On f-Pyramidal Steiner Triple Systems

Tommaso Traetta

joint work with S. Bonvicini, M. Buratti, and G. Rinaldi

University of Perugia

A Steiner triple system STS(v) of order v is a set S of triples of $\{1, 2, ..., v\}$ such that every pair of elements is contained in exactly one triple.

An automorphism α of $\mathcal S$ is a permutation of the point-set such that $\alpha(\mathcal S)=\mathcal S$. The set $\operatorname{Aut}(\mathcal S)$ of all automorphisms of $\mathcal S$ is called the full automorphism group Each subgroup of $\operatorname{Aut}(\mathcal S)$ is an automorphism group of $\mathcal S$.

An STS(v) is called f-pyramidal if there exists an automorphsm group fixing f points and acting sharply transitively on the others

0-pyramidal = sharply transitive

1-pyramidal = 1-rotational

There exists an STS(v) IFF $v \equiv 1,3 \pmod{6}$ (Kirkman 1847) There exists a 0-pyramidal STS(v) IFF $v \equiv 1,3 \pmod{6}$ (Peltesohn 1939)

Given an f-pyramidal STS(v), the set of f fixed points form a subsystem. Therefore,

$$f = 0$$
 or $f \equiv 1,3 \pmod{6}$, and $f = v \text{ or } f < \frac{v}{2}$.

A Steiner triple system STS(v) of order v is a set S of triples of $\{1, 2, ..., v\}$ such that every pair of elements is contained in exactly one triple.

An automorphism α of $\mathcal S$ is a permutation of the point-set such that $\alpha(\mathcal S)=\mathcal S$. The set $\operatorname{Aut}(\mathcal S)$ of all automorphisms of $\mathcal S$ is called the full automorphism group. Each subgroup of $\operatorname{Aut}(\mathcal S)$ is an automorphism group of $\mathcal S$.

An STS(v) is called f-pyramidal if there exists an automorphsm group fixing f points and acting sharply transitively on the others

0-pyramidal = sharply transitive

1-pyramidal = 1-rotational

There exists an STS(v) IFF $v \equiv 1,3 \pmod{6}$ (Kirkman 1847) There exists a 0-pyramidal STS(v) IFF $v \equiv 1,3 \pmod{6}$ (Peltesohn 1939)

Given an f-pyramidal STS(v), the set of f fixed points form a subsystem. Therefore,

$$f = 0$$
 or $f \equiv 1,3 \pmod{6}$, and $f = v \text{ or } f < \frac{v}{2}$

A Steiner triple system STS(v) of order v is a set S of triples of $\{1, 2, ..., v\}$ such that every pair of elements is contained in exactly one triple.

An automorphism α of $\mathcal S$ is a permutation of the point-set such that $\alpha(\mathcal S)=\mathcal S$. The set $\operatorname{Aut}(\mathcal S)$ of all automorphisms of $\mathcal S$ is called the full automorphism group. Each subgroup of $\operatorname{Aut}(\mathcal S)$ is an automorphism group of $\mathcal S$.

An STS(v) is called f-pyramidal if there exists an automorphsm group fixing f points and acting sharply transitively on the others

0-pyramidal = sharply transitive

1-pyramidal = 1-rotational

The Fano plane

$$I = \{\infty_1, \infty_2, \infty_3\}$$
 and $G = \mathbb{Z}_2 \times \mathbb{Z}_2$

$$\overline{G} = \{\overline{g} \mid g \in G\} \text{ where } \overline{g}(x) = \begin{cases} x + g & \text{if } x \in G, \\ x & \text{if } x \in I. \end{cases}$$

 \overline{G} maps lines to lines, fixes each point in I, and acts sharply transitively on G.

We say that the Fano plane is 3-pyramidal over \overline{G} .

There exists an STS(v) IFF $v \equiv 1,3 \pmod{6}$ (Kirkman 1847)

A Steiner triple system STS(v) of order v is a set S of triples of $\{1, 2, ..., v\}$ such that every pair of elements is contained in exactly one triple.

