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All you need to know3

Definition

A hyperoval is a set of q + 2 points in PG(2, q), no three collinear.

⇔ Every line in PG(2, q) contains 0 or 2 points of the hyperoval.

Remark

Hyperovals in PG(2, q) exist if and only if q = 2h.

Example (Regular hyperoval)

Since all tangents to a conic in PG(2, q) are concurrent for q even,
adding this point to the conic yields a hyperoval.



Classification Result (before I started)4

What hyperovals are there in small Desarguesian planes?

Theorem (Classification in Small Desarguesian Planes)

I In PG(2, 2) and PG(2, 4), all hyperovals are regular. [trivial]

I In PG(2, 8), all hyperovals are regular. [Segre, 1957]

I In PG(2, 16), there are exactly two types of hyperovals up to
projective equivalence. [Hall, 1975]

I In PG(2, 32), there are exactly six types of hyperovals up to
projective equivalence. [Penttila and Royle, 1994]

I In PG(2, 64), there are exactly four types of hyperovals up to
projective equivalence that admit a collineation of order > 1.
[Penttila and Royle, 1995]

Main goal: classify q = 64 regardless of collineation orders.



Nonregular hyperovals for q ≤ 645

All but one examples for q ≤ 64 were embedded in infinite families

q Family name |PΓLhyperoval |
16 Subiaco3 144
32 Translation/Glynn 4960
32 Segre 465
32 Payne/Subiaco3 10
32 Cherowitzo 5
32 (sporadic) 3
64 Subiaco2 60
64 Subiaco1 15
64 Adelaide 12

(64 ?? 1)

Table: All nonregular hyperovals in PG(2, q), q ≤ 64



Overview6

1 Preliminaries

2 Existing Techniques

3 New Ideas

4 Result

5 Future Work



What is classifying?7

Let G =PΓL(3, q), the collineation group of PG(2, q).

Primary Objective

Partition the set of hyperovals in PG(2, q) into orbits HG
1 , . . . ,H

G
k .

Both the previous classifications and mine consist of two steps:

1) get list of orbits guaranteed to contain each orbit at least once;

2) test for equivalence to retain one copy of each at the end.



Search Trees8

We will represent the search as a rooted tree.

I Nodes of the tree are sets (representing their PΓL-orbits)

I The root is the empty set.

I A child node is obtained by adding one point to their parent.

I Nodes at depth q + 2 will be hyperovals

I In the choice of the children we will guarantee that every HG

appears at least once at depth q + 2



Example: Best Line Approach9

Example

Start from S = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} (depth 4).
For d = 4, . . . , q + 1:

I for each arc S at maximum depth (= d):
I pick a well-chosen tangent L to S
I for each s ∈ L \ S add the child node S ∪ {s} to S

The arcs at depth q + 2 are hyperovals, which then have to be tested
for equivalence.



Example: Lexicographic Approach10

Let (0, 0, 1) < (0, 1, 0) < (0, 1, 1) < (0, 1, α) < · · · (call this line L1)
< (1, 0, 0) < (1, 0, 1) < (1, 0, α) < · · · (call this line L2)
< (1, 1, 0) < (1, 1, 1) < (1, 1, α) < · · · (call this line L3)
< (1, α, 0) < (1, α, 1) < (1, α, α) < · · · (call this line L4)
< · · ·

Example (Simplification of Penttila and Royle (1994), q=32)

Start from S = {(0, 0, 1)} (depth 1). For i = 1, . . . , q + 1:

I For each S at depth i , for each s ∈ Li :
I Add S ∪ {s} as a child of S if and only if S ∪ {s} is an arc and is

the lexicographic minimum of (S ∪ {s})G .
The child nodes at maximum depths are now one H of each HG .



Feasibility for q = 6411

For q = 64, both techniques are insufficient. On modern hardware:

I Best line technique: ≈ 107 years

I Penttila and Royle: ≈ 106 years

I Hybrid version: ≈ 105 years

Budget: 100-1000 years ⇒ fundamentally new techniques needed
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Beyond Orbits13

Many search techniques compute the GS -orbits and structure the
search in such a way that only one point per GS -orbit needs to be
considered for addition. But we can do better.

Definition

For S ⊆ H point sets in PG(2, q), let RH,S = {H ′ ∈ HG |S ⊆ H ′}.

When S 6= ∅, RH,S is not an orbit of a group action.



Beyond Orbits14

Notation
A set S defines an equivalence relation on the points outside of S :

a ≡S b ⇔ RS∪{a},S = RS∪{b},S .

Remark
GS -oribts refine ≡S ; every ≡S -class is a union of GS -orbits.

We structured the search in such a way that only one point per
≡S -class needs to be considered, rather than one per GS -orbit as in
most group-based search techniques.



Beyond Disjointness15

Group-based searches commonly make use of the fact that if a given
point of an orbit can be excluded, all points of the orbit can be. But
what if we can do more?

Definition

Let E ,S be points sets in PG(2, q). A set H ⊇ S is strongly S-disjoint
from E if all elements in RH,S are disjoint from E .



