On the weight distribution of linear sets

Geertrui Van de Voorde (Joint work with John Sheekey)

University of Canterbury, New Zealand

Irsee, 10-16 September 2017

- ► Translation KM-arcs of type 4: equivalent to linear sets of rank n in PG(1, 2^n) with
 - ▶ 1 point of weight 2
 - all other points of weight 1

- ► Translation KM-arcs of type 4: equivalent to linear sets of rank n in PG(1, 2ⁿ) with
 - 1 point of weight 2
 - all other points of weight 1
- They only exist for certain parameter values. But why?

- ► Translation KM-arcs of type 4: equivalent to linear sets of rank n in PG(1, 2ⁿ) with
 - 1 point of weight 2
 - all other points of weight 1
- They only exist for certain parameter values. But why?
- Can we say something about the number of points of weight 2 in a linear set of rank n?

- ► Translation KM-arcs of type 4: equivalent to linear sets of rank n in PG(1, 2ⁿ) with
 - 1 point of weight 2
 - all other points of weight 1
- They only exist for certain parameter values. But why?
- Can we say something about the number of points of weight 2 in a linear set of rank n?
- Can we deduce properties of the weight distribution of a linear set of rank n?

THE PLAN

- ► Translate the problem to a problem about the rank distribution of a rank metric code C.
- Give a geometrical translation of the problem.

THE PLAN

- ► Translate the problem to a problem about the rank distribution of a rank metric code C.
- Give a geometrical translation of the problem.
- ▶ Use MacWilliams identities to gather information about the rank distribution of the dual code C^{\perp}
- Give a geometrical interpretation to the dualisation.

THE PLAN

- ► Translate the problem to a problem about the rank distribution of a rank metric code C.
- Give a geometrical translation of the problem.
- ▶ Use MacWilliams identities to gather information about the rank distribution of the dual code C^{\perp}
- Give a geometrical interpretation to the dualisation.

LINEAR SETS OF RANK n IN PG(1, q^n)

'DEFINITION'

A linear set of rank n in PG(1, q^n) is a set of the form

$$\{\langle (f(x),g(x))\rangle_{\mathbb{F}_{q^n}}|x\in\mathbb{F}_{q^n}^*\},$$

where f and g are \mathbb{F}_{q} -linear maps from \mathbb{F}_{q^n} to itself, and f and g have no (non-trivial) common kernel.

LINEAR SETS OF RANK n IN PG(1, q^n)

'DEFINITION'

A linear set of rank *n* in PG(1, q^n) is a set of the form

$$\{\langle (f(x),g(x))\rangle_{\mathbb{F}_{q^n}}|x\in\mathbb{F}_{q^n}^*\},$$

where f and g are \mathbb{F}_{q} -linear maps from \mathbb{F}_{q^n} to itself, and f and g have no (non-trivial) common kernel.

NOTE

If $x = \lambda a$, $\lambda \in \mathbb{F}_q^*$, then

$$\langle (f(x),g(x))\rangle_{\mathbb{F}_{q^n}}=\langle \lambda(f(a),\lambda g(a))\rangle_{\mathbb{F}_{q^n}}=\langle (f(a),g(a))\rangle_{\mathbb{F}_{q^n}}.$$

$$\langle (f(x),g(x))
angle_{q^n}=\langle (f(a),g(a))
angle_{\mathbb{F}_{q^n}}$$
 \Leftrightarrow
$$\begin{cases} f(x)=\mu f(a) \\ g(x)=\mu g(a) \end{cases} \text{ for some } \mu\in\mathbb{F}_{q^n}^*. \quad (*)$$

$$egin{aligned} \langle (f(x),g(x))
angle_{q^n}&=\langle (f(a),g(a))
angle_{q^n}\ &\updownarrow\ &\{f(x)=\mu f(a)\ g(x)=\mu g(a) \end{aligned} ext{ for some }\mu\in\mathbb{F}_{q^n}^*. \tag*{}$$

DEFINITION

The dimension (over \mathbb{F}_q) of the solution space to (*) is the weight of the point $\langle (f(a), g(a)) \rangle_{\mathbb{F}_{q^n}}$.

Note that

$$egin{cases} f(x) = \mu f(a) \ g(x) = \mu g(a) \end{cases}$$
 for some $\mu \in \mathbb{F}_{q^n}^*$. $(*)$

if and only if g(a)f(x) - f(a)g(x) = (g(a)f - f(a)g)(x) = 0.