An automorphism α of $\mathcal S$ is a permutation of the point-set such that $\alpha(\mathcal S)=\mathcal S$. The set $\operatorname{Aut}(\mathcal S)$ of all automorphisms of $\mathcal S$ is called the full automorphism group. Each subgroup of $\operatorname{Aut}(\mathcal S)$ is an automorphism group of $\mathcal S$.

An STS(v) is called f-pyramidal if there exists an automorphsm group fixing f points and acting sharply transitively on the others

0-pyramidal = sharply transitive

1-pyramidal = 1-rotational

There exists an STS(ν) IFF $\nu \equiv 1,3 \pmod{6}$ (Kirkman 1847)

There exists a 0-pyramidal STS(ν) IFF $\nu \equiv 1,3 \pmod{6}$ (Peltesohn 1939)

Given an f-pyramidal STS(v), the set of f fixed points form a subsystem. Therefore,

$$f = 0$$
 or $f \equiv 1, 3 \pmod{6}$, and $f = v \text{ or } f < \frac{v}{2}$

A Steiner triple system STS(v) of order v is a set S of triples of $\{1, 2, ..., v\}$ such that every pair of elements is contained in exactly one triple.

An automorphism α of $\mathcal S$ is a permutation of the point-set such that $\alpha(\mathcal S)=\mathcal S$. The set $\operatorname{Aut}(\mathcal S)$ of all automorphisms of $\mathcal S$ is called the full automorphism group. Each subgroup of $\operatorname{Aut}(\mathcal S)$ is an automorphism group of $\mathcal S$.

An STS(v) is called f-pyramidal if there exists an automorphsm group fixing f points and acting sharply transitively on the others

0-pyramidal = sharply transitive

1-pyramidal = 1-rotational

There exists an STS(ν) IFF $\nu \equiv 1,3 \pmod{6}$ (Kirkman 1847)

There exists a 0-pyramidal STS(ν) IFF $\nu \equiv 1,3 \pmod{6}$ (Peltesohn 1939)

Given an f-pyramidal STS(v), the set of f fixed points form a subsystem. Therefore,

$$f = 0$$
 or $f \equiv 1,3 \pmod{6}$, and $f = v \text{ or } f < \frac{v}{2}$.

Let *T* be a 3-subset of a group *G*.

The list of differences of T is the multiset ΔT defined as follows

$$\Delta T = \pm \{a - b \mid a, b \in T, a \neq b\}$$

The list of differences of a set \mathcal{F} of triples is the multiset $\Delta \mathcal{F} = \bigcup_{T \in \mathcal{F}} \Delta T$

A partial spread Σ of G of type $\{^f2, ^e3\}$ is a symmetric (i.e. $-\Sigma = \Sigma$) subset of G containing the zero element of G, f elements of order 2, and e elements of order 3.

A set $\mathcal F$ of triples of G is a $(G,\Sigma,3,1)$ -DF whenever $\Delta\mathcal F=G\setminus\Sigma$ (Difference Family)

M. Buratti, G. Rinaldi, TT (2017)

There exists an f-pyramidal STS(v) under G, with $f < \frac{v}{2}$, if and only if, |G| = v - f, G has exactly f involutions, and there exists a $(G, \Sigma, 3, 1)$ -DF where Σ is a partial spread of G of type $\{^{f}2, \, ^{e}3\}$

Let T be a 3-subset of a group G.

The list of differences of T is the multiset ΔT defined as follows:

$$\Delta T = \pm \{a - b \mid a, b \in T, a \neq b\}$$

The list of differences of a set \mathcal{F} of triples is the multiset $\Delta \mathcal{F} = \bigcup_{T \in \mathcal{F}} \Delta T$

A partial spread Σ of G of type $\{^f2, ^e3\}$ is a symmetric (i.e. $-\Sigma = \Sigma$) subset of G containing the zero element of G, f elements of order 2, and e elements of order 3.

A set $\mathcal F$ of triples of G is a $(G,\Sigma,3,1)$ -DF whenever $\Delta\mathcal F=G\setminus\Sigma$ (Difference Family)

M. Buratti, G. Rinaldi, TT (2017)

There exists an f-pyramidal STS(v) under G, with $f < \frac{v}{2}$, if and only if, |G| = v - f, G has exactly f involutions, and there exists a $(G, \Sigma, 3, 1)$ -DF where Σ is a partial spread of G of type $\{^f2, e^g3\}$

Let *T* be a 3-subset of a group *G*.

