Classification of the Hyperovals in PG(2,64)

September 15, 2017

2 \ Overview

- 1 Preliminaries
- 2 Existing Techniques
- 3 New Ideas
- 4 Result
- 5 Future Work

Definition

A hyperoval is a set of q + 2 points in PG(2, q), no three collinear.

 \Leftrightarrow Every line in PG(2, q) contains 0 or 2 points of the hyperoval.

Remark

Hyperovals in PG(2, q) exist if and only if $q = 2^h$.

Example (Regular hyperoval)

Since all tangents to a conic in PG(2, q) are concurrent for q even, adding this point to the conic yields a hyperoval.

What hyperovals are there in small Desarguesian planes?

Theorem (Classification in Small Desarguesian Planes)

- ▶ In PG(2,2) and PG(2,4), all hyperovals are regular. [trivial]
- ▶ In PG(2,8), all hyperovals are regular. [Segre, 1957]
- ▶ In PG(2,16), there are exactly two types of hyperovals up to projective equivalence. [Hall, 1975]
- ▶ In PG(2,32), there are exactly six types of hyperovals up to projective equivalence. [Penttila and Royle, 1994]
- ▶ In PG(2,64), there are exactly four types of hyperovals up to projective equivalence that admit a collineation of order > 1. [Penttila and Royle, 1995]

Main goal: classify q = 64 regardless of collineation orders.

5

All but one examples for $q \le 64$ were embedded in infinite families

q	Family name	$ P\GammaL_{hyperoval} $
16	Subiaco3	144
32	Translation/Glynn	4960
32	Segre	465
32	Payne/Subiaco3	10
32	Cherowitzo	5
32	(sporadic)	3
64	Subiaco2	60
64	Subiaco1	15
64	Adelaide	12
(64	??	1)

Table: All nonregular hyperovals in PG(2, q), $q \le 64$

6 \ Overview

- 1 Preliminaries
- 2 Existing Techniques
- 3 New Ideas
- 4 Result
- 5 Future Work

(

Let $G = P\Gamma L(3, q)$, the collineation group of PG(2, q).

Primary Objective

Partition the set of hyperovals in PG(2, q) into orbits H_1^G, \ldots, H_k^G .

Both the previous classifications and mine consist of two steps:

- 1) get list of orbits guaranteed to contain each orbit at least once;
- 2) test for equivalence to retain one copy of each at the end.

We will represent the search as a rooted tree.

- ▶ Nodes of the tree are sets (representing their PΓL-orbits)
- ▶ The root is the empty set.
- ▶ A child node is obtained by adding one point to their parent.
- Nodes at depth q + 2 will be hyperovals
- In the choice of the children we will guarantee that every H^G appears at least once at depth q + 2

J

Example

Start from $\mathcal{S} = \{(0,0,1), (0,1,0), (1,0,0), (1,1,1)\}$ (depth 4).

For d = 4, ..., q + 1:

- ▶ for each arc S at maximum depth (= d):
 - \triangleright pick a well-chosen tangent L to S
 - ▶ for each $s \in L \setminus S$ add the child node $S \cup \{s\}$ to S

The arcs at depth q+2 are hyperovals, which then have to be tested for equivalence.

Example: Lexicographic Approach

Example (Simplification of Penttila and Royle (1994), q=32)

Start from $S = \{(0,0,1)\}$ (depth 1). For i = 1, ..., q + 1:

- ▶ For each S at depth i, for each $s \in L_i$:
 - ▶ Add $S \cup \{s\}$ as a child of S if and only if $S \cup \{s\}$ is an arc and is the lexicographic minimum of $(S \cup \{s\})^G$.

The child nodes at maximum depths are now one H of each H^G .

