New maximum scattered linear sets of the projective line

Ferdinando Zullo

joint work with
Bence Csajbók and Giuseppe Marino

Università della Campania "Luigi Vanvitelli"

10–16 September, Irsee

Authors

Definition of linear set in $PG(1, q^n)$

$$PG(1, q^n) = PG(W, \mathbb{F}_{q^n}) \ W = V(2, q^n)$$

Definition of linear set in $PG(1, q^n)$

$$PG(1,q^n) = PG(W,\mathbb{F}_{q^n}) \ W = V(2,q^n)$$

Definition of linear set in $PG(1, q^n)$

$$PG(1,q^n) = PG(W,\mathbb{F}_{q^n}) \ W = V(2,q^n)$$

 $S = \{\langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}} : \mathbf{u} \in W\}$ is a Desarguesian spread of W

 $U \mathbb{F}_q$ -subspace of W

 $U \mathbb{F}_q$ -subspace of W

$$L_U = \{\langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}} \colon \mathbf{u} \in U \setminus \{\mathbf{0}\}\}$$

 L_U is an \mathbb{F}_q -linear set of $PG(1, q^n)$

 $U \mathbb{F}_q$ -subspace of W

$$L_U = \{\langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}} \colon \mathbf{u} \in U \setminus \{\mathbf{0}\}\}$$

 L_U is an \mathbb{F}_q -linear set of PG(1, q^n)

The **rank** of L_U is $\dim_{\mathbb{F}_q} U$

 $U \mathbb{F}_q$ -subspace of W

$$L_U = \{\langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}} \colon \mathbf{u} \in U \setminus \{\mathbf{0}\}\}$$

 L_U is an \mathbb{F}_q -linear set of $PG(1, q^n)$

The **rank** of L_U is $\dim_{\mathbb{F}_q} U$

$$\dim_{\mathbb{F}_a} U \leq n$$

The weight of a point

$$P = \langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}} \in \mathrm{PG}(1,q^n)$$

The weight of P in L_{IJ} is

$$\textit{w}_{\textit{L}_{\textit{U}}}(\textit{P}) = \dim_{\mathbb{F}_{\textit{q}}}(\textit{U} \cap \langle \mathbf{u} \rangle_{\mathbb{F}_{\textit{q}^n}})$$

Maximum scattered linear sets

A linear set L_U of rank k and size $\frac{q^k-1}{q-1} \to$ scattered linear set

Maximum scattered linear sets

A linear set L_U of rank k and size $\frac{q^k-1}{q-1} \to$ scattered linear set

$$\Leftrightarrow \omega_{L_{II}}(P) \leqslant 1 \text{ for each } P \in PG(1, q^n)$$

Maximum scattered linear sets

A linear set L_U of rank k and size $\frac{q^k-1}{q-1} \to$ scattered linear set

$$\Leftrightarrow \omega_{L_U}(P) \leqslant 1 \text{ for each } P \in \mathrm{PG}(1,q^n)$$

If $k = n \rightarrow$ maximum scattered linear set of PG(1, q^n)

 $\phi_f \in P\Gamma L(2, q^n)$ defined by $f \in \Gamma L(2, q^n)$

 $\phi_f \in P\Gamma L(2, q^n)$ defined by $f \in \Gamma L(2, q^n)$

Definition

 L_U and L_V are **equivalent** if there exists a collineation ϕ_f of the line such that $L_U^{\phi_f} = L_{U^f} = L_V$.

 $\phi_f \in P\Gamma L(2, q^n)$ defined by $f \in \Gamma L(2, q^n)$

Definition

 L_U and L_V are **equivalent** if there exists a collineation ϕ_f of the line such that $L_U^{\phi_f} = L_{U^f} = L_V$.

Remark

If $V = U^f$ for some $f \in \Gamma L(2, q^n) \Rightarrow L_U$ and L_V are equivalent.

 $\phi_f \in P\Gamma L(2, q^n)$ defined by $f \in \Gamma L(2, q^n)$

Definition

 L_U and L_V are **equivalent** if there exists a collineation ϕ_f of the line such that $L_U^{\phi_f} = L_{U^f} = L_V$.

Remark

If $V = U^f$ for some $f \in \Gamma L(2, q^n) \Rightarrow L_U$ and L_V are equivalent.

The viceversa does **not** hold!