The list of differences of T is the multiset ΔT defined as follows:

$$\Delta T = \pm \{a - b \mid a, b \in T, a \neq b\}$$

The list of differences of a set \mathcal{F} of triples is the multiset $\Delta \mathcal{F} = \bigcup_{T \in \mathcal{F}} \Delta T$

A partial spread Σ of G of type $\{^f2, \, ^e3\}$ is a symmetric (i.e. $-\Sigma = \Sigma$) subset of G containing the zero element of G, f elements of order 2, and e elements of order 3.

A set $\mathcal F$ of triples of G is a $(G,\Sigma,3,1)$ -DF whenever $\Delta\mathcal F=G\setminus\Sigma$ (Difference Family)

M. Buratti, G. Rinaldi, TT (2017)

There exists an f-pyramidal STS(v) under G, with $f < \frac{v}{2}$, if and only if, |G| = v - f, G has exactly f involutions, and there exists a $(G, \Sigma, 3, 1)$ -DF where Σ is a partial spread of G of type $\{^f 2, ^e 3\}$

Let T be a 3-subset of a group G.

The list of differences of T is the multiset ΔT defined as follows:

$$\Delta T = \pm \{a - b \mid a, b \in T, a \neq b\}$$

The list of differences of a set \mathcal{F} of triples is the multiset $\Delta \mathcal{F} = \bigcup_{T \in \mathcal{F}} \Delta T$

A partial spread Σ of G of type $\binom{f}{2}$, e^3 is a symmetric (i.e. $-\Sigma = \Sigma$) subset of G containing the zero element of G, f elements of order 2, and e elements of order 3.

A set $\mathcal F$ of triples of G is a $(G,\Sigma,3,1)$ -DF whenever $\Delta\mathcal F=G\setminus\Sigma$ (Difference Family)

M. Buratti, G. Rinaldi, TT (2017)

There exists an f-pyramidal STS(v) under G, with $f < \frac{v}{2}$, if and only if, |G| = v - f, G has exactly f involutions, and there exists a $(G, \Sigma, 3, 1)$ -DF where Σ is a partial spread of G of type $\{^f2, ^e3\}$

Let *T* be a 3-subset of a group *G*.

The list of differences of T is the multiset ΔT defined as follows:

$$\Delta T = \pm \{a - b \mid a, b \in T, a \neq b\}$$

The list of differences of a set \mathcal{F} of triples is the multiset $\Delta \mathcal{F} = \bigcup_{T \in \mathcal{F}} \Delta T$

A partial spread Σ of G of type $\{^f2, ^e3\}$ is a symmetric (i.e. $-\Sigma = \Sigma$) subset of G containing the zero element of G, f elements of order 2, and e elements of order 3.

A set $\mathcal F$ of triples of G is a $(G,\Sigma,3,1)$ -DF whenever $\Delta\mathcal F=G\setminus\Sigma$ (Difference Family)

M. Buratti, G. Rinaldi, TT (2017)

There exists an f-pyramidal STS(v) under G, with $f < \frac{v}{2}$, if and only if, |G| = v - f, G has exactly f involutions, and there exists a $(G, \Sigma, 3, 1)$ -DF where Σ is a partial spread of G of type $\{^f2, ^e3\}$

Let *T* be a 3-subset of a group *G*.

The list of differences of T is the multiset ΔT defined as follows:

$$\Delta T = \pm \{a - b \mid a, b \in T, a \neq b\}$$

The list of differences of a set \mathcal{F} of triples is the multiset $\Delta \mathcal{F} = \bigcup_{T \in \mathcal{F}} \Delta T$

A partial spread Σ of G of type $\{^f2, ^e3\}$ is a symmetric (i.e. $-\Sigma = \Sigma$) subset of G containing the zero element of G, f elements of order 2, and e elements of order 3.