For q=64, both techniques are insufficient. On modern hardware:

▶ Best line technique: $\approx 10^7$ years

 \blacktriangleright Penttila and Royle: $\approx 10^6$ years

▶ Hybrid version: $\approx 10^5$ years

Budget: $100-1000 \text{ years} \Rightarrow \text{fundamentally new techniques needed}$

12 \ Overview

- 1 Preliminaries
- 2 Existing Techniques
- 3 New Ideas
- 4 Result
- 5 Future Work

13 \ Beyond Orbits

Many search techniques compute the G_S -orbits and structure the search in such a way that only one point per G_S -orbit needs to be considered for addition. But we can do better.

Definition

For $S \subseteq H$ point sets in PG(2, q), let $R_{H,S} = \{H' \in H^G | S \subseteq H'\}$.

When $S \neq \emptyset$, $R_{H,S}$ is not an orbit of a group action.

Beyond Orbits

Notation

A set S defines an equivalence relation on the points outside of S:

$$a \equiv_{\mathcal{S}} b \Leftrightarrow R_{\mathcal{S} \cup \{a\}, \mathcal{S}} = R_{\mathcal{S} \cup \{b\}, \mathcal{S}}.$$

Remark

 G_S -oribts refine \equiv_S ; every \equiv_S -class is a union of G_S -orbits.

We structured the search in such a way that only one point per \equiv_S -class needs to be considered, rather than one per G_S -orbit as in most group-based search techniques.

15 \ Beyond Disjointness

Group-based searches commonly make use of the fact that if a given point of an orbit can be excluded, all points of the orbit can be. But what if we can do more?

Definition

Let E, S be points sets in PG(2, q). A set $H \supseteq S$ is strongly S-disjoint from E if all elements in $R_{H,S}$ are disjoint from E.

- we can start from $\mathcal{H}_4 = \{(0,0,1),(0,1,0),(1,0,0),(1,1,1)\}$ since G acts transitively on the 4-arcs.
- $ightharpoonup G_{H_A}$ partitions in 43 orbits, min. 7 on a tangent
- but \equiv_{H_A} partitions it in 11, min. 3 on a tangent
- ▶ best tangent classes $\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3$ have sizes 240, 360, 2

Lemma

Let H be any hyperoval in PG(2,64) containing H_4 , let o_1 be any element of \mathcal{O}_1 , o_2 be any element of \mathcal{O}_2 and o_3 be any element of \mathcal{O}_3 . Then exactly one of the following statements is true.

- ▶ Some element in R_{H,H_4} contains o_1 .
- ▶ Some element in R_{H,H_4} contains o_2 , and H is strongly H_4 -disjoint from \mathcal{O}_1 .
- ▶ Some element in R_{H,H_4} contains o_3 , and H is strongly H_4 -disjoint from $\mathcal{O}_1 \cup \mathcal{O}_2$.

The latter two branches die off quickly \Rightarrow free point!

Definition

A *node* is a pair (S, \mathcal{C}) where S is a set of points in PG(2, q) and \mathcal{C} is a set of pairs (S_i, C_i) with $S_i \subseteq S$ and $C_i \cap S = \emptyset$.

Definition

The solution set $\psi(S, C)$ is the set of all hyperoval orbits such that

- ▶ for all $(S_i, C_i) \in \mathcal{C}$ one has $C_i \cap H' = \emptyset$ for all $H' \in R_{H,S_i}$;
- \triangleright and at least one representative H' contains S.

Goal: compute $\psi(\emptyset, \emptyset)$.

New Node Type

The Lemma that provided three cases can now be written as

$$\psi(H_{4},\emptyset) = \psi(H_{4} \cup \{o_{1}\},\emptyset)
\cup \psi(H_{4} \cup \{o_{2}\},\{(H_{4},\mathcal{O}_{1})\})
\cup \psi(H_{4} \cup \{o_{3}\},\{(H_{4},\mathcal{O}_{1} \cup \mathcal{O}_{2})\}).$$

We generalize this idea in the following (rather technical) lemma.