 $\phi_f \in P\Gamma L(2, q^n)$ defined by $f \in \Gamma L(2, q^n)$

Definition

 L_U and L_V are **equivalent** if there exists a collineation ϕ_f of the line such that $L_U^{\phi_f} = L_{U^f} = L_V$.

Remark

If $V = U^f$ for some $f \in \Gamma L(2, q^n) \Rightarrow L_U$ and L_V are equivalent.

The viceversa does not hold!

Example

The linear sets of PG(1, q^n) of rank n + 1, n + 2, ..., 2n.

ΓL-class

 $L_U \mathbb{F}_q$ -linear set of rank n with maximum field of linearity \mathbb{F}_q

ΓL-class

 $L_U \ \mathbb{F}_q$ –linear set of rank n with maximum field of linearity \mathbb{F}_q

 ΓL -class = number of $\Gamma L(2, q^n)$ -orbits on \mathbb{F}_q -subspaces defining L_U

ΓL-class

 $L_U \mathbb{F}_q$ –linear set of rank n with maximum field of linearity \mathbb{F}_q

 ΓL -class = number of $\Gamma L(2, q^n)$ -orbits on \mathbb{F}_q -subspaces defining L_U

 ΓL -class one \rightarrow simple

FL-class

 $L_U \ \mathbb{F}_q$ –linear set of rank n with maximum field of linearity \mathbb{F}_q

 ΓL -class = number of $\Gamma L(2, q^n)$ -orbits on \mathbb{F}_q -subspaces defining L_U

 Γ L-class one \rightarrow **simple**

Giuseppe Marino's talk!

ΓL-class and MRD-codes

If
$$k = n$$

$$L_f = \{\langle (x, f(x)) \rangle_{\mathbb{F}_{q^n}} \colon x \in \mathbb{F}_{q^n} \}$$

$$f(x) = \sum_{i=0}^{n-1} a_i x^{q^i} q$$
-polynomial over \mathbb{F}_{q^n}

FL-class and MRD-codes

If k = n

$$L_f = \{\langle (x, f(x)) \rangle_{\mathbb{F}_{q^n}} \colon x \in \mathbb{F}_{q^n} \}$$

$$f(x) = \sum_{i=0}^{n-1} a_i x^{q^i} q$$
-polynomial over \mathbb{F}_{q^n}

If L_f is maximum scattered then

$$\{x \in \mathbb{F}_{q^n} \mapsto ax + bf(x) \in \mathbb{F}_{q^n} \colon a, b \in \mathbb{F}_{q^n}\}$$

is an MRD-code

FL-class and MRD-codes

If k = n

$$L_f = \{\langle (x, f(x)) \rangle_{\mathbb{F}_{q^n}} \colon x \in \mathbb{F}_{q^n} \}$$

$$f(x) = \sum_{i=0}^{n-1} a_i x^{q^i} q$$
-polynomial over \mathbb{F}_{q^n}

If L_f is maximum scattered then

$$\{x \in \mathbb{F}_{q^n} \mapsto ax + bf(x) \in \mathbb{F}_{q^n} \colon a, b \in \mathbb{F}_{q^n}\}$$

is an MRD-code

 Γ L-class of L_f = number of inequivalent MRD-codes obtained from L_f

 $L_U \ \mathbb{F}_q$ –linear set of rank n with maximum field of linearity \mathbb{F}_q

 $L_U \ \mathbb{F}_q$ –linear set of rank n with maximum field of linearity \mathbb{F}_q

 $\mathcal{Z}(\Gamma L)$ -class = number of $Z(\Gamma L(2,q^n))$ -orbits on \mathbb{F}_q -subspaces defining L_U

 $L_U \ \mathbb{F}_q$ –linear set of rank n with maximum field of linearity \mathbb{F}_q

 $\mathcal{Z}(\Gamma L)$ -class = number of $Z(\Gamma L(2,q^n))$ -orbits on \mathbb{F}_q -subspaces defining L_U

