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Definitions and background

A (finite) graph Γ = (V ,E) is called strongly regular with
parameters srg(v , k , λ, µ) if

it has v vertices;
degree k ;
every two adjacent vertices have λ common neighbors;
every two non-adjacent vertices have µ common
neighbors.
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Strongly regular graphs

Two examples.

srg(5,2,0,1) srg(9,4,1,2)
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Let Γ be a srg(v , k , λ, µ). Given a fixed labeling of the vertices
1, . . . , v , the adjacency matrix A is the matrix with 1 in position
(i , j) if vertex i is adjacent to vertex j , and 0 everywhere else.

For example, the adjacency matrix of the pentagon is

A =


0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0


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A strongly regular graph with parameters srg(v , v−1
2 , v−5

4 , v−1
4 )

is called a conference graph.

If Γ is an srg(v , k , λ, µ) then the adjacency matrix A has
eigenvalues

ν1 := k ,

ν2 :=
1
2

(λ− µ+
√

(λ− µ)2 + 4(k − µ)),

ν3 :=
1
2

(λ− µ−
√

(λ− µ)2 + 4(k − µ)).

Unless Γ is a conference graph on v vertices with v not a
perfect square these eigenvalues are integers.
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The multiplicities of these eigenvalues are

m1 := 1,

m2 :=
1
2

(
v − 1− 2k + (v − 1)(λ− µ)√

(λ− µ)2 + 4(k − µ)

)
and

m3 =
1
2

(
v − 1 +

2k + (v − 1)(λ− µ)√
(λ− µ)2 + 4(k − µ)

)
.
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Partial difference sets (PDS)

Let G be a finite group of order v with identity e and D be a
subset of G with k elements. Then D is called a (v , k , λ, µ)
partial difference set (PDS) if the expressions gh−1, for g
and h in D with g 6= h, represent

each nonidentity element in D exactly λ times,
each nonidentity element of G not in D exactly µ times.

If D(−1) = D and e /∈ D then D is called regular. A regular PDS
is called trivial if D ∪ {e} or G \ D is a subgroup of G.
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PDS were introduced by Bose and Cameron, named by
Chakravarti. A systematic study started with S.L. Ma. PDS are
a generalization of difference sets (which are PDS with λ = µ).

Let D be a regular (v , k , λ, µ)-PDS. Define the Cayley graph
Γ(G,D) as follows:

the vertices of Γ are the elements of G;
two vertices g and h are adjacent if and only if gh−1 ∈ D.

Then the graph Γ(G,D) is a strongly regular graph
srg(v , k , λ, µ) which admits G as sharply transitive group of
automorphisms.
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Examples of PDS

Let q be an odd prime power, with q ≡ 1 (mod 4). Then
the non-zero squares of Fq form a partial difference set
with parameters v = q, k = (q − 1)/2, λ = (q − 5)/4,
µ = (q − 1)/4 in the additive group of Fq. PDS with these
parameters are said to be of Paley type. Note the
corresponding graph will be a conference graph.

For example {1,3,4,9,10,12} ⊂ (F13,+) is a (13, 6, 2, 3) PDS.
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A Benson type theorem for SRGs

Theorem (De Winter - Kamischke - Wang ’15)

Let Γ be a strongly regular graph with integer eigenvalues. Let
φ be an automorphism of order n of Γ, and let µ() be the
Möbius function. Then for all positive divisors d of n, there are
non-negative integers ad such that

k − ν3 +
∑
d |n

adµ(d)(ν2 − ν3) = −ν3f + g, (1)

where f is the number of fixed vertices of φ and g is the number
of vertices that are adjacent to their image under φ.

Variants of this theorem appeared before for a variety of
geometries.
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Theorem
Let G be a strongly regular graph srg(v , k , λ, µ) with integer
eigenvalues, and let φ be an automorphism of order n of G. Let s be
an integer coprime with n. Then φ and φs map the same number of
vertices to adjacent vertices.

Theorem (LMT)

Let D be a regular PDS in the Abelian group G. Assume ∆ is a
perfect square. Let g ∈ G be an element of order r . Assume
gcd(s, r) = 1. Then g ∈ D if and only if gs ∈ D.