Lemma

Let (S,\mathcal{C}) be a node, and let L be a projective line tangent to S. Partition the points that can be added to the arc while keeping it an arc, minus $\cup_{(S_i,C_i)\in\mathcal{C}}C_i$, into its \equiv_S -equivalence classes. Let W_1,\ldots,W_m be the classes that have nonempty intersection with L and simultaneously have $R_{S\cup\{w\},S_i}\cap C_i=\emptyset$ for all $(S_i,C_i)\in\mathcal{C}$. Pick arbitrary $w_i\in W_i\cap L$ for $i=1,\ldots,m$ and let $W=\{w_1,\ldots,w_m\}$. Then, regardless of the choice of the w_i and regardless of the ordering of W_1,\ldots,W_m ,

$$\psi(S,\mathcal{C}) = \bigcup_{i=1}^{m} \psi\left(S \cup \{w_i\}, \mathcal{C} \cup \{(S, W_1 \cup \cdots \cup W_{i-1})\}\right).$$

21 \ Now what?

At the end of the search, we end up with thousands of hyperovals, at least one of each type. Now what?

- ▶ Classical equivalence testing to divide N hyperovals into k classes, takes $\mathcal{O}(kNq^4 \log q)$ time, which is a significant cost.
- ▶ We found a better trick, completing the task in $\mathcal{O}(k(N+q^4)\log q)$ time:
 - First, we explicitly compute $R_{H,H_{\Delta}}$ for one hyperoval
 - ▶ $H \cong H' \Leftrightarrow H' \in R_{H,H_4}$ (tested N times at $\mathcal{O}(k \log q)$ each)
 - ▶ If not, compute new R_{H',H_4} (k times at $\mathcal{O}(q^4 \log q)$ each)

Remark

Knowing each R_{H',H_4} also allows extensive verification of the correctness of our search, but this is beyond the scope of this talk.

22 \ Overview

- 1 Preliminaries
- 2 Existing Techniques
- 3 New Ideas
- 4 Result
- 5 Future Work

Theorem (Classification in Small Desarguesian Planes)

- ▶ In PG(2,2) and PG(2,4), all hyperovals are regular. [trivial]
- ▶ In PG(2,8), all hyperovals are regular. [Segre, 1957]
- \triangleright In PG(2, 16), there are exactly two types of hyperovals up to projective equivalence. [Hall, 1975]
- ▶ In PG(2, 32), there are exactly six types of hyperovals up to projective equivalence. [Penttila and Royle, 1994]
- ▶ In PG(2,64), there are exactly four types of hyperovals up to projective equivalence. [Vandendriessche, 2017]

Nonregular Hyperovals for $q \le 64$

16 Subiaco3 144 32 Translation/Glynn 4960 32 Segre 465	q	q Family nam	ie PΓL _{hyperoval}
32 Segre 465	16	16 Subiaco3	144
S	32	32 Translation/G	lynn 4960
	32	32 Segre	465
32 Payne/Subiaco3 10	32	32 Payne/Subiad	co3 10
32 Cherowitzo 5	32	32 Cherowitzo	5
32 (sporadic) 3	32	32 (sporadic)	3
64 Subiaco2 60	64	54 Subiaco2	60
64 Subiaco1 15	64	Subiaco1	15
64 Adelaide 12	64	54 Adelaide	12

25 \ Overview

- 1 Preliminaries
- 2 Existing Techniques
- 3 New Ideas
- 4 Result
- 5 Future Work

Using these techniques, tackling q = 128 would take a whopping 20 000 000 000 000 000 000 000 000 years to complete. So no.

On the other hand, history gives hope:

- ightharpoonup q = 8: exactly one type [Segre, 1957]
- ightharpoonup q = 16: exactly two types [Hall, 1975]
- ightharpoonup q = 32: exactly six types [Penttila and Royle, 1994]
- ightharpoonup q = 64: exactly four types [Vandendriessche, 2017]
- ⇒ new breakthrough approximately every 20 years, so who knows?

27 \ Future plans

More short-term goals:

- ightharpoonup Try q=128 under the assumption of a nontrivial collineation
- Try to extend these techniques to KM-arcs
- ► Find more interesting and challenging computational problems (suggestions are welcome!)

