On the metric dimension of affine planes, biaffine planes and generalized quadrangles

Marcella Takáts
(Eötvös Loránd University, Budapest)
Joint work with Daniele Bartoli, Tamás Héger and György Kiss

Fifth Irsee Conference
10-16 September 2017
Irsee, Germany
Let $G = (V, E)$ be a simple graph.

$d(x, y)$: distance of x and y, $x, y \in V$

$S = \{s_1, s_2, \ldots, s_k\}$ vertex set

x is resolved by S if its distance list is different from all the other distance lists.
Definition (Resolving set)

The subset \(S = \{s_1, \ldots, s_k\} \subseteq V \) is a **resolving set**, if the ordered distance lists \((d(x, s_1), \ldots, d(x, s_k))\) are different for all \(x \in V \).

In other words:

\(S = \{s_1, \ldots, s_k\} \subseteq V \) is a **resolving set** \(\iff \forall x, y \in V \ \exists z \in S : d(x, z) \neq d(y, z). \)

Definition (Metric dimension)

The **metric dimension** \(\mu(G) \) is the size of the smallest resolving set in \(G \).

Definition (Metric basis)

The **metric basis** of \(G \) is a resolving set for \(G \) of size \(\mu(G) \).
Let $G = (A \cup B, E)$ be a bipartite graph.

split resolving set:

$S_A \subset A$ resolves B

$S_B \subset B$ resolves A

S_A and S_B are called **semi-resolving sets**.
Incidence graphs of partial linear spaces (point-line incidence structures): projective planes, affine planes, biaffine planes, generalized quadrangles.
Motivation and background

Metric dimension:
- first introduced by Harary and Melter and (independently) by Slater in the 1970s
- a survey of Bailey and Cameron (2011)
- distance regular graphs: natural class of graphs to consider

Definition (Distance regular graph)

Given a graph $G(V, E)$ with diameter d, it is **distance regular** if for any $x, y \in V$, $d(x, y) = i$ the number of neighbours of x at distances $i - 1, i, i + 1$ from y depend only on i.

Interesting classes of distance regular graphs:
- $d = 2$ strongly regular graphs, distance transitive graphs (i.e. for any $x, y, x', y' \in V$ s.t. $d(x, y) = d(x', y')$ there is an automorphism $g: x^g = x', y^g = y'$).
Motivation and background

Definition (Distance regular graph)

\[G(V, E) \text{ with diameter } d \text{ is distance regular if } \forall i : 0 \leq i \leq d \text{ for any } x, y \in V, d(x, y) = i \] the number of neighbours of \(x \) at distances \(i - 1, i, i + 1 \) from \(y \) depend only on \(i \).

- theorem of Babai (in other context) \(\Rightarrow \) primitive distance regular graphs
- method of Robert Bailey \(\Rightarrow \) imprimitive distance regular graphs, except some cases, e.g. bipartite graphs with \(d = 3, 4 \)
- 2011: Bailey asked for the metric dimension of the incidence graphs of finite projective planes
- 2012: Tamás Héger, M. T.: answered
2015: Bailey’s computer calculations on small distance regular graphs; some missing cases, e.g. the incidence graph of the Desarguesian biaffine plane of order 7 and $GQ(4, 4)$

2015: György Kiss asked for the metric dimension of the incidence graphs of other point-line geometries

2017: Daniele Bartoli, T. Héger, Gy. Kiss, M. T.: answer for affine planes, partial results for biaffine planes and generalized quadrangles
Congratulations to Daniele for Kirkman medal!
Motivation and background

Incidence graphs of partial linear spaces:
- projective planes: distance regular graphs
- $PG(2, q)$: distance transitive graphs
- biaffine planes: distance regular graphs

Resolving sets:
- nice combinatorial point-line incidence structures
- natural connection with blocking sets and (almost) double blocking sets
- thus we can use stability results for blocking sets
Notation and preliminaries

\[G = (\mathcal{P}, \mathcal{L}, E) : \text{incidence graph of a partial linear space} \]
\[(P, \ell) \text{ edge} \iff P \in \ell \]

\[S = (\mathcal{P}_S \cup \mathcal{L}_S) \text{ resolving set in } \Pi \iff S \text{ is a resolving set in the incidence graph} \]

\[d(P, \ell) = 1 \text{ or } 3, \quad d(\ell_1, \ell_2) = 2 \text{ or } 4, \quad d(P_1, P_2) = 2 \text{ or } 4 \]
Notation and preliminaries