Note that

$$egin{cases} f(x) = \mu f(a) \ g(x) = \mu g(a) \end{cases}$$
 for some $\mu \in \mathbb{F}_{q^n}^*$. $(*)$

if and only if g(a)f(x) - f(a)g(x) = (g(a)f - f(a)g)(x) = 0.

COROLLARY

Weight of $\langle (f(a), g(a)) \rangle_{\mathbb{F}_{q^n}}$ =dimension of kernel of g(a)f - f(a)g.

$$= n - rank(g(a)f - f(a)g)$$

Representing \mathbb{F}_q -linear maps

LINEARISED POLYNOMIALS

If f is an \mathbb{F}_{q} -linear map on \mathbb{F}_{q^n} , then

$$f: \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$$

 $x \mapsto f_0 x + f_1 x^q + f_2 x^{q^2} + \ldots + f_{n-1} x^{q^{n-1}}$

Representing \mathbb{F}_q -linear maps

LINEARISED POLYNOMIALS

If f is an \mathbb{F}_q -linear map on \mathbb{F}_{q^n} , then

$$f: \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$$

 $x \mapsto f_0 x + f_1 x^q + f_2 x^{q^2} + \ldots + f_{n-1} x^{q^{n-1}}$

CORRESPONDENCE

Every \mathbb{F}_q -linear map f, determines

$$\langle f \rangle_{\mathbb{F}_{q^n}} = \langle (f_0, \dots, f_{n-1}) \rangle_{\mathbb{F}_{q^n}}$$

a point in $PG(n-1, q^n)$.

RECALL Weight of $\langle (f(a), g(a)) \rangle_{\mathbb{F}_{q^n}} = n - rank(g(a)f - f(a)g)$

DEFINITION

Point $\langle f \rangle_{\mathbb{F}_{q^n}}$ has rank k if and only if f has rank k.

Maps of Rank 1

Rank 1 linearized polynomial: of the form $x \mapsto \alpha \text{Tr}(\beta x)$

DEFINITION

Point $\langle f \rangle_{\mathbb{F}_{q^n}}$ has rank k if and only if f has rank k.

Maps of rank 1

Rank 1 linearized polynomial: of the form $x \mapsto \alpha \text{Tr}(\beta x)$

 Ω_1 : set of rank 1 points

$$\langle \alpha(\beta, \beta^{\mathbf{q}}, \beta^{\mathbf{q}^2}, \dots, \beta^{\mathbf{q}^{n-1}}) \rangle_{\mathbb{F}_{\mathbf{q}^n}}.$$

 Ω_1 is a subgeometry of $PG(n-1, q^n)$.

MAPS OF RANK *k*Rank *k* map: sum of *k* rank 1 maps

Maps of rank *k*

Rank k map: sum of k rank 1 maps

SECANT VARIETIES

 $\Omega_2 :$ set of all point that lie on an extended line of the

subgeometry Ω_1

 Ω_k : set of rank k points

PUTTING IT ALL TOGETHER

- ▶ $L_{f,g} = \{\langle f(x), g(x) \rangle_{\mathbb{F}_{q^n}} | x \in \mathbb{F}_{q^n}^* \}$ is a scattered linear set of rank n if and only if the line $\langle f, g \rangle_{\mathbb{F}_{q^n}}$ in $\mathrm{PG}(n-1, q^n)$ is skew from Ω_{n-2} .
- ▶ $L_{f,g}$ has one point of weight 2 and all others of weight one if the line $\langle f, g \rangle_{\mathbb{F}_{q^n}}$ in PG $(n-1, q^n)$ is a tangent line to Ω_{n-2} .

PUTTING IT ALL TOGETHER

- ▶ $L_{f,g} = \{\langle f(x), g(x) \rangle_{\mathbb{F}_{q^n}} | x \in \mathbb{F}_{q^n}^* \}$ is a scattered linear set of rank n if and only if the line $\langle f, g \rangle_{\mathbb{F}_{q^n}}$ in $PG(n-1, q^n)$ is skew from Ω_{n-2} .
- ▶ $L_{f,g}$ has one point of weight 2 and all others of weight one if the line $\langle f, g \rangle_{\mathbb{F}_{q^n}}$ in PG $(n-1, q^n)$ is a tangent line to Ω_{n-2} .
- weight distribution of $L_{f,g} \leftrightarrow$ intersection of $\langle f,g \rangle_{\mathbb{F}_{q^n}}$ with $\Omega'_{k}s$.