Proof. An element g ∈ D if and only if the corresponding
automorphism g: h 7→ gh maps all vertices of Γ(G,D) to adjacent
vertices.
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Classical multiplier theorem

The following well known result is an immediate consequence
of our LMT.

Corollary
Let D be a regular PDS in the Abelian group G of order v.
Assume ∆ is a perfect square. Then D(s) = D for all s with
gcd(s, v) = 1.
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Existence question

For strongly regular graphs many necessary conditions for
existence are known, however, finding sufficient conditions
seems to be hopeless, and for many hypothetical parameter
sets the existence question has not been settled.

Clearly PDS have to satisfy all existence conditions for strongly
regular graphs. Also several further conditions are known.
However, here as well, no sufficient conditions are known, and
for many hypothetical parameter sets the existence question
has not been settled.
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Application 1: non-existence of PDS with small
parameters

In 1994 S.L. Ma produced a list of all parameter sets (v , k , λ, µ)
with k ≤ 100 that survived the known necessary conditions for
regular PDS in Abelian groups. For all but 32 of these 187
parameter sets the existence of a PDS was known.

In 1997 Ma proved some further necessary conditions for the
existence of PDS, and this excluded the existence of PDS in 13
more cases.

In 1998 Fiedler and Klin discovered a new
(512,73,12,10)-PDS.

This left 18 unresolved cases, and no progress had been made
since then.
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Ma’s table

v k λ µ existence
100 33 8 12
100 36 14 12
144 39 6 12
144 52 16 20
144 55 22 20
196 60 14 20
196 65 24 20
196 75 26 30
196 78 32 30
216 40 4 8
216 43 10 8
225 48 3 12
225 80 25 30
225 84 33 30
225 96 39 42
225 98 43 42
392 51 10 6
400 84 8 20
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Restrictions on the group

Proposition: [Ma 94] No non-trivial PDS exists in
an Abelian group G with a cyclic Sylow-p-subgroup and
o(G) 6= p;
an Abelian group G with a Sylow-p-subgroup isomorphic to
Zps × Zpt where s 6= t .
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Theorem 2(De Winter - Kamischke - Wang ’15)
Relying on the LMT and some further more technical counting arguments we obtained

v k λ µ existence
100 33 8 12 DNE
100 36 14 12 DNE
144 39 6 12 DNE
144 52 16 20 DNE
144 55 22 20 DNE
196 60 14 20 DNE
196 65 24 20 DNE
196 75 26 30 DNE
196 78 32 30 DNE
216 40 4 8
216 43 10 8
225 48 3 12 DNE
225 80 25 30 DNE
225 84 33 30 DNE
225 96 39 42 DNE
225 98 43 42 DNE
392 51 10 6 DNE
400 84 8 20 DNE



UD-Math-logo

Application 2: PDS in Abelian groups of order 4p2

Noting that six of the examples from the previous list occur in
groups of order 4p2, and motivated by a question of J. Davis we
started to focus on PDS in Abelian groups of order 4p2, p an
odd prime.

Key problem: The previous approach strongly depends on
knowing the parameters of the hypothetical PDS, and the
number of hypothetical parameters for which existence is not
known in groups of order 4p2 grows rapidly with p.
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The known examples

An (n, r)-PCP P in a group G of order n2 is a set P of r
subgroups of order n of G such that U ∩ V = {e} for any
U,V ∈ P. Given an (n, r)-PCP P in G, D :=

⋃
U∈P U \ {e} is a

regular PDS in G.

For example

(< (1,0) > ∪ < (0,1) > ∪ < (1,1) >) \ {(0,0)}

is a (n,3)-PCP in Zn × Zn.
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PDS in Abelian groups of order 4p2

Note that 6 of the 16 cases we excluded occur in groups of
order 4p2.
What is known on non-trivial PDS in these groups?