A set $\mathcal F$ of triples of G is a $(G,\Sigma,3,1)$ -DF whenever $\Delta\mathcal F=G\setminus\Sigma$ (Difference Family)

M. Buratti, G. Rinaldi, TT (2017)

There exists an f-pyramidal STS(v) under G, with $f < \frac{v}{2}$, if and only if, |G| = v - f, G has exactly f involutions, and there exists a $(G, \Sigma, 3, 1)$ -DF where Σ is a partial spread of G of type $\{^{f}2, \, ^{e}3\}$

M. Buratti, G. Rinaldi, TT (2017)

There exists an f-pyramidal STS(v) under G, with $f < \frac{v}{2}$, if and only if, |G| = v - f, G has exactly f involutions, and there exists a $(G, \Sigma, 3, 1)$ -DF where Σ is a partial spread of G of type $\{^f 2, e^3 \}$

How to construct an f-pyramidal STS from a difference family

Let
$$G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$$
.

$$\Sigma = \{(0,0,0), s_1 = (1,0,0), s_2 = (0,1,0), s_3 = (1,1,0), s_4 = (0,0,1), -s_4\}.$$

$$\mathcal{F} = \{\{(0,0,0), (1,0,1), (1,1,2)\}\}$$

 Σ is a partial spread of *G* of type { 3 2, 2 3}

$$\Delta \mathcal{F} = \pm \{(1,0,1),(0,1,1),(1,1,2)\} = G \setminus \Sigma$$

$$\Rightarrow \mathcal{F}$$
 is a $(G, \Sigma, 3, 1)$ -DF $\Rightarrow \exists$ a 3 -pyramidal STS(15)

$$\Sigma^+ = \left\{\{\infty_1, (0,0,0), s_1\}, \{\infty_2, (0,0,0), s_2\}, \{\infty_3, (0,0,0), s_3\}, \{(0,0,0), s_4, -s_4\}\right\}$$

M. Buratti, G. Rinaldi, TT (2017)

There exists an f-pyramidal STS(v) under G, with $f < \frac{v}{2}$, if and only if, |G| = v - f, G has exactly f involutions, and there exists a $(G, \Sigma, 3, 1)$ -DF where Σ is a partial spread of G of type $\{^f 2, e^3 \}$

How to construct an f-pyramidal STS from a difference family

Let $G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$.

$$\Sigma = \{(0,0,0), s_1 = (1,0,0), s_2 = (0,1,0), s_3 = (1,1,0), s_4 = (0,0,1), -s_4\},$$

$$\mathcal{F} = \left\{\{(0,0,0), (1,0,1), (1,1,2)\}\right\}$$

 Σ is a partial spread of *G* of type $\{^32, ^23\}$

$$\Delta \mathcal{F} = \pm \{(1,0,1), (0,1,1), (1,1,2)\} = \textit{G} \setminus \Sigma$$

$$\Rightarrow$$
 \mathcal{F} is a $(G,\Sigma,3,1)$ -DF \Rightarrow \exists a 3 -pyramidal STS(15)

$$\Sigma^{+} = \left\{ \{\infty_{1}, (0,0,0), s_{1}\}, \{\infty_{2}, (0,0,0), s_{2}\}, \{\infty_{3}, (0,0,0), s_{3}\}, \{(0,0,0), s_{4}, -s_{4}\} \right\}$$

M. Buratti, G. Rinaldi, TT (2017)

There exists an f-pyramidal STS(v) under G, with $f < \frac{v}{2}$, if and only if, |G| = v - f, G has exactly f involutions, and there exists a $(G, \Sigma, 3, 1)$ -DF where Σ is a partial spread of G of type $\{^f 2, e^3 \}$

How to construct an f-pyramidal STS from a difference family

Let
$$G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$$
.

$$\begin{split} \Sigma &= \{(0,0,0), s_1 = (1,0,0), s_2 = (0,1,0), s_3 = (1,1,0), s_4 = (0,0,1), -s_4\}. \\ \mathcal{F} &= \left\{\{(0,0,0), (1,0,1), (1,1,2)\}\right\} \end{split}$$