PUTTING IT ALL TOGETHER

- ▶ $L_{f,g} = \{\langle f(x), g(x) \rangle_{\mathbb{F}_{q^n}} | x \in \mathbb{F}_{q^n}^* \}$ is a scattered linear set of rank n if and only if the line $\langle f, g \rangle_{\mathbb{F}_{q^n}}$ in $PG(n-1, q^n)$ is skew from Ω_{n-2} .
- ▶ $L_{f,g}$ has one point of weight 2 and all others of weight one if the line $\langle f, g \rangle_{\mathbb{F}_{q^n}}$ in PG $(n-1, q^n)$ is a tangent line to Ω_{n-2} .
- weight distribution of $L_{f,g} \leftrightarrow$ intersection of $\langle f,g \rangle_{\mathbb{F}_{q^n}}$ with $\Omega'_k s$.

DOWNSIDE

Hard to deduce geometrical information about intersection with $\Omega_{\mathbf{k}}$'s

RANK-METRIC CODES

▶ Codewords: \mathbb{F}_q -linear maps

RANK-METRIC CODES

- ▶ Codewords: \mathbb{F}_q -linear maps
- If you prefer matrices:

$$A_{f} = \begin{pmatrix} f_{0} & f_{1} & \dots & f_{n-2} & f_{n-1} \\ f_{n-1}^{q} & f_{0}^{q} & \dots & f_{n-3}^{q} & f_{n-2}^{q} \\ f_{n-2}^{q^{2}} & f_{n-1}^{q^{2}} & f_{0}^{q^{2}} & \dots & f_{n-4}^{q^{2}} & f_{n-3}^{q^{2}} \\ \vdots & & & & \vdots \\ f_{1}^{q^{n-1}} & f_{2}^{q^{n-1}} & \dots & f_{n-1}^{q^{n-1}} & f_{0}^{q^{n-1}} \end{pmatrix}$$

- ► Rank of f=rank of A_f.
- ▶ Points on $\langle f,g\rangle_{\mathbb{F}_{q^n}} \leftrightarrow \mathbb{F}_{q^n}$ -linear combinations of f and $g \leftrightarrow 2n$ -dimensional code \mathcal{C} over \mathbb{F}_q .

$$C = \langle f, g \rangle$$

$$\mathcal{C} = \langle f, g \rangle$$

 $\mathcal{C}^{\perp} = \{ h \mid f.h = g.h = 0 \}.$

$$C = \langle f, g \rangle$$

$$C^{\perp} = \{ h \mid f.h = g.h = 0 \}.$$

$$f.g = (f_0, \dots, f_{n-1})(g_0, \dots, g_{n-1}) = f_0 g_0 + f_1 g_1 + \dots + f_{n-1} g_{n-1}$$

$$C = \langle f, g \rangle$$

$$C^{\perp} = \{ h \mid f.h = g.h = 0 \}.$$

$$f.g = (f_0, \dots, f_{n-1})(g_0, \dots, g_{n-1}) = f_0 g_0 + f_1 g_1 + \dots + f_{n-1} g_{n-1}$$

MACWILLIAMS IDENTITIES -DELSARTE-RAVAGNANI

The rank distribution of $\mathcal C$ determines the rank distribution of $\mathcal C^\perp$.

MACWILLIAMS IDENTITIES -DELSARTE-RAVAGNANI

THEOREM

If (A_i) : rank distribution of \mathcal{C} , $\mathcal{C} \subseteq M_{k \times m}(\mathbb{F}_q)$, and (B_i) : rank distribution of \mathcal{C}^{\perp} , then for all $0 \le \nu \le k$,

$$\sum_{i=0}^{k-\nu} A_i \begin{bmatrix} k-i \\ \nu \end{bmatrix} = \frac{|\mathcal{C}|}{q^{m\nu}} \sum_{i=0}^{\nu} B_i \begin{bmatrix} k-j \\ \nu-j \end{bmatrix}$$

BACK TO THE PICTURE (PROJECTIVE VERSION)

 ${\mathcal C}$ and ${\mathcal C}^\perp$ are not necessarily skew

BACK TO THE PICTURE

LINEAR SETS AS PROJECTED SUBGEOMETRIES Ω_1/L^{\perp} defines a linear set.

BACK TO THE PICTURE

LINEAR SETS AS PROJECTED SUBGEOMETRIES Ω_1/L^{\perp} defines a linear set.