- Π: partial linear space (projective, affine, biaffine plane, generalized quadrangle)
- $S = \mathcal{P}_S \cup \mathcal{L}_S$: set in the incidence graph of Π
- PQ: line joining two distinct points P and Q
- $[P]$: set of lines through a point P
- $[\ell]$: set of points on a line ℓ
- P is incident with a line $\ell \leftrightarrow P$ blocks ℓ and ℓ covers P
- blocking set, covering set
- inner points, inner lines; outer points, outer lines
- tangent line \longleftrightarrow 1-covered point
- skew line \longleftrightarrow not covered point
Lemma

Let \(S = \mathcal{P}_S \cup \mathcal{L}_S \), \(\ell \) be a line in \(\Pi \). If \(|[\ell] \cap \mathcal{P}_S| \geq 2 \) then \(\ell \) is resolved by \(S \).

Dually, let \(P \) be a point in \(\Pi \). If \(|[P] \cap \mathcal{L}_S| \geq 2 \) then \(P \) is resolved by \(S \).

- Points and lines in \(S \) are resolved (trivial)
- (At least) 2-secants are resolved
- (At least) 2-covered points are resolved

We have to distinguish:
- tangents and skew lines (to \(\mathcal{P}_S \))
- 1-covered points and not covered points (by \(\mathcal{L}_S \))

"Almost" double blocking sets: resolving sets for lines

Marcella Takáts (Eötvös University, Budapest) On the metric dimension of affine planes, biaffine planes and gen
Proposition (T. Héger, M. Takáts, 2012)

The metric dimension of a projective plane of order $q \geq 23$ is $4q - 4$.

- List of the metric basises (resolving sets of size $4q - 4$) if $q \geq 23$.

Proposition (T. Héger, P. Szilárd)

The metric dimension of any projective plane of order $q \geq 13$ is $4q - 4$.
Proposition

$S = \mathcal{P}_S \cup \mathcal{L}_S$ is a resolving set in a finite projective plane if and only if the following properties hold for S:

- **P1** There is at most one outer line skew to \mathcal{P}_S.
- **P1’** There is at most one outer point not covered by \mathcal{L}_S.
- **P2** Through every inner point there is at most one outer line tangent to \mathcal{P}_S.
- **P2’** On every inner line there is at most one outer point that is 1-covered by \mathcal{L}_S.

Marcella Takáts (Eötvös University, Budapest)
Example

Marcella Takáts (Eötvös University, Budapest)
And we need 2 more objects in addition:
2 lines or 1 point and 1 line
surprisingly many (more than 30) different types
Marcella Takáts (Eötvös University, Budapest) On the metric dimension of affine planes, biaffine planes and generalized quadrangles
Marcella Takáts (Eötvös University, Budapest)

On the metric dimension of affine planes, biaffine planes and generalized quadrangles.
purely combinatorial methods, works for all projective planes
open question: metric dimension if q is small ($q \leq 13$)

Fano plane:

$\mu(\text{PG}(2, 2)) = 5$

$\mu(\text{PG}(2, 4)) = 10$
construction: hyperoval
purely combinatorial methods
we can deduce it from the projective case
incidence graph is not distance regular
note: $d(\ell_1, \ell_2) = 2$ or 4 in the incidence graph
d is a covered direction,
if \mathcal{L}_S contains a line with direction d
Proposition

\(S = \mathcal{P}_S \cup \mathcal{L}_S \) is a resolving set for an affine plane if and only if the following properties hold for \(S \):

- **A1** There is at most one not covered outer point.
- **A1'** On every inner line, there is at most one 1-covered outer point.
- **A2** For each covered direction \(d \), there is at most one outer skew line with direction \(d \). There is at most one outer skew line having a not covered direction.
- **A2'** For each inner point, there is at most one tangent line having not covered direction.
Proposition

Let $S = \mathcal{P}_S \cup \mathcal{L}_S$ be a resolving set for the affine plane Π, and suppose that there is a direction $d \in \ell_\infty$ that contains at least two lines of \mathcal{L}_S. Let $\overline{\mathcal{P}_S} = \mathcal{P}_S \cup ([\ell_\infty] \setminus \{d\})$. Then $\overline{S} = (\overline{\mathcal{P}_S}, \mathcal{L}_S)$ is a resolving set for $\overline{\Pi}$.