 ΓL -class $\leqslant \mathcal{Z}(\Gamma L)$ -class

$$PG(W, \mathbb{F}_{q^n}) = PG(1, q^n) \rightarrow PG(W, \mathbb{F}_q) = PG(2n - 1, q)$$

$$PG(W, \mathbb{F}_{q^n}) = PG(1, q^n) \rightarrow PG(W, \mathbb{F}_q) = PG(2n - 1, q)$$

$$P = \langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}} \in \mathrm{PG}(1, q^n) \to X_P = \mathrm{PG}(\langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}}, \mathbb{F}_q) = \mathrm{PG}(n-1, q)$$

$$PG(W, \mathbb{F}_{q^n}) = PG(1, q^n) \to PG(W, \mathbb{F}_q) = PG(2n - 1, q)$$

$$P = \langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}} \in PG(1, q^n) \to X_P = PG(\langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}}, \mathbb{F}_q) = PG(n - 1, q)$$

$$\mathcal{V}(L_U) = \bigcup_{P \in L_U} X_P$$

variety of PG(2n-1,q) associated to L_U

$$PG(W, \mathbb{F}_{q^n}) = PG(1, q^n) \rightarrow PG(W, \mathbb{F}_q) = PG(2n - 1, q)$$

$$P = \langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}} \in \mathrm{PG}(1,q^n) \to X_P = \mathrm{PG}(\langle \mathbf{u} \rangle_{\mathbb{F}_{q^n}},\mathbb{F}_q) = \mathrm{PG}(n-1,q)$$

$$\mathcal{V}(L_U) = \bigcup_{P \in L_U} X_P$$

variety of PG(2n-1,q) associated to L_U

- S. **Ball**, A. **Blokhuis** and M. **Lavrauw**: *Linear* (q+1)-fold blocking sets in $PG(2, q^4)$, Finite Fields Appl., 6 (2000), 294-301.
- M. Lavrauw, J. Sheekey and C. Zanella: On embeddings of minimum dimension of $PG(n, q) \times PG(n, q)$, Des. Codes Cryptogr. 74 n.2 (2015), 427-440.

$$\mathcal{H} = PG(V, \mathbb{F}_q) = PG(n-1, q)$$
 is a transversal space of $\mathcal{V}(L_U)$
if $\mathcal{H} \cap X_P \neq \emptyset$ for each $P \in L_U$

$$\mathcal{H} = PG(V, \mathbb{F}_q) = \mathrm{PG}(n-1, q)$$
 is a transversal space of $\mathcal{V}(L_U)$ if $\mathcal{H} \cap X_P \neq \emptyset$ for each $P \in L_U$ $\Leftrightarrow L_U = L_V$

$$\mathcal{H} = PG(V, \mathbb{F}_q) = \mathrm{PG}(n-1, q)$$
 is a transversal space of $\mathcal{V}(L_U)$ if $\mathcal{H} \cap X_P \neq \emptyset$ for each $P \in L_U$ $\Leftrightarrow L_U = L_V$

 $\mathcal{Z}(\Gamma L)$ -class of L_U = number of transversal spaces of $\mathcal{V}(L_U)$ defined by \mathbb{F}_q -spaces not \mathbb{F}_{q^n} -proportional.

$\mathcal{Z}(\Gamma L)$ -class

$$\mathcal{H}=PG(V,\mathbb{F}_q)=\mathrm{PG}(n-1,q)$$
 is a transversal space of $\mathcal{V}(L_U)$ if $\mathcal{H}\cap X_P\neq \varnothing$ for each $P\in L_U$ $\Leftrightarrow L_U=L_V$

 $\mathcal{Z}(\Gamma L)$ -class of L_U = number of transversal spaces of $\mathcal{V}(L_U)$ defined by \mathbb{F}_q -spaces not \mathbb{F}_{q^n} -proportional.

If L_U is maximum scattered \Rightarrow Number of transversal spaces through $Q \in \mathcal{V}(L_U) = \mathcal{Z}(\Gamma L)$ -class of L_U

$$U_1:=\{(x,x^{q^s})\colon x\in\mathbb{F}_{q^n}\}$$
 $1\leqslant s\leqslant n-1,\gcd(s,n)=1$

$$U_1:=\{(x,x^{q^s})\colon x\in\mathbb{F}_{q^n}\}$$
 $1\leqslant s\leqslant n-1,\gcd(s,n)=1$

found by Blokhuis and Lavrauw - 2000

$$U_1:=\{(x,x^{q^s})\colon x\in\mathbb{F}_{q^n}\}$$

 $1\leqslant s\leqslant n-1,\gcd(s,n)=1$

found by Blokhuis and Lavrauw - 2000

$$L_1=\{\langle (x,x^{q^s})
angle_{\mathbb{F}_{q^n}}\colon x\in\mathbb{F}_{q^n}^*\} o ext{linear set of pseudoregulus type}$$

$$U_1:=\{(x,x^{q^s})\colon x\in\mathbb{F}_{q^n}\}$$
 $1\leqslant s\leqslant n-1,\gcd(s,n)=1$

found by Blokhuis and Lavrauw - 2000

$$L_1=\{\langle (x,x^{q^s}) \rangle_{\mathbb{F}_{q^n}} \colon x \in \mathbb{F}_{q^n}^*\} o ext{linear set of pseudoregulus type}$$