THEOREM (SHEEKEY-VDV)

The linear set $\{\langle (f(x),g(x))
angle_{q^n}|x\in\mathbb{F}_{q^n}^*\}$ is isomorphic to

$$\Omega_1/\langle f,g\rangle_{\mathbb{F}_{q^n}}^{\perp}$$
.

COROLLARY

weight distribution of $L_{f,g} = \{\langle (f(x), g(x)) \rangle_{\mathbb{F}_{q^n}} | x \in \mathbb{F}_{q^n}^* \}$ \leftrightarrow rank distribution of $\langle f, g \rangle_{\mathbb{F}_{q^n}}^{\perp}$ (MacWilliams)

COROLLARY

weight distribution of $L_{f,g} = \{\langle (f(x), g(x)) \rangle_{\mathbb{F}_{q^n}} | x \in \mathbb{F}_{q^n}^* \}$ \leftrightarrow rank distribution of $\langle f, g \rangle_{\mathbb{F}_{q^n}}$

 \leftrightarrow rank distribution of $\langle f,g \rangle_{\mathbb{F}_{q^n}}^{\perp}$ (MacWilliams)

 \leftrightarrow weight distribution of the linear set $\{\langle (h_1(x),\ldots,h_{n-2}(x)
angle_{\mathbb{F}_{q^n}}|x\in\mathbb{F}_{q^n}^*\}$, where $\langle h_i
angle_{\mathbb{F}_{q^n}}$ spans $\langle f,g
angle_{\mathbb{F}_{q^n}}^\perp$.

If $\mathcal C$ and $\mathcal C^\perp$ are skew, this corresponds to switching the role of the spaces $\mathcal C$ and $\mathcal C^\perp$.

POINTS OF WEIGHT 2 IN A LINEAR SET ON A PROJECTIVE LINE

- ▶ Take $\mathcal{L} = \{\langle (f(x), g(x)) \rangle_{\mathbb{F}_{q^n}} | x \in \mathbb{F}_{q^n}^* \}$ with only points of weight 1 and 2
- ▶ → line $L = \langle f, g \rangle_{\mathbb{F}_{q^n}}$ in PG $(n-1, q^n)$ with only points of ranks n-2, n-1, n
- ▶ $\rightarrow n-3$ space L^{\perp} with prescribed ranks
- ▶ \rightarrow linear set Ω_1/L with prescribed weights.

POINTS OF WEIGHT 2 IN A LINEAR SET ON A PROJECTIVE LINE

- ▶ Take $\mathcal{L} = \{\langle (f(x), g(x)) \rangle_{\mathbb{F}_{q^n}} | x \in \mathbb{F}_{q^n}^* \}$ with only points of weight 1 and 2
- ▶ → line $L = \langle f, g \rangle_{\mathbb{F}_{q^n}}$ in PG $(n-1, q^n)$ with only points of ranks n-2, n-1, n
- ▶ $\rightarrow n-3$ space L^{\perp} with prescribed ranks
- ▶ \rightarrow linear set Ω_1/L with prescribed weights.

OUR HOPE

Find a contradiction for some parameter sets.

POINTS OF WEIGHT 2 IN A LINEAR SET ON A PROJECTIVE LINE

- ▶ Take $\mathcal{L} = \{\langle (f(x), g(x)) \rangle_{\mathbb{F}_{q^n}} | x \in \mathbb{F}_{q^n}^* \}$ with only points of weight 1 and 2
- ▶ → line $L = \langle f, g \rangle_{\mathbb{F}_{q^n}}$ in PG $(n-1, q^n)$ with only points of ranks n-2, n-1, n
- ▶ $\rightarrow n-3$ space L^{\perp} with prescribed ranks
- ▶ \rightarrow linear set Ω_1/L with prescribed weights.

OUR HOPE

Find a contradiction for some parameter sets. Doesn't work unfortunately!

ONE OF THE MACWILLIAMS IDENTITIES

$$B_2 = \sum_{i=1}^{n-2} A_i \left[\begin{array}{c} n-i-1 \\ 1 \end{array} \right]$$

COROLLARY

If there are only points of weight 1 and 2 in a linear set Ω_1/L^{\perp} , then $B_2=A_{n-2}$, i.e. the number of points of weight 2 in Ω_1/L^{\perp} is the number of points of rank 2 in L^{\perp} .

GEOMETRIC POINT OF VIEW

Thank you for your attention!