 Σ is a partial spread of G of type $\{^32, ^23\}$

$$\Delta \mathcal{F} = \pm \{(1,0,1), (0,1,1), (1,1,2)\} = \textit{G} \setminus \Sigma$$

$$\Rightarrow$$
 \mathcal{F} is a $(G, \Sigma, 3, 1)$ -DF \Rightarrow \exists a 3-pyramidal STS(15)

$$\Sigma^{+} = \left\{ \{\infty_{1}, (0,0,0), s_{1}\}, \{\infty_{2}, (0,0,0), s_{2}\}, \{\infty_{3}, (0,0,0), s_{3}\}, \{(0,0,0), s_{4}, -s_{4}\} \right\}$$

M. Buratti, G. Rinaldi, TT (2017)

There exists an f-pyramidal STS(v) under G, with $f < \frac{v}{2}$, if and only if, |G| = v - f, G has exactly f involutions, and there exists a $(G, \Sigma, 3, 1)$ -DF where Σ is a partial spread of G of type $\{^f 2, \ ^e 3\}$

How to construct an f-pyramidal STS from a difference family

Let
$$G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$$
.

$$\Sigma = \{(0,0,0), s_1 = (1,0,0), s_2 = (0,1,0), s_3 = (1,1,0), s_4 = (0,0,1), -s_4\}.$$

$$\mathcal{F} = \left\{ \{ (0,0,0), (1,0,1), (1,1,2) \} \right\}$$

 Σ is a partial spread of G of type $\{^32, ^23\}$

$$\Delta \mathcal{F} = \pm \{(1,0,1),(0,1,1),(1,1,2)\} = G \setminus \Sigma$$

$$\Rightarrow$$
 \mathcal{F} is a $(G, \Sigma, 3, 1)$ -DF \Rightarrow \exists a 3-pyramidal STS(15)

M. Buratti, G. Rinaldi, TT (2017)

There exists an f-pyramidal STS(v) under G, with $f < \frac{v}{2}$, if and only if, |G| = v - f, G has exactly f involutions, and there exists a $(G, \Sigma, 3, 1)$ -DF where Σ is a partial spread of G of type $\{^f2, e^3\}$

How to construct an f-pyramidal STS from a difference family

Let
$$G = \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$$
.

$$\Sigma = \{(0,0,0), s_1 = (1,0,0), s_2 = (0,1,0), s_3 = (1,1,0), s_4 = (0,0,1), -s_4\}.$$

$$\mathcal{F} = \left\{ \{ (0,0,0), (1,0,1), (1,1,2) \} \right\}$$

 Σ is a partial spread of G of type $\{^32, ^23\}$

$$\Delta \mathcal{F} = \pm \{(1,0,1),(0,1,1),(1,1,2)\} = \textit{G} \setminus \Sigma$$

$$\Rightarrow$$
 \mathcal{F} is a $(G, \Sigma, 3, 1)$ -DF \Rightarrow \exists a 3-pyramidal STS(15)

$$\Sigma^+ = \left\{ \{\infty_1, (0,0,0), s_1\}, \{\infty_2, (0,0,0), s_2\}, \{\infty_3, (0,0,0), s_3\}, \{(0,0,0), s_4, -s_4\} \right\}$$

The case f = 1: 1-pyramidal STS(v)

Some history

There exists a 1–pyramidal STS(v)

The case f = 1: 1-pyramidal STS(v)

The case f = 1: 1-pyramidal STS(v)

A 1-pyramidal STS(ν) is reverse, namely, it has an involution fixing exactly one point.

Doyen (1972), Rosa (1972), Teirlinck (1973)

There exists a reverse STS(v) IFF $v \equiv 1, 3, 9, 19 \pmod{24}$.