Proposition

Let $S = \mathcal{P}_S \cup \mathcal{L}_S$ be a resolving set for an arbitrary affine plane Π of order q. If $|S| \leq 3q - 4$ then $|\mathcal{L}_S| \geq 2q - 3$.
Let \(\Pi \) be an arbitrary affine plane of order \(q \geq 13 \). Then the metric dimension of \(\Pi \) is \(3q - 4 \).

List of the metric basises: derived from the projective metric basises.
We need 1 more object in addition: only 4 different types
Definition

B_q: biaffine plane of order q
derived from an affine plane of order q by
removing a parallel class of lines
Biaffine planes

- q^2 points, q^2 lines
- each point is incident with q lines, each line is incident with q points
- for a non-incident (P, ℓ):
 - there is exactly one line through P not intersecting ℓ,
 - there is exactly one point lying on ℓ not collinear with P
- q parallel classes, q non-adjacency classes, each containing q elements
- uniquely embeddable into a projective plane of order q
- incidence graph is distance regular
Biaffine planes are also called flag-type elliptic semiplanes (due to Dembowski)

semiplane:

- \(\forall 2 \) points are connected with \(\leq 1 \) line
- for a non-incident \((P, \ell)\):
 - there is at most one line through \(P \) not intersecting \(\ell \),
 - there is at most one point lying on \(\ell \) not collinear with \(P \)
- every vertex has degree \(\geq 3 \) in the incidence graph

elliptic: incidence graph is regular
From a projective plane throw out a

- whole line (line and the points incident with it)
- whole pencil (point and the lines incident with it)

Flag-type: the deleted point and line are incident
Antiflag-type: not incident
Let $S = \mathcal{P}_S \cup \mathcal{L}_S$ be a vertex set of a biaffine plane.

Notation

- **d** is a **covered direction**, if \mathcal{L}_S contains a line with direction d.
- **C** is a **blocked non-adjacency class**, if \mathcal{P}_S contains a point from C.
- For a line ℓ, **$C(\ell)$**: parallel class containing ℓ
- For a point P, **$C(P)$**: non-adjacency class containing P
Proposition

$S = \mathcal{P}_S \cup \mathcal{L}_S$ is a resolving set for a biaffine plane if and only if the following properties hold for S:

- **B1** For each blocked class C, there is at most one uncovered outer point in C; furthermore, there is at most one outer uncovered point in the union of unblocked classes.

- **B1’** On each inner line, there is at most one 1-covered point lying in an unblocked class.

- **B2** For each covered direction \vec{d}, there is at most one skew outer line with direction \vec{d}; furthermore, there is at most one outer skew line having an uncovered direction.

- **B2’** On each inner point, there is at most one tangent line with uncovered direction.
Biaffine planes

Lower bound:

Proposition

Let S be a resolving set for B_q. Then $|\mathcal{P}_S| \geq q - |S|/(q - 1)$ and $|\mathcal{L}_S| \geq q - |S|/(q - 1)$.

Proposition

For any biaffine plane B_q of order q, we have $\mu(B_q) \geq 2q - 2$.
Upper bound:

Proposition

\[\text{If } q \geq 4 \text{ then } \mu(B_q) \leq 3q - 6. \]

We give a construction of a resolving set of size \(3q - 6\).
Sharpness of the bounds

Notation:
Let $\tau(\Pi)$: size of the smallest blocking set in a finite plane Π

Construction:

