppose that  $\delta\leq \frac{1}{100}pq$ . Assume that  $|\mathcal B|<\frac{3}{2}(q+1-\sqrt{2\delta})$ . Then  $\mathcal B$  can be extended to a blocking set by adding at most

$$\frac{\delta}{2q+1-|\mathcal{B}|} + \frac{1}{100}$$

points to it.

#### Theorem (Lower bound)

Suppose that  $S = \mathcal{P}_S \cup \mathcal{L}_S$  is a resolving set for  $\mathrm{BG}(2,q)$ ,  $q = p^h$ , p prime. Assume that

- (i) h = 1 and  $q = p \ge 17$ , or
- (ii)  $h \ge 2$  and  $p \ge 400$ .

Then  $|S| > 3q - 9\sqrt{q}$ .

### Result (Metsch; Szőnyi-Weiner)

Let  $\mathcal B$  be a point set in  $\operatorname{PG}(2,q)$ . Pick a point P not from  $\mathcal B$  and assume that through P there pass exactly r lines meeting  $\mathcal B$  (that is containing at least 1 point of  $\mathcal B$ ). Then the total number of lines meeting  $\mathcal B$  is at most

$$1 + rq + (|\mathcal{B}| - r)(q + 1 - r).$$

Equivalent formulation of the above result:

#### Result

Let  $\delta$  denote the number of skew lines to a point set  $\mathcal{B}$  in  $\operatorname{PG}(2,q)$ . Then for any point  $P \notin \mathcal{B}$ ,  $\operatorname{ind}_{\mathcal{B}}(P)^2 - (2q+1-|\mathcal{B}|)\operatorname{ind}_{\mathcal{B}}(P) + \delta \geq 0$ 

meaning: the index of a point is either small or large

#### Theorem (General lower bound)

The metric dimension of BG(2,q) is at least 8q/3-7.

### Background

For Your Interest:

For  $r \in \mathbb{R}$ , let  $r^+ := \max\{0, r\}$ .

### Lemma (Szőnyi-Weiner Lemma)

Let  $u,v\in \mathrm{GF}(q)[X,Y]$ . Suppose that the term  $X^{\deg(u)}$  has non-zero coefficient in u(X,Y). For  $y\in \mathrm{GF}(q)$ , let  $k_y:=\deg\gcd(u(X,y),v(X,y))$ , where  $\gcd$  denotes the greatest common divisor of the two polynomials in  $\mathrm{GF}(q)[X]$ . Then for any  $y\in \mathrm{GF}(q)$ ,

$$\sum_{y' \in GF(q)} (k_{y'} - k_y)^+ \le (\deg u(X, Y) - k_y)(\deg v(X, Y) - k_y).$$

### Summary

#### Upper bound:

• If  $q \ge 4$  then  $\mu(B_q) \le 3q - 6$ .

#### Lower bound:

- For any  $B_q$  we have  $\mu(B_q) \geq 2q 2$ .
- For  $\mathrm{BG}(2,q),\,q=p^h,\,p$  prime, if (i) h=1 and  $q=p\geq 17$ , or (ii)  $h\geq 2$  and  $p\geq 400$ , then  $\mu(\mathrm{BG}(2,q))>3q-9\sqrt{q}$ .
- $\mu(BG(2,q)) \ge 8q/3 7$ .

# Generalized quadrangles

GQ(s,1): grid

Metric dimension of grid graphs are known:

### Theorem (Cáceres et al.)

Let  $G_{n,m}$  be an  $n \times m$  grid, with  $n \ge m \ge 1$ . The metric dimension of  $G_{n,m}$  is given by

$$\mu(G_{n,m}) = \left\{ \begin{array}{l} \left\lfloor \frac{2(n+m-1)}{3} \right\rfloor, & \text{if } m \le n \le 2m-1, \\ n-1, & \text{if } n \ge 2m. \end{array} \right.$$

### Corollary

The metric dimension of GQ(s,1) is  $\varphi(s)$ , with

$$\varphi(s) = \begin{cases} 4r + 1, & \text{if } s = 3r, \\ 4r + 2, & \text{if } s = 3r + 1, \\ 4r + 3, & \text{if } s = 3r + 2. \end{cases}$$

### Proposition

The metric dimension of any GQ(q,q) is at least  $\max\{6q-27,4q-7\}$ .

### Proposition

There exists a semi-resolving set of size 4q for the points of W(q).

#### Construction:

 $a_1, a_2, a_3$ : three pairwise skew lines of  $W(q) \Rightarrow$  define a hyperbolic quadric  $\mathcal{H}$  in PG(3, q).

 $\mathbf{a_4}$ : a line of W(q) which has empty intersection with  $\mathcal{H}$ .

 $\mathcal{P}_S = [a_1] \cup [a_2] \cup [a_3] \cup [a_4]$ : semi-resolving set of size 4q + 4 for the points of W(q).

Deleting one point from each line  $a_1, a_2, a_3, a_4 \Rightarrow$  the remaining points: semi-resolving set of size 4q for the points of W(q).

- If q is even
- then W(q) is self-dual,
- hence the dual of a semi-resolving set for the points
- is a semi-resolving set for the lines.

### Corollary

If q is even then the metric dimension of W(q) is at most 8q.

#### Proposition

If q is odd then there is a semi-resolving set of size 5q-4 for the lines of W(q), which contains exactly q-3 points, all incident with the same line.

### Corollary

If q is odd then the metric dimension of W(q) is at most 8q - 1.

### Generalized quadrangles

#### Theorem

The metric dimension of W(q) satisfies the inequalities  $\max\{6q-27,4q-7\} \le \mu(W(q)) \le 8q$ 

### References

- D. BARTOLI, T. HÉGER, GY. KISS, M. TAKÁTS, On the metric dimension of affine planes, biaffine planes and generalized quadrangles, *submitted*, *available on ArXiv*.
- R. F. Bailey, The metric dimension of small distance-regular and strongly regular graphs. *Australas. J. Combin.* **62**:1 (2015), 18–34.
- R. F. Bailey, On the metric dimension of imprimitive distance-regular graphs. *Ann. Comb.* **20**:4 (2016), 641–659.
- T. HÉGER, M. TAKÁTS, Resolving sets and semi-resolving sets in finite projective planes, *Electron. J. Combin.* **19**:4 (2012), #P30.
- T. SZŐNYI, ZS. WEINER, Proof of a conjecture of Metsch. *J. Combin. Theory Ser. A* **118**:7 (2011), 2066–2070.

# Thanks for your attention!