Moufang sets arising from Moufang polygons of type E_{6} and E_{7}

Tom De Medts

June 30, 2006

Abstract

We explicitly show that Moufang quadrangles of type E_{6} and E_{7} have classical rank one residues with non-abelian root groups, by calculating the isomorphism between the exceptional and the pseudoquadratic rank one groups. This fact is clear from the diagrams which describe these Moufang quadrangles, but for certain purposes it might be interesting to have an explicit isomorphism available. This note is not intended for publication as it is.

1 Moufang sets arising from Moufang polygons of type E_{6}, E_{7} and E_{8}

We will make very intensive use of [2], in particular of the description of the Moufang quadrangles of type E_{k} as in Chapters 13 and 16, and we refer the reader to [2] for the definition of all the maps which occur in the sequel.

We first explicitly describe the Moufang sets arising from Moufang polygons of type E_{6}, E_{7} and E_{8} in terms of one group $(U,+)$ and a permutation τ, as in [1]. This is easy to obtain from the explicit formulas in [2, (32.10)]. The group U is simply the group S, and the permutation τ can be obtained as $\tau=\kappa \circ \operatorname{inv}=\operatorname{inv} \circ \lambda$, where $\mu\left(x_{1}(z)\right)=x_{5}(\kappa(z)) x_{1}(z) x_{5}(\lambda(z))$, and where $\operatorname{inv}(z):=-z$, for all $z \in S^{*}$. We get that $S=X \times k$ as a set, where the (non-commutative) addition in S is given by

$$
(a, t)+(b, s)=(a+b, t+s+g(a, b))
$$

for all $(a, t),(b, s) \in S$; the map τ is given by

$$
\begin{equation*}
\tau(a, t)=\left(\frac{a \cdot \overline{(\pi(a)+t \epsilon)}}{q(\pi(a)+t \epsilon)}, \frac{-t+g(a, a)}{q(\pi(a)+t \epsilon)}\right) \tag{1.1}
\end{equation*}
$$

for all $(a, t) \in S^{*}$.

2 Moufang quadrangles of type E_{6}

We will now concentrate on the Moufang quadrangles of type E_{6}. Let

$$
a=t_{1} * v_{1}+t_{2} * v_{2}+t_{3} * v_{3}+t_{23} * v_{23}
$$

be an arbitrary element in X, where $t_{1}, t_{2}, t_{3}, t_{23} \in E$, and let

$$
\Pi(a):=\tilde{Q}_{1}(a) \gamma-\tilde{Q}_{2}(a) \gamma^{\sigma}
$$

where \tilde{Q}_{1} and \tilde{Q}_{2} are as in $[3$, Section 4$]$. In terms of the coordinates $t_{1}, t_{2}, t_{3}, t_{23}$, we get that

$$
\Pi(a)=t_{1} \gamma t_{1}^{\sigma}-s_{2} \cdot t_{2} \gamma^{\sigma} t_{2}^{\sigma}-s_{3} \cdot t_{3} \gamma^{\sigma} t_{3}^{\sigma}+s_{23} \cdot t_{23} \gamma t_{23}^{\sigma}
$$

So Π is a pseudoquadratic form over E, with involution σ and with $E_{0}=k$. By [3, Theorem 4.2], we have $a \pi(a)=\Pi(a) * a$ for all $a \in X$, so if $\Pi(a) \in k$, then $a \pi(a) \in a k$, but then $\pi(a) \in k \epsilon$, which can only happen if $a=0$ by [2, (13.49)]. Hence Π is anisotropic.

Let $H: X \times X \rightarrow E$ be the corresponding skew-hermitian form, and let

$$
G(a, b):=\Pi(a+b)-\Pi(a)-\Pi(b)-H(b, a)
$$

for all $a, b \in X$. Observe that G is a map from $X \times X$ to k. We will show that G coincides with g. Indeed, let $a=t_{1} * v_{1}+t_{2} * v_{2}+t_{3} * v_{3}+t_{23} * v_{23}$ and $b=u_{1} * v_{1}+u_{2} * v_{2}+u_{3} * v_{3}+u_{23} * v_{23}$; then