Initial Branching16

I we can start from H4 = {(0, 0, 1), (0, 1, 0), (1, 0, 0), (1, 1, 1)} since
G acts transitively on the 4-arcs.

I GH4 partitions in 43 orbits, min. 7 on a tangent

I but ≡H4 partitions it in 11, min. 3 on a tangent

I best tangent classes O1,O2,O3 have sizes 240, 360, 2



Initial Branching17

Lemma

Let H be any hyperoval in PG(2, 64) containing H4, let o1 be any
element of O1, o2 be any element of O2 and o3 be any element of O3.
Then exactly one of the following statements is true.

I Some element in RH,H4 contains o1.

I Some element in RH,H4 contains o2, and H is strongly H4-disjoint
from O1.

I Some element in RH,H4 contains o3, and H is strongly H4-disjoint
from O1 ∪ O2.

The latter two branches die off quickly ⇒ free point!



New Node Type18

Definition

A node is a pair (S , C) where S is a set of points in PG(2, q) and C is
a set of pairs (Si ,Ci ) with Si ⊆ S and Ci ∩ S = ∅.

Definition

The solution set ψ(S , C) is the set of all hyperoval orbits such that

I for all (Si ,Ci ) ∈ C one has Ci ∩ H ′ = ∅ for all H ′ ∈ RH,Si ;

I and at least one representative H ′ contains S .

Goal: compute ψ(∅, ∅).



New Node Type19

The Lemma that provided three cases can now be written as

ψ(H4, ∅) = ψ
(
H4 ∪ {o1}, ∅

)
∪ ψ

(
H4 ∪ {o2}, {(H4,O1)}

)
∪ ψ

(
H4 ∪ {o3}, {(H4,O1 ∪ O2)}

)
.

We generalize this idea in the following (rather technical) lemma.



Technical Lemma20

Lemma

Let (S , C) be a node, and let L be a projective line tangent to S.
Partition the points that can be added to the arc while keeping it an
arc, minus ∪(Si ,Ci )∈CCi , into its ≡S -equivalence classes. Let
W1, . . . ,Wm be the classes that have nonempty intersection with L
and simultaneously have RS∪{w},Si

∩ Ci = ∅ for all (Si ,Ci ) ∈ C. Pick
arbitrary wi ∈Wi ∩ L for i = 1, . . . ,m and let W = {w1, . . . ,wm}.
Then, regardless of the choice of the wi and regardless of the ordering
of W1, . . . ,Wm,

ψ(S , C) =
m⋃
i=1

ψ (S ∪ {wi}, C ∪ {(S ,W1 ∪ · · · ∪Wi−1)}) .



Now what?21

At the end of the search, we end up with thousands of hyperovals, at
least one of each type. Now what?

I Classical equivalence testing to divide N hyperovals into k classes,
takes O(kNq4 log q) time, which is a significant cost.

I We found a better trick, completing the task in
O(k(N + q4) log q) time:

I First, we explicitly compute RH,H4 for one hyperoval
I H ∼= H ′ ⇔ H ′ ∈ RH,H4 (tested N times at O(k log q) each)
I If not, compute new RH′,H4

(k times at O(q4 log q) each)

Remark
Knowing each RH′,H4 also allows extensive verification of the
correctness of our search, but this is beyond the scope of this talk.
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Classification Result23

Theorem (Classification in Small Desarguesian Planes)

I In PG(2, 2) and PG(2, 4), all hyperovals are regular. [trivial]

I In PG (2, 8), all hyperovals are regular. [Segre, 1957]

I In PG(2, 16), there are exactly two types of hyperovals up to
projective equivalence. [Hall, 1975]

I In PG(2, 32), there are exactly six types of hyperovals up to
projective equivalence. [Penttila and Royle, 1994]

I In PG(2, 64), there are exactly four types of hyperovals up to
projective equivalence. [Vandendriessche, 2017]



Nonregular Hyperovals for q ≤ 6424

q Family name |PΓLhyperoval |
16 Subiaco3 144
32 Translation/Glynn 4960
32 Segre 465
32 Payne/Subiaco3 10
32 Cherowitzo 5
32 (sporadic) 3
64 Subiaco2 60
64 Subiaco1 15
64 Adelaide 12
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Can we do q = 128?26

Using these techniques, tackling q = 128 would take a whopping
20 000 000 000 000 000 000 000 000 years to complete. So no.

On the other hand, history gives hope:

I q = 8: exactly one type [Segre, 1957]

I q = 16: exactly two types [Hall, 1975]

I q = 32: exactly six types [Penttila and Royle, 1994]

I q = 64: exactly four types [Vandendriessche, 2017]

⇒ new breakthrough approximately every 20 years, so who knows?



Future plans27

More short-term goals:

I Try q = 128 under the assumption of a nontrivial collineation

I Try to extend these techniques to KM-arcs

I Find more interesting and challenging computational problems
(suggestions are welcome!)



Thank you for your attention!
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