The group must be isomorphic to Z2
2 × Z2

p;

a (36,14,4,6)-PDS in Z2
2 × Z2

3.
the only other known examples are of PCP-type (up to
complement);
the number of parameters for which (non)existence has not
been determined increases rapidly with p.
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The key problem

Key problem: For general p it is not possible to explicitly list all
possible parameters that would survive the known parameter
restrictions. As a consequence the so far applied method fails
in general because the counting argument, which strongly
depends on knowing k , λ and µ, fails.

A new approach is needed.
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The characteristic matrix

Let G = Z2
2 × Z2

p, and let D be a regular PDS in G. Denote the
identity of G by g1, and the three elements of order 2 by g2, g3,
and g4. Furthermore, let H1, H2, · · · , Hp+1 denote the p + 1
subgroups of order p in G, and set Sij = giHj \ {gi}, for i = 1, 2,
3, 4 and j = 1, 2, · · · , p + 1.

Lemma
If h ∈ D and h ∈ Sij , then Sij ⊂ D.

Definition: The characteristic matrix χ of D is the 4× (p + 1)
matrix whose entry in position (i , j) is a 1 iff Sij ⊂ D and a 0
otherwise.
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Without loss of generality we may assume that D contains either no
elements of order two, or contains exactly one, say g2.
Case 1: Assume that D contains no elements of order two.

Lemma

If the first column of χ is


1
1
0
0

 then the elements of Si1 can be

written as a difference of elements of D in the following number of
ways:

2p + r1 + r2
2 + r2

3 + r2
4 − 3r1 − 3r2 − r3 − r4 when i = 1;

2(p + r1r2 + r3r4 − r1 − r2 − R1 · R2 − R3 · R4) when i = 2;

2(r1r3 + r2r4 − r3 − r4 − R1 · R3 − R2 · R4) when i = 3;

2(r1r4 + r2r3 − r3 − r4 − R1 · R4 − R2 · R3) when i = 4.
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Theorem (De Winter - Wang ’16)

When Z2
2 ∩ D = ∅ the only possible (up to equivalence)

characteristic matrices are
1 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0




1 . . . 1
0 . . . 0
0 . . . 0
0 . . . 0




1 . . . 1
1 . . . 1
1 . . . 1
1 . . . 1


Zp Zp × Zp complement of Z2 × Z2

0 1 . . . 1
0 1 . . . 1
0 1 . . . 1
0 1 . . . 1




0 0 0 1 . . . 1
0 1 1 1 . . . 1
1 0 1 1 . . . 1
1 1 0 1 . . . 1


complement of Z2 × Z2 × Zp complement of (2p,3)-PCP
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Theorem (continued)

When Z2
2 ∩ D = g2 the only possible (up to equivalence)

characteristic matrices are
0 . . . 0
0 . . . 0
0 . . . 0
0 . . . 0




1 0 . . . 0
1 0 . . . 0
0 0 . . . 0
0 0 . . . 0




1 . . . 1
1 . . . 1
0 . . . 0
0 . . . 0


Z2 Z2 × Zp Z2 × Zp × Zp

0 0 1 . . . 1
1 1 1 . . . 1
0 1 1 . . . 1
1 0 1 . . . 1




1 1 1 0
1 0 0 0
1 1 0 1
1 0 1 1


complement of (2p,2)-PCP complement of (36,14,4,6)-PDS
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Theorem 3 (SDW - Wang ’16)

Every PDS (up to complement) in an Abelian group of order
4p2, with p is an odd prime, is one of the following: a subgroup,
a PCP example, or the (36,14,4,6)-PDS in Z2

2 × Z2
3.
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At this point there were still 2 open cases in Ma’s table. Jointly
with a student we succeeded in proving

Theorem (De Winter–Neubert– Wang’16)
No regular (216, 40, 4, 8)-PDS or (216, 43, 10, 8)-PDS exist in
any Abelian groups of order 216.