The case f = 1: 1-pyramidal STS(v)

Some history		
G	There exists a 1-pyramidal STS(v)	
cyclic	iff $v \equiv 3,9 \pmod{24}$, [Phelps, Rosa (1981)]	
abelian	iff $v \equiv 1, 3, 9, 19, 27, 33, 51, 57 \pmod{72}$, [Buratti (2001)]	
dicyclic	iff $v \equiv 9 \pmod{24}$, [Mishima (2008)]	
arbitrary	only if $v \equiv 1, 3, 9, 19 \pmod{24}$, [Doyen (1972), Rosa (1972), Teirlinck (1973)]	

The case f = 1: 1-pyramidal STS(v)

Some history		
G	There exists a 1-pyramidal STS(v)	
cyclic	iff $v \equiv 3,9 \pmod{24}$, [Phelps, Rosa (1981)]	
abelian	iff $v \equiv 1, 3, 9, 19, 27, 33, 51, 57 \pmod{72}$, [Buratti (2001)]	
dicyclic	iff $v \equiv 9 \pmod{24}$, [Mishima (2008)]	
arbitrary	only if $v \equiv 1, 3, 9, 19 \pmod{24}$, [Doyen (1972), Rosa (1972), Teirlinck (1973)]	

 \Downarrow

The existence of a 1–pyramidal STS(ν) remains open for $\nu \equiv 25, 43, 49, 67 \pmod{72}$.

1-pyramidal STS(v) with $v \equiv 43,67 \pmod{72}$

Theorem ¹

A 1-pyramidal STS(ν) does not exists IFF both (1) and (2) hold:

- 2 all prime divisors of $\frac{v-1}{6}$ are $\equiv 2 \pmod{3}$.

There exists a 1-pyramidal STS(43).

There is NO 1-pyramidal STS(67).

The case f = 1 and $v \equiv 25,49 \pmod{72}$

Construction [Buratti (2001)]

The orbits of the triples below under $SL_2(3)$ yields a 1-pyramidal STS(25).

$$\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix} \right\} \qquad \left\{ \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\} \\
\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 \\ 0 &$$

The case f = 1 and $v \equiv 25,49 \pmod{72}$

Construction ¹

The orbits of the triples below under the binary octahedral group *O* yields a 1-pyramidal STS(49).

$$\{\infty, 1, -1\}$$

$$\{1, -j, k\}$$

$$\{1, \frac{1}{2}(-1 + i - j + k), \frac{1}{2}(-1 - i + j - k)\}$$

$$\{1, \frac{1}{\sqrt{2}}(j - k), \frac{1}{2}(-1 - i + j + k)\}$$

$$\{1, \frac{1}{\sqrt{2}}(i + k), \frac{1}{2}(-1 - i - j - k)\}$$

$$\{1, \frac{1}{\sqrt{2}}(i + k), \frac{1}{\sqrt{2}}(1 + i)\}$$

$$\{1, \frac{1}{2}(-1 + i + j - k), -\frac{1}{\sqrt{2}}(j + k)\}$$

$$\{1, \frac{1}{2}(1 + i + j + k), -\frac{1}{\sqrt{2}}(1 + j)\}$$

$$\{1, \frac{1}{\sqrt{2}}(i - k), -\frac{1}{\sqrt{2}}(1 + k)\}$$

$$\{1, \frac{1}{\sqrt{2}}(i - k), -\frac{1}{\sqrt{2}}(1 + k)\}$$

1-pyramidal STS(v) with $v \equiv 25,49 \pmod{72}$

Theorem ¹

There exists a 1–pyramidal STS(72t + 25) over G in cases (1) and (2).

	t	G
(1)	even	$SL_2(3) imes \mathbb{Z}_n$
(2)	\equiv 3 (mod 4)	$O imes \mathbb{Z}_n$
(3)	\equiv 1 (mod 4)	some open cases

There exists a 1-pyramidal STS(72t + 49) over G in cases (4) and (5).

	t	G
(4)	odd	$SL_2(3) imes \mathbb{Z}_n$
(5)	$\equiv 0 \pmod{4}$	$O imes \mathbb{Z}_n$
(6)	\equiv 2 (mod 4)	some open cases

[[]IN8AM]

¹S. Bonvicini, M. Buratti, G. Rinaldi, T. T., Des. Codes Cryptogr. (2011)

1-pyramidal STSs: open cases

The existence of a 1-pyramidal STS(v) is undecided if simultaneously1

- $v 1 = (p^3 p)n \equiv 0 \pmod{96}$, p prime;
- 3 the odd part of v-1 is square free and all prime divisors are $\not\equiv 1 \pmod{6}$.

