Packing sets

Arne Winterhof (joint with Oliver Roche-Newton and Ilya Shkredov)

Austrian Academy of Sciences Johann Radon Institute for Computational and Applied Mathematics Linz

Irsee, September 14, 2017

Basics

A, B subsets of a finite abelian group (G, \circ) with neutral element 1

Product set of A and B: $A \circ B := \{a \circ b : a \in A, b \in B\}$ Ratio set of A and B: $A \circ B^{-1} = \{a \circ b^{-1} : a \in A, b \in B\}$

Trivial bound: $|A \circ B| \le \min\{|A||B|, |G|\}$

Problem:

Given $\emptyset \neq A \subseteq G$, what is the size of the largest set $B \subseteq G$ such that $|A \circ B| = |A||B|$?

Motivation: coding theory

Packing sets

A-packing set: any B with
$$|A \circ B| = |A||B|$$

 $\nu(A)$: maximal size of an A-packing set

$$\nu(A) := \max\{|B| : B \subseteq G, |A \circ B| = |A||B|\}$$

Trivial upper bound: $\nu(A) \leq \frac{|G|}{|A|}$

Example

A subgroup of G,
$$k = |G|/|A|$$

k different cosets $x_1 \circ A, x_2 \circ A, \dots, x_k \circ A$

$$B = \{x_1, x_2, \dots, x_k\}$$

$$|A \circ B| = |A||B| = |G|$$

$$\nu(A) = |B| = |G|/|A|$$

 $\nu(B) = |A| = |G|/|B|$

Upper bound is tight!

Lower bound

Rusza's Covering Lemma:

$$u(A) \ge \frac{|G|}{|A \circ A^{-1}|} \ge \frac{|G|}{|A|^2}$$

Proof. Choose $B \subseteq G$ with $\nu(A) = |B|$. By maximality of B, for each $x \in G$: $(A \circ x) \cap (A \circ B) \neq \emptyset$, that is, $G \subseteq A^{-1} \circ A \circ B$, hence $|G| \leq |A^{-1} \circ A \circ B| \leq |A \circ A^{-1}||B|$.

A.Winterhof (RICAM)

Example

$$H = \{g, g^2, \dots, g^k\}$$
 cyclic subgroup of G , $d = \lceil \sqrt{k} \rceil \ge 2$

$$A = \{g, g^2, \dots, g^d\} \cup \{g^{2d}, \dots, q^{(d-1)d}, g^{d^2}\}$$

$$|A| < 2d, A \circ A^{-1} = H$$

 $|A \circ B| = |A||B|$ is true iff there are no non-trivial solutions to the equation $a_1 \circ b_1 = a_2 \circ b_2$, $(a_1, a_2, b_1, b_2) \in A \times A \times B \times B$:

$$\underbrace{(A \circ A^{-1})}_{\mu} \cap (B \circ B^{-1}) = \{1\}.$$

B cannot contain more than one element from each coset of H.

$$|B| \le \frac{|G|}{k} < \frac{|G|}{(d-1)^2} \le \frac{16|G|}{|A|^2}.$$

$$\nu(A) = \max\{|B| : |A \circ B| = |A||B|\}$$

$$\frac{|G|}{|A|^2} \le \nu(A) \le \frac{|G|}{|A|}$$

- upper bound is tight
- lower bound is tight (up to a multiplicative constant)
- adding more elements of H to A in the above example we can get: $|A \circ A^{-1}| \approx |A|^{1+\alpha}$ for any $0 \le \alpha \le 1$ and $\nu(A) \approx |G|/|A|^{1+\alpha}$

The case $G = \mathbb{F}_p^*$, p prime, and $A = \{1, 2, \dots, \lambda\}$

- application: limited-magnitude error-correcting codes
- λ small, say, $\lambda < p^{1/2}$ for this application
- $\nu(A) \ge (p-1)/|AA^{-1}|$ is not better than $\nu(A) \gg p/\lambda^2$

$$A_{\mathbb{Z}} = \{1, 2, \dots, \lambda\} \subset \mathbb{Z}$$

$$A_{\mathbb{Z}}A_{\mathbb{Z}}^{-1}=\left\{ab^{-1}:a,b\in A_{\mathbb{Z}},\gcd(a,b)=1
ight\}$$

and thus

$$|\mathcal{A}\mathcal{A}^{-1}| = |\mathcal{A}_{\mathbb{Z}}\mathcal{A}_{\mathbb{Z}}^{-1}| = \varphi(1) + 2(\varphi(2) + \varphi(3) + \ldots + \varphi(\lambda))$$

$$= \frac{6}{\pi^2}\lambda^2 + O(\lambda\log\lambda)$$

Garaev, 2006: For $\lambda \ge p^{1/2} \log^{1+\epsilon} p$ we have $|AA^{-1}| = (1 + o(1))p$.