- Π_q projective plane, P point, ℓ line
- $\Pi_q \setminus [\ell]$: affine plane, $\Pi_q \setminus [P]$: dual affine plane
- $(\Pi_q \setminus [P])^*$: dual of $\Pi_q \setminus [P]$
- Let \mathcal{B}: blocking set in $\Pi_q \setminus [\ell]$, \mathcal{C}: covering set in $\Pi_q \setminus [P]$, assume that $P \in \ell$.
- Then $B_{\ell,P} := \Pi_q \setminus ([\ell] \cup [P])$ is a biaffine plane.
- $\mathcal{B} \cup \mathcal{C}$: resolving set in \mathcal{B}; moreover,
- for any point $Q \in \mathcal{B}$ and any line $r \in \mathcal{C}$, $(\mathcal{B} \setminus \{Q\}) \cup (\mathcal{C} \setminus \{r\})$: resolving set for $B_{\ell,P}$; hence

$$\mu(B_{\ell,P}) \leq \tau((\Pi_q \setminus [P])^*) + \tau(\Pi_q \setminus [\ell]) - 2$$
\[\mu(B_{\ell,P}) \leq \tau((\Pi_q \setminus [P])^*) + \tau(\Pi_q \setminus [\ell]) - 2 \]

Let \(A_q \): affine plane of order \(q \)

- **General bound:** \(\tau(A_q) \geq q + \sqrt{q} + 1 \)
 - its sharpness is wide open
- **Recent result:** \(\exists A_q \) (Hall plane) such that
 \[\tau(A_q) \leq 4q/3 + 5\sqrt{q}/3 \]
 (De Beule, Héger, Szőnyi, Van de Voorde)

"Conjecture:" There exists a non-Desarguesian biaffine plane \(B \)
such that \(\mu(B) \ll 3q \).

No general bound?
Desarguesian biaffine planes

$BG(2, q)$: derived from $AG(2, q)$

P_S: almost blocking set in B_q \Rightarrow

we can use stability results

Definition

For a point $P \in B_q$ and a point-set \mathcal{X}, let the index of P with respect to \mathcal{X}, $\text{ind}_{\mathcal{X}}(P)$, be the number of skew lines through P to \mathcal{X}.

Result (Blokhuis–Brouwer)

Let \mathcal{B} be a blocking set of $PG(2, q)$. Then each essential point of \mathcal{B} is incident with at least $2q + 1 - |\mathcal{B}|$ tangents to \mathcal{B}.
Desarguesian biaffine planes

Result (Szőnyi–Weiner)

Let \(B \) be a set of points in \(PG(2, q) \), \(q = p \) prime, with at most \(\frac{3}{2}(q + 1) - \varepsilon \) points. Suppose that the number \(\delta \) of skew lines to \(B \) is less than \(\left(\frac{2}{3}(\varepsilon + 1)\right)^2 / 2 \). Then there is a line that contains at least \(q - \frac{2\delta}{q+1} \) points of \(B \).

Result (Szőnyi–Weiner)

Let \(B \) be a set of points in \(PG(2, q) \), \(q = p^h \), \(h \geq 2 \). Denote the number of skew lines to \(B \) by \(\delta \) and suppose that \(\delta \leq \frac{1}{100} pq \). Assume that \(|B| < \frac{3}{2}(q + 1 - \sqrt{2\delta}) \). Then \(B \) can be extended to a blocking set by adding at most

\[
\frac{\delta}{2q + 1 - |B|} + \frac{1}{100}
\]

points to it.

Marcella Takáts (Eötvös University, Budapest) On the metric dimension of affine planes, biaffine planes and generalized quadrangles
Desarguesian biaffine planes

Theorem (Lower bound)

Suppose that $S = \mathcal{P}_S \cup \mathcal{L}_S$ is a resolving set for $BG(2, q)$, $q = p^h$, p prime. Assume that

(i) $h = 1$ and $q = p \geq 17$, or

(ii) $h \geq 2$ and $p \geq 400$.

Then $|S| > 3q - 9\sqrt{q}$.

Marcella Takáts (Eötvös University, Budapest)
Result (Metsch; Szőnyi–Weiner)

Let \mathcal{B} be a point set in $\text{PG}(2, q)$. Pick a point P not from \mathcal{B} and assume that through P there pass exactly r lines meeting \mathcal{B} (that is containing at least 1 point of \mathcal{B}). Then the total number of lines meeting \mathcal{B} is at most

$$1 + rq + (|\mathcal{B}| - r)(q + 1 - r).$$

Equivalent formulation of the above result:

Result

Let δ denote the number of skew lines to a point set \mathcal{B} in $\text{PG}(2, q)$. Then for any point $P \notin \mathcal{B}$,

$$\text{ind}_\mathcal{B}(P)^2 - (2q + 1 - |\mathcal{B}|)\text{ind}_\mathcal{B}(P) + \delta \geq 0$$

meaning: the index of a point is either small or large
Theorem (General lower bound)

The metric dimension of $BG(2, q)$ is at least $\frac{8q}{3} - 7$.
For Your Interest:
For $r \in \mathbb{R}$, let $r^+ := \max\{0, r\}$.