Classes of L₁

- $\mathcal{Z}(\Gamma L)$ class = $\varphi(n)$ (Lavrauw, Sheekey and Zanella 2015);
- $\Gamma L class = \varphi(n)/2$ (Csajbók and Zanella 2016).

$$U_2 = \{(x, \delta x^{q^s} + x^{q^{n-s}}) \colon x \in \mathbb{F}_{q^n}\}$$

$$q \geqslant 3, \, n \geqslant 4, \, \mathrm{N}_{q^n/q}(\delta) \notin \{0, 1\} \text{ and } \gcd(s, n) = 1$$

$$U_2 = \{(x, \delta x^{q^s} + x^{q^{n-s}}) \colon x \in \mathbb{F}_{q^n}\}$$
 $q \geqslant 3, \ n \geqslant 4, \ \mathrm{N}_{q^n/q}(\delta) \notin \{0,1\} \ \mathrm{and} \ \mathrm{gcd}(s,n) = 1$ $s = 1$ found by **Lunardon and Polverino** - 2001 $s > 1$ found by **Sheekey** - 2016

$$U_2 = \{(x, \delta x^{q^s} + x^{q^{n-s}}) : x \in \mathbb{F}_{q^n}\}$$

$$q \geqslant 3$$
, $n \geqslant 4$, $N_{q^n/q}(\delta) \notin \{0,1\}$ and $gcd(s,n) = 1$

s = 1 found by **Lunardon and Polverino** - 2001

s > 1 found by **Sheekey** - 2016

$$L_2 = \{ \langle (x, \delta x^{q^s} + x^{q^{n-s}}) \rangle_{\mathbb{F}_{q^n}} \colon x \in \mathbb{F}_{q^n}^* \}$$

Theorem (Lunardon-Polverino 2001)

For q > 3, $n \ge 4$ and s = 1, L_2 is not equivalent to L_1 .

$$U_3 := \{(x, \delta x^{q^s} + x^{q^{s+n/2}}) \colon x \in \mathbb{F}_{q^n}\}$$

 $n \in \{6,8\},\ q>2,\ \gcd(s,n/2)=1,\ \mathrm{N}_{q^n/q^{n/2}}(\delta) \notin \{0,1\}$ and other conditions on δ and q

$$U_3 := \{(x, \delta x^{q^s} + x^{q^{s+n/2}}) \colon x \in \mathbb{F}_{q^n}\}$$

 $n \in \{6,8\},\ q>2,\ \gcd(s,n/2)=1,\ \mathrm{N}_{q^n/q^{n/2}}(\delta) \notin \{0,1\}$ and other conditions on δ and q

found by Csajbók, Marino, Polverino and Zanella - 2017

$$U_3 := \{(x, \delta x^{q^s} + x^{q^{s+n/2}}) \colon x \in \mathbb{F}_{q^n}\}$$

 $n\in\{6,8\},\ q>2,\ \gcd(s,n/2)=1,\ \mathrm{N}_{q^n/q^{n/2}}(\delta)\notin\{0,1\}$ and other conditions on δ and q

found by Csajbók, Marino, Polverino and Zanella - 2017

$$L_3 = \{ \langle (x, \delta x^{q^s} + x^{q^{s+n/2}}) \rangle_{\mathbb{F}_{q^n}} \colon x \in \mathbb{F}_{q^n}^* \}$$

$$U_3 := \{(x, \delta x^{q^s} + x^{q^{s+n/2}}) \colon x \in \mathbb{F}_{q^n}\}$$

 $n \in \{6,8\},\ q>2,\ \gcd(s,n/2)=1,\ \mathrm{N}_{q^n/q^{n/2}}(\delta) \notin \{0,1\}$ and other conditions on δ and q

found by Csajbók, Marino, Polverino and Zanella - 2017

$$L_3 = \{ \langle (x, \delta x^{q^s} + x^{q^{s+n/2}}) \rangle_{\mathbb{F}_{q^n}} \colon x \in \mathbb{F}_{q^n}^* \}$$

Bence Csajbók's talk!