An almost best possible construction

Let
$$A = \{1, 2, ..., \lambda\} \subset \mathbb{F}_p^*$$
 with $\lambda \leq 0.9\sqrt{p}$. Then

$$\nu(A) \gg \frac{p}{\lambda \log p}.$$

Proof. $B := \{x \in \mathbb{F}_p : \lambda < x < \frac{p}{\lambda}, x \text{ is prime}\}$ Verify |AB| = |A||B|:

$$ab = a'b', \quad (a, a', b, b') \in A \times A \times B \times B.$$

No modulo reduction because of the sizes of a, a', b, b'. unique factorisation: only solutions are trivial Prime Number Theorem: $|B| \gg \frac{p/\lambda}{\log(p/\lambda)} - \frac{\lambda}{\log \lambda}$

Limited-magnitude error correcting codes

sent symbol: $c \in \mathbb{F}_n$

received symbol: $c + e \in \mathbb{F}_p$ with $e \in A = \{1, 2, \dots, \lambda\}$

For $B = \{b_1, \dots, b_n\} \subseteq \mathbb{F}_p$ with $n \ge 2$, we define the linear code

$$C = \{(c_1, \ldots, c_n) \in \mathbb{F}_p^n : c_1b_1 + \cdots + c_nb_n = 0\}.$$

If a single error $e \in A$ occurs at position i, that is, we receive $(v_1,\ldots,v_n)=(c_1,\ldots,c_i+e,\ldots,c_n)$, then we get the syndrome

$$\sum_{i=1}^n v_i b_i = eb_j.$$

set of possible syndromes: AB

If B is an A-packing set, then the syndromes are distinct and C can correct any single limited-magnitude error $e \in A$ since the syndrome uniquely determines e and j.

packing sets

Covering sets

For $A \subset G$ a set $B \subset G$ is an A-covering set if

$$A \circ B = G$$
.

$$cov(A) = \min\{|B| : A \circ B = G\}$$

$$cov(A) \geq \frac{|G|}{|A|}$$

Bollobás et al., 2011:

$$cov(A) \leq \frac{|G|}{|A|}(\log(|A|+1))$$

not constructive, not best possible

$$G = \mathbb{F}_p^*, A = \{1, \ldots, \lambda\}$$

Chen, Shparlinski, W., 2014: $cov(A) < 2p/\lambda$ (constructive!)

$$B = \{\pm b^{-1} \bmod p : b = 1, \dots, \lfloor p/\lambda \rfloor \}$$

application: rewriting schemes

Rewriting schemes

- *n* memory cells, each capable of storing an element of \mathbb{F}_p
- $B = \{b_1, \dots, b_n\} \subset \mathbb{F}_p$ of size n identified with the vector $\mathbf{b} = (b_1, \dots, b_n) \in \mathbb{F}_p^n$
- store a value $v \in \mathbb{F}_p$ in the n memory cells by storing $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{F}_p^n$ with $\mathbf{xb} = x_1b_1 + \dots + x_nb_n = v$
- for rewriting v by any $v' \in \mathbb{F}_p$ we have to choose $\mathbf{x}' = (x_1', \dots, x_n') \in \mathbb{F}_p^n$ with $\mathbf{x}'\mathbf{b} = v'$ and $x_i' \in \{x_i, x_i + 1, \dots, x_i + \lambda\}$ due to the limitations of flash memory
- for efficiency we may allow only a single cell change
- if B is a $\{1,\ldots,\lambda\}$ -covering set, we can write $v'-v=ab_i$ with $a\in\{1,\ldots,\lambda\}$ and $b_i\in B$ and then change only x_i to x_i+a to derive \mathbf{x}' from \mathbf{x}
- for efficiency we are interested in covering sets of smallest possible size

Thank you for your attention.