Lemma (Szőnyi-Weiner Lemma)

Let $u, v \in \text{GF}(q)[X, Y]$. Suppose that the term $X^{\deg(u)}$ has non-zero coefficient in $u(X, Y)$. For $y \in \text{GF}(q)$, let $k_y := \deg \gcd(u(X, y), v(X, y))$, where \gcd denotes the greatest common divisor of the two polynomials in $\text{GF}(q)[X]$. Then for any $y \in \text{GF}(q)$,

$$\sum_{y' \in \text{GF}(q)} (k_{y'} - k_y)^+ \leq (\deg u(X, Y) - k_y)(\deg v(X, Y) - k_y).$$
Summary

Upper bound:
- If $q \geq 4$ then $\mu(B_q) \leq 3q - 6$.

Lower bound:
- For any B_q we have $\mu(B_q) \geq 2q - 2$.
- For $BG(2, q)$, $q = p^h$, p prime, if (i) $h = 1$ and $q = p \geq 17$, or (ii) $h \geq 2$ and $p \geq 400$, then $\mu(BG(2, q)) > 3q - 9\sqrt{q}$.
- $\mu(BG(2, q)) \geq 8q/3 - 7$.

Marcella Takáts (Eötvös University, Budapest)
Generalized quadrangles

$GQ(s, 1)$: grid
Metric dimension of grid graphs are known:

Theorem (Cáceres et al.)

Let $G_{n,m}$ be an $n \times m$ grid, with $n \geq m \geq 1$. The metric dimension of $G_{n,m}$ is given by

$$
\mu(G_{n,m}) = \begin{cases}
\left\lfloor \frac{2(n+m-1)}{3} \right\rfloor, & \text{if } m \leq n \leq 2m - 1, \\
n - 1, & \text{if } n \geq 2m.
\end{cases}
$$

Corollary

The metric dimension of $GQ(s, 1)$ is $\varphi(s)$, with

$$
\varphi(s) = \begin{cases}
4r + 1, & \text{if } s = 3r, \\
4r + 2, & \text{if } s = 3r + 1, \\
4r + 3, & \text{if } s = 3r + 2.
\end{cases}
$$
Proposition

The metric dimension of any $GQ(q, q)$ is at least
$\max\{6q - 27, 4q - 7\}$.
Generalized quadrangles: $GQ(q, q)$

Proposition

There exists a semi-resolving set of size $4q$ for the points of $W(q)$.

Construction:

a_1, a_2, a_3: three pairwise skew lines of $W(q)$ ⇒ define a hyperbolic quadric \mathcal{H} in $\text{PG}(3, q)$.

a_4: a line of $W(q)$ which has empty intersection with \mathcal{H}.

$\mathcal{P}_S = [a_1] \cup [a_2] \cup [a_3] \cup [a_4]$: semi-resolving set of size $4q + 4$ for the points of $W(q)$.

Deleting one point from each line a_1, a_2, a_3, a_4 ⇒ the remaining points: semi-resolving set of size $4q$ for the points of $W(q)$.

Marcella Takáts (Eötvös University, Budapest) On the metric dimension of affine planes, biaffine planes and generalized quadrangles
If \(q \) is even
then \(W(q) \) is self-dual,
hence the dual of a semi-resolving set for the points
is a semi-resolving set for the lines.

Corollary

If \(q \) is even then the metric dimension of \(W(q) \) is at most \(8q \).
Proposition

If \(q \) is odd then there is a semi-resolving set of size \(5q - 4 \) for the lines of \(W(q) \), which contains exactly \(q - 3 \) points, all incident with the same line.

Corollary

If \(q \) is odd then the metric dimension of \(W(q) \) is at most \(8q - 1 \).
Generalized quadrangles

Theorem

The metric dimension of $W(q)$ satisfies the inequalities

$$\max\{6q - 27, 4q - 7\} \leq \mu(W(q)) \leq 8q$$
Thanks for your attention!