Theorem (Csajbók, Marino and FZ)

The linear set $L_2 = \{\langle (x, \delta x^{q^s} + x^{q^{n-s}}) \rangle_{\mathbb{F}_{q^n}} : x \in \mathbb{F}_{q^n}^* \}$ is not of pseudoregulus type for each $n \ge 4$, s, δ and q > 3.

Theorem (Csajbók, Marino and FZ)

The linear set $L_2 = \{\langle (x, \delta x^{q^s} + x^{q^{n-s}}) \rangle_{\mathbb{F}_{q^n}} : x \in \mathbb{F}_{q^n}^* \}$ is not of pseudoregulus type for each $n \ge 4$, s, δ and q > 3.

Theorem (Csajbók, Marino and FZ)

For n=6,8 and for any choice of the parameters, the linear sets L_1 , L_2 and L_3 are pairwise non-equivalent.

$$L_4 = \{\langle (x, x^q + x^{q^3} + bx^{q^5}) \rangle_{\mathbb{F}_{q^6}} \colon x \in \mathbb{F}_{q^6}^* \}$$

$$L_4 = \{\langle (x, x^q + x^{q^3} + bx^{q^5}) \rangle_{\mathbb{F}_{q^6}} \colon x \in \mathbb{F}_{q^6}^* \}$$

If $q \equiv 0, \pm 1 \pmod{5}$, q odd and $b^2 + b = 1 \Rightarrow L_4$ is a maximum scattered linear set!

$$L_4 = \{\langle (x, x^q + x^{q^3} + bx^{q^5}) \rangle_{\mathbb{F}_{q^6}} \colon x \in \mathbb{F}_{q^6}^* \}$$

If $q \equiv 0, \pm 1 \pmod{5}$, q odd and $b^2 + b = 1 \Rightarrow L_4$ is a maximum scattered linear set!

• *L*₄ is **new**;

$$L_4 = \{\langle (x, x^q + x^{q^3} + bx^{q^5}) \rangle_{\mathbb{F}_{q^6}} \colon x \in \mathbb{F}_{q^6}^* \}$$

If $q \equiv 0, \pm 1 \pmod{5}$, q odd and $b^2 + b = 1 \Rightarrow L_4$ is a maximum scattered linear set!

- *L*₄ is **new**;
- it is **simple** if $q \equiv 0 \pmod{5}$;

$$L_4 = \{\langle (x, x^q + x^{q^3} + bx^{q^5}) \rangle_{\mathbb{F}_{q^6}} \colon x \in \mathbb{F}_{q^6}^* \}$$

If $q \equiv 0, \pm 1 \pmod{5}$, q odd and $b^2 + b = 1 \Rightarrow L_4$ is a maximum scattered linear set!

- L₄ is new;
- it is **simple** if $q \equiv 0 \pmod{5}$;
- MRD-codes obtained from L_4 are **new**.

$$L_4 = \{\langle (x, x^q + x^{q^3} + bx^{q^5}) \rangle_{\mathbb{F}_{q^6}} \colon x \in \mathbb{F}_{q^6}^* \}$$

is scattered $\Leftrightarrow \omega_{L_4}(P) = 1$ for each $P \in L_4$

$$L_4 = \{\langle (x, x^q + x^{q^3} + bx^{q^5}) \rangle_{\mathbb{F}_{q^6}} \colon x \in \mathbb{F}_{q^6}^* \}$$

is scattered $\Leftrightarrow \omega_{L_4}(P) = 1$ for each $P \in L_4$

Note that $P \neq \langle (0,1) \rangle_{\mathbb{F}_{q^6}} \to P = \langle (1,-m) \rangle_{\mathbb{F}_{q^6}}$ with $m \in \mathbb{F}_{q^6}$.

$$L_4 = \{\langle (x, x^q + x^{q^3} + bx^{q^5}) \rangle_{\mathbb{F}_{q^6}} \colon x \in \mathbb{F}_{q^6}^* \}$$

is scattered $\Leftrightarrow \omega_{L_4}(P) = 1$ for each $P \in L_4$

Note that $P \neq \langle (0,1) \rangle_{\mathbb{F}_{q^6}} \to P = \langle (1,-m) \rangle_{\mathbb{F}_{q^6}}$ with $m \in \mathbb{F}_{q^6}$.