The proof is based on weighing points and lines in a projective
plane.
Since (216, 40, 4, 8) and (216, 43, 10, 8) are the only two
parameter sets that survive the basic integrality and divisibility
conditions of non-trivial partial difference sets, there are no
non-trivial regular partial difference sets in Abelian groups of
order 216.
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v k λ µ existence
100 33 8 12 DNE
100 36 14 12 DNE
144 39 6 12 DNE
144 52 16 20 DNE
144 55 22 20 DNE
196 60 14 20 DNE
196 65 24 20 DNE
196 75 26 30 DNE
196 78 32 30 DNE
216 40 4 8 DNE (2016)
216 43 10 8 DNE (2016)
225 48 3 12 DNE
225 80 25 30 DNE
225 84 33 30 DNE
225 96 39 42 DNE
225 98 43 42 DNE
392 51 10 6 DNE
400 84 8 20 DNE
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Application 3: PDS in Abelian groups of order 8p3

To our surprise, by computer search, for each small prime
number p, in Abelian groups of order 8p3, only 2 or 4 parameter
sets survive the basic integrality and divisibility conditions of
non-trivial partial difference sets. This situation is very different
from what happened in the case of groups of order 4p2. This
motivated us to study PDS in Abelian groups of order 8p3. We
recently obtained the following result:
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Theorem 4 (De Winter–Wang ’17)

Theorem
No non-trivial regular partial difference sets exist in Abelian
groups of order 8p3, where p is a prime number ≥ 3.



UD-Math-logo

Sketch of proof

Assume that D is a non-trivial PDS in an Abelian group G of
order 8p3. Let β = λ− µ, and ∆ = β2 + 4(k − µ). Without loss
of generality we may assume that k ≤ v/2 (complement),
∆ ≤ v (duality) and µ > 0 (nontriviality).

By some of Ma’s results, we know that

G = Z3
2 × Z3

p.

∆ = 4p2 or ∆ = 16p2. (When G is Abelian, if D is
nontrivial, then v , ∆, and v2/∆ have the same prime
divisors. )
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Restrictions on k :

Lemma
If a non-trivial regular (v , k , λ, µ)-PDS exists in an Abelian
group with v = 8p3, ∆ = 4p2 and k ≤ v

2 , then k ≤ p2 + p
4 −

1
2 .

Lemma
If a non-trivial regular (v , k , λ, µ)-PDS exists in an Abelian group
with v = 8p3, ∆ = 16p2 and k ≤ v

2 , then k ≤ 4p2 + 3p − 1
2 .
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Restrictions on µ:
By a Ma’s result, we know that (2k − β)2 ≡ 0 (mod ∆). We can
use this to show that

µ =
x2 − 1

8p
(2)

when ∆ = 4p2, and

µ =
x2 − 1

2p
(3)

when ∆ = 16p2 (for some integer x).
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Combining the obtained restrictions on k and µ, and using that
−
√

∆ < β <
√

∆− 2 one can then obtain:

If ∆ = 4p2 there cannot exist an nontrivial regular PDS in G

If ∆ = 16p2 and D is a nontrivial regular PDS in G, than
necessarily x = 2p + 1 or x = 2p − 1 and the parameters of D
satisfy one of the following:

(8p3, 4p2 + 2p − 2, 2p − 2, 2p + 2)–PDS;
(8p3, 4p2 + 2p + 1, 2p + 4, 2p + 2)–PDS;
p = 4y2 + 3y + 1 and λ− µ = −8y − 4 or 8y + 2;
p = 4y2 + 5y + 2 and λ− µ = −8y − 6 or 8y + 4.
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The case of a (8p3, 4p2 + 2p − 2, 2p − 2, 2p + 2)–PDS

By a Ma’s result we can show that D contains either 0 or 4
elements of order 2.
Let g1, g2, · · · , gp3−1 be all elements of order p in G, and let
Bgi = {agi |o(a) = 1 or 2, agi ∈ D}, and Bi = |Bgi |,
i = 1,2, · · · ,p3 − 1 . Then the LMT implies that

|Bgi | = |Bgs
i
|, where 1 ≤ s ≤ p − 1.

By relabeling the gi if necessary we have
Cj := B(j−1)(p−1)+1 = B(j−1)(p−1)+2 = · · · = B(j−1)(p−1)+(p−1) for
j = 1,2, · · · ,p2 + p + 1, and C1 ≥ C2 ≥ · · · ≥ Cp2+p+1.