1-pyramidal STSs: open cases

The existence of a 1-pyramidal STS(v) is undecided if simultaneously¹

- $v 1 = (p^3 p)n \equiv 0 \pmod{96}$, p prime;
- **③** the odd part of v 1 is square free and all prime divisors are $\not\equiv 1 \pmod{6}$.

The first two open cases:

n	p	V	Admissible groups	
2	23	24289	"extension of $PGL_2(23)$ by \mathbb{Z}_2 "	
1	47	103777	SL ₂ (47)	

1-pyramidal STSs: open cases

The existence of a 1-pyramidal STS(v) is undecided if simultaneously¹

- $v 1 = (p^3 p)n \equiv 0 \pmod{96}$, p prime;
- **③** the odd part of v 1 is square free and all prime divisors are $\not\equiv 1 \pmod{6}$.

Undecided cases with n e p small:

n	p (< 1000)	Admissible groups
1	47, 353, 383, 479, 641	SL ₂ (p)
$\equiv 1,3 \pmod{4}$		$SL_2(p) \times \mathbb{Z}_n$
2	23, 47, 137, 263, 353, 383, 479, 641, 983	G
		$G \times \mathbb{Z}_{\frac{n}{2}}$

¹S. Bonvicini, M. Buratti, G. Rinaldi, T. T., Des. Codes Cryptogr. (2011) ← → ← ≧ → ← ≧ → ← ≧ → ← ≥ →

1-pyramidal STSs: open cases

The existence of a 1-pyramidal STS(v) is undecided if simultaneously¹

- $v 1 = (p^3 p)n \equiv 0 \pmod{96}, p \text{ prime};$
- **1** the odd part of v-1 is square free and all prime divisors are $\not\equiv 1 \pmod 6$.

Undecided cases with n e p small:

n	p (< 1000)	Admissible groups
1	47, 353, 383, 479, 641	$SL_2(p)$
$\equiv 1,3 \pmod{4}$		$SL_2(p) \times \mathbb{Z}_n$
2	23, 47, 137, 263, 353, 383, 479, 641, 983	G
$\equiv 2 \pmod{4}$		$G \times \mathbb{Z}_{\frac{n}{2}}$

G = "extension of $PGL_2(p)$ by \mathbb{Z}_2 "

¹S. Bonvicini, M. Buratti, G. Rinaldi, T. T., *Des. Codes Cryptogr.* (2011) ⟨♂ → ⟨ ≧ → ⟨ ≧ → ⟨ ≧ → ⟨ 2 → | 2 →

The case f = 3: 3-pyramidal STSs

Necessarily, $v \ge 7$ and $v \equiv 1,3 \pmod{6}$, that is, $v \equiv 1,3,7,9,13,15,19,21 \pmod{24}$

Theorem

There exists a 3-pyramidal STS(v) ($v \ge 7$) if and only if either $v \equiv 7, 9, 15 \pmod{24}$ or $v \equiv 3, 19 \pmod{48}$

V	Existence	
24n + 3	Yes \iff <i>n</i> is even	$\mathbb{Z}_4 \times \mathbb{Z}_{6n}$
24n + 7	Yes	$\mathbb{Z}_2^2 \times \mathbb{Z}_{6n+1}$
24 <i>n</i> + 9	Yes	$\mathbb{D}_6 \times \mathbb{Z}_{4n+1}$
24n + 15	Yes	$\mathbb{Z}_2^2 \times \mathbb{Z}_3 \times \mathbb{Z}_{2n+1}$
24n + 19	Yes \iff <i>n</i> is even	$\mathbb{Z}_4 \times \mathbb{Z}_{6n+4}$

There exists an abelian 3-pyramidal STS(v) ($v \ge 7$) if and only if $v \equiv 7,15 \pmod{24}$ or $v \equiv 3,19 \pmod{48}$

¹M. Buratti, G. Rinaldi, TT, Ars Math. Contemp. (2017)

The case f = 3: 3-pyramidal STSs

Necessarily, $v \ge 7$ and $v \equiv 1,3 \pmod{6}$, that is, $v \equiv 1,3,7,9,13,15,19,21 \pmod{24}$