$$L_4$$
 is scattered $\Leftrightarrow \frac{x^q + x^{q^3} + bx^{q^5}}{X} = -m$ admits at most q solutions for each $m \in \mathbb{F}_{q^6}$

$$L_4 = \{\langle (x, x^q + x^{q^3} + bx^{q^5}) \rangle_{\mathbb{F}_{q^6}} \colon x \in \mathbb{F}_{q^6}^* \}$$

is scattered $\Leftrightarrow \omega_{L_4}(P) = 1$ for each $P \in L_4$

Note that $P \neq \langle (0,1) \rangle_{\mathbb{F}_{q^6}} \to P = \langle (1,-m) \rangle_{\mathbb{F}_{q^6}}$ with $m \in \mathbb{F}_{q^6}$.

$$L_4$$
 is scattered $\Leftrightarrow \frac{x^q + x^{q^3} + bx^{q^5}}{X} = -m$ admits at most q solutions for each $m \in \mathbb{F}_{q^6}$

$$\Leftrightarrow r(x) = mx + x^q + x^{q^3} + bx^{q^5}$$
 has rank $\geqslant 5$

Theorem

The rank of a q-polynomial over \mathbb{F}_{q^n} is equal to the rank of its Dickson matrix.

Theorem

The rank of a q-polynomial over \mathbb{F}_{q^n} is equal to the rank of its Dickson matrix.

Z. **Liu** and B. **Wu**: *Linearized polynomials over finite fields revisited*, Finite Fields Appl. **22** (2013), 79–100.

Theorem

The rank of a q-polynomial over \mathbb{F}_{q^n} is equal to the rank of its Dickson matrix.

Z. **Liu** and B. **Wu**: *Linearized polynomials over finite fields revisited*, Finite Fields Appl. **22** (2013), 79–100.

$$D = \left(\begin{array}{cccccc} m & 1 & 0 & 1 & 0 & b \\ b & m^q & 1 & 0 & 1 & 0 \\ 0 & b & m^{q^2} & 1 & 0 & 1 \\ 1 & 0 & b & m^{q^3} & 1 & 0 \\ 0 & 1 & 0 & b & m^{q^4} & 1 \\ 1 & 0 & 1 & 0 & b & m^{q^5} \end{array}\right)$$

Dickson matrix of $r(x) = mx + x^q + x^{q^3} + bx^{q^5}$

Theorem

The rank of a q-polynomial over \mathbb{F}_{q^n} is equal to the rank of its Dickson matrix.

Z. **Liu** and B. **Wu**: *Linearized polynomials over finite fields revisited*, Finite Fields Appl. **22** (2013), 79–100.

$$D = \left(\begin{array}{cccccc} m & 1 & 0 & 1 & 0 & b \\ b & m^q & 1 & 0 & 1 & 0 \\ 0 & b & m^{q^2} & 1 & 0 & 1 \\ 1 & 0 & b & m^{q^3} & 1 & 0 \\ 0 & 1 & 0 & b & m^{q^4} & 1 \\ 1 & 0 & 1 & 0 & b & m^{q^5} \end{array}\right)$$

Dickson matrix of
$$r(x) = mx + x^q + x^{q^3} + bx^{q^5}$$

 L_4 is scattered $\Leftrightarrow \operatorname{rk}(D) \geqslant 5$ for each $m \in \mathbb{F}_{q^6}$

Theorem

The rank of a q-polynomial over \mathbb{F}_{q^n} is equal to the rank of its Dickson matrix.

Z. **Liu** and B. **Wu**: *Linearized polynomials over finite fields revisited*, Finite Fields Appl. **22** (2013), 79–100.

$$D = \left(\begin{array}{cccccc} m & 1 & 0 & 1 & 0 & b \\ b & m^q & 1 & 0 & 1 & 0 \\ 0 & b & m^{q^2} & 1 & 0 & 1 \\ 1 & 0 & b & m^{q^3} & 1 & 0 \\ 0 & 1 & 0 & b & m^{q^4} & 1 \\ 1 & 0 & 1 & 0 & b & m^{q^5} \end{array}\right)$$

Dickson matrix of
$$r(x) = mx + x^q + x^{q^3} + bx^{q^5}$$

 L_4 is scattered $\Leftrightarrow \operatorname{rk}(D) \geqslant 5$ for each $m \in \mathbb{F}_{q^6}$

Thank you

Thank you for your attention!