UD-Math-logo

First we assume that D contains 4 elements of order 2. We see
that ΣiBi = 4p2 + 2p − 6 and ΣiBi(Bi − 1) = 14p − 14.
It follows that

Σp2+p+1
i=1 Ci = 4p + 6 and Σp2+p+1

i=1 C2
i = 4p + 20 (4)

It is not hard to show the only nonnegative integer solutions,
listed as decreasing p2 + p + 1 tuples, are:
(4,2, 1,1, · · · ,1︸ ︷︷ ︸

4p

,0,0, · · · ,0)

(3,3,2, 1,1, · · · ,1︸ ︷︷ ︸
4p−2

, 0,0, · · · ,0)

(3,2,2,2,2, 1,1, · · · ,1︸ ︷︷ ︸
4p−5

,0,0, · · · ,0)

(2,2,2,2,2,2,2, 1,1, · · · ,1︸ ︷︷ ︸
4p−8

,0,0, · · · ,0)
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Let N be the unique subgroup isomorphic to Z3
2 in G.

Let P1, . . . ,Pp2+p+1 be the p2 + p + 1 subgroups of G
isomorphic to Zp.
Let L1, . . . ,Lp2+p+1 be the p2 + p + 1 subgroups of G
isomorphic to Z2

p.
Let P be the incidence structure with points the subgroups
Pi ×N, with blocks the subgroups Li ×N, and with containment
as incidence. Then it is easily seen that P is a
2− (p2 + p + 1,p + 1,1) design, or equivalently, the unique
projective plane of order p.
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Next assign a weight to each point of P in the following way:
The weight of Pi × N is 1

p−1 |((Pi × N) \ N) ∩ D|.
In this way the weights of the points of P correspond to the
values C1,C2, . . . ,Cp2+p+1, that is, 1

p−1 -th of the number of
elements of order p or 2p from D in the subgroup underlying
the given point.
Without loss of generality wt(Pi × N) = Ci .
The weight of a block will simply be the sum of the weights of
the points in that block.
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Assume that |(Li × N) ∩ D| = m.
Counting the number of differences of elements of D that are in
Li × N in two ways, we obtain

m(m−1)+(k−m)(
k −m − (p − 1)

p − 1
) = λm+µ(8p2−1−m), (5)

where (k , λ, µ) = (4p2 + 2p− 2,2p− 2,2p + 2). This yields that
m = 2(p + 1) or 2(3p − 1).
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Define m′ := 1
p−1 |((Li × N) \ N) ∩ D| = m−4

p−1 (as D contains 4
elements of order 2).
We obtain m′ = 2 or m′ = 6.
We now note that the values m′ must be the weights of the
blocks of P, and that in both cases these weights are even.
On the other hand, it is easy to see that no value Cj can be
odd.
Since all the solutions contains at least one odd Cj , thus no
such D exists.
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Next assume that D contains no elements of order 2. We see
that ΣiBi = 4p2 + 2p − 2 and ΣiBi(Bi − 1) = 14p + 14.
By using similar notations as before, we have

ΣjCj =
4p2 + 2p − 2

p − 1
= (4p + 6) +

4
p − 1

(6)

ΣjC2
j =

4p2 + 16p + 12
p − 1

(7)

It is clear that Equation (6) has integer solutions only when 4
p−1

is an integer, that is when p − 1 = 1,2, or 4. When p = 3, we
have v = 216, and it is covered in the paper by De Winter,
Neubert and Wang.



UD-Math-logo

When p = 5, Equations (6) and (7) become ΣjCj = 27 and
ΣjC2

j = 48. Thus ΣjCj(Cj − 1) = 21, which contradicts with the
fact that Cj(Cj − 1) is an even number for any j . Thus no such
D exists.
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Current and future work

Generalize Theorem 1 to SRG with non-integer
eigenvalues and directed strongly regular graphs. Apply to
Paley type PDS and skew Hadamard difference sets.
Classify PDS in Abelian groups of order p2h+1.
Find more constructions of PDS in Abelian groups using
the Local Multiplier Theorem.
How useful is Theorem 1 and possible consequences in
the case of PDS in non-Abelian groups? The LMT does
not hold, but can we prove alternatives?
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THANKS!