Theorem ¹

There exists a 3-pyramidal STS(v) ($v \ge 7$) if and only if either $v \equiv 7,9,15 \pmod{24}$ or $v \equiv 3,19 \pmod{48}$

V	Existence	
24n + 3	Yes \iff <i>n</i> is even	$\mathbb{Z}_4 \times \mathbb{Z}_{6n}$
24n + 7	Yes	$\mathbb{Z}_2^2 \times \mathbb{Z}_{6n+1}$
24n + 9	Yes	$\mathbb{D}_6 \times \mathbb{Z}_{4n+1}$
24n + 15	Yes	$\mathbb{Z}_2^2 \times \mathbb{Z}_3 \times \mathbb{Z}_{2n+1}$
24n + 19	Yes \iff <i>n</i> is even	$\mathbb{Z}_4 \times \mathbb{Z}_{6n+4}$

There exists an abelian 3-pyramidal STS(v) ($v \ge 7$) if and only if $v \equiv 7,15 \pmod{24}$ or $v \equiv 3,19 \pmod{48}$

The case f = 3: 3-pyramidal STSs

Necessarily, $v \ge 7$ and $v \equiv 1,3 \pmod{6}$, that is, $v \equiv 1,3,7,9,13,15,19,21 \pmod{24}$

Theorem ¹

There exists a 3-pyramidal STS(ν) ($\nu \ge 7$) if and only if either $\nu \equiv 7, 9, 15 \pmod{24}$ or $\nu \equiv 3, 19 \pmod{48}$

V	Existence	Group
24 <i>n</i> + 1	No	_
24n + 3	Yes \iff <i>n</i> is even	$\mathbb{Z}_4 \times \mathbb{Z}_{6n}$
24n + 7	Yes	$\mathbb{Z}_2^2 \times \mathbb{Z}_{6n+1}$
24 <i>n</i> + 9	Yes	$\mathbb{D}_6 \times \mathbb{Z}_{4n+1}$
24n + 13	No	_
24n + 15	Yes	$\mathbb{Z}_2^2 \times \mathbb{Z}_3 \times \mathbb{Z}_{2n+1}$
24n + 19	Yes \iff <i>n</i> is even	$\mathbb{Z}_4 \times \mathbb{Z}_{6n+4}$
24n + 21	No	_

There exists an abelian 3-pyramidal STS(v) ($v \ge 7$) if and only if $v \equiv 7,15 \pmod{24}$ or $v \equiv 3,19 \pmod{48}$

The case f = 3: 3-pyramidal STSs

Necessarily, $v \ge 7$ and $v \equiv 1,3 \pmod{6}$, that is, $v \equiv 1,3,7,9,13,15,19,21 \pmod{24}$

Theorem 1

There exists a 3-pyramidal STS(ν) ($\nu \ge 7$) if and only if either $\nu \equiv 7, 9, 15 \pmod{24}$ or $\nu \equiv 3, 19 \pmod{48}$

V	Existence	Group
24n + 1	No	_
24n + 3	Yes \iff <i>n</i> is even	$\mathbb{Z}_4 imes \mathbb{Z}_{6n}$
24n + 7	Yes	$\mathbb{Z}_2^2 \times \mathbb{Z}_{6n+1}$
24n + 9	Yes	$\mathbb{D}_6 \times \mathbb{Z}_{4n+1}$
24 <i>n</i> + 13	No	_
24n + 15	Yes	$\mathbb{Z}_2^2 \times \mathbb{Z}_3 \times \mathbb{Z}_{2n+1}$
24n + 19	Yes \iff <i>n</i> is even	$\mathbb{Z}_4 \times \mathbb{Z}_{6n+4}$
24 <i>n</i> + 21	No	_

There exists an abelian 3-pyramidal STS(v) ($v \ge 7$) if and only if $v \equiv 7, 15 \pmod{24}$ or $v \equiv 3, 19 \pmod{48}$

¹M. Buratti, G. Rinaldi, TT, Ars Math. Contemp. (2017)

On f-Pyramidal Steiner Triple Systems

Tommaso Traetta

joint work with S. Bonvicini, M. Buratti, and G. Rinaldi

University of Perugia