$$
\begin{aligned}
& G(a, b)= t_{1} \gamma u_{1}^{\sigma}-s_{2} \cdot t_{2} \gamma^{\sigma} u_{2}^{\sigma}-s_{3} \cdot t_{3} \gamma^{\sigma} u_{3}^{\sigma}+s_{23} \cdot t_{23} \gamma u_{23}^{\sigma} \\
& \quad+u_{1} \gamma t_{1}^{\sigma}-s_{2} \cdot u_{2} \gamma^{\sigma} t_{2}^{\sigma}-s_{3} \cdot u_{3} \gamma^{\sigma} t_{3}^{\sigma}+s_{23} \cdot u_{23} \gamma t_{23}^{\sigma} \\
& \quad-u_{1} \rho t_{1}^{\sigma}+s_{2} \cdot u_{2} \rho^{\sigma} t_{2}^{\sigma}+s_{3} \cdot u_{3} \rho^{\sigma} t_{3}^{\sigma}-s_{23} \cdot u_{23} \rho t_{23}^{\sigma} \\
&=T\left(t_{1} \gamma u_{1}^{\sigma}-s_{2} \cdot t_{2} \gamma^{\sigma} u_{2}^{\sigma}-s_{3} \cdot t_{3} \gamma^{\sigma} u_{3}^{\sigma}+s_{23} \cdot t_{23} \gamma u_{23}^{\sigma}\right)
\end{aligned}
$$

Since both G and g are bi-additive, and satisfy $G(t * a, t * b)=N(t) G(a, b)$ and $g(t * a, t * b)=N(t) g(a, b)$ by [3, Lemma 3.10], it suffices to check that $G(a, b)=g(a, b)$ for $a \in\left\{v_{1}, v_{2}, v_{3}, v_{23}\right\}$ and $b \in E * v_{1} \cup E * v_{2} \cup E * v_{3} \cup E * v_{23}$. Recall that $g(a, b)=f(h(b, a), \delta)$ for all $a, b \in X$, where $\delta=\epsilon / 2$ if $\operatorname{char}(k) \neq$ 2 and $\delta=\eta / \rho=\gamma \epsilon / \rho$ if $\operatorname{char}(k)=2$. In any case, if $a \in E * v_{I}$ and $b \in E * v_{J}$ for different $I, J \in\{\{1\},\{2\},\{3\},\{23\}\}$, then $g(a, b)=0$. It only remains to check that $g\left(v_{I}, t * v_{I}\right)=G\left(v_{I}, t * v_{I}\right)$ for each $I \in\{\{1\},\{2\},\{3\},\{23\}\}$ and each $t \in E$.

We have $g\left(v_{1}, t * v_{1}\right)=f\left(\rho t^{\sigma} \epsilon, \delta\right)$; when $\operatorname{char}(k) \neq 2$, this is equal to $f\left(\rho t^{\sigma} \epsilon, \epsilon / 2\right)=T\left(\gamma t^{\sigma}\right)=G\left(v_{1}, t * v_{1}\right)$; when $\operatorname{char}(k)=2$, this is equal to $f\left(\rho t^{\sigma} \epsilon,(\gamma / \rho) \epsilon\right)=T\left(\gamma t^{\sigma}\right)=G\left(v_{1}, t * v_{1}\right)$ as well.

Next, consider $g\left(v_{2}, t * v_{2}\right)=s_{2} f\left(\rho^{\sigma} t \epsilon, \delta\right)$; when $\operatorname{char}(k) \neq 2$, this is equal to $-s_{2} f(\rho t \epsilon, \epsilon / 2)=-s_{2} T(\gamma t)=-s_{2} T\left(\gamma^{\sigma} t^{\sigma}\right)=G\left(v_{2}, t * v_{2}\right) ;$ when $\operatorname{char}(k)=$ 2 , this is equal to $s_{2} f(\rho t \epsilon,(\gamma / \rho) \epsilon)=-s_{2} T(\gamma t)=-s_{2} T\left(\gamma^{\sigma} t^{\sigma}\right)=G\left(v_{2}, t * v_{2}\right)$.

The proof of the remaining two cases is completely similar. We conclude that $g=G$.

3 Moufang quadrangles of type E_{7}

We now turn our attention to the Moufang quadrangles of type E_{7}. Let

$$
a=z_{1} * v_{1}+z_{2} * v_{2}+z_{3} * v_{3}+z_{4} * v_{4}
$$

be an arbitrary element in X, where $z_{1}, z_{2}, z_{3}, z_{4} \in D$, and let

$$
\Pi(a):=\tilde{Q}_{1}(a) \gamma-\tilde{Q}_{2}(a) \gamma^{\sigma}+e_{2} \rho P(a)^{\sigma},
$$

where \tilde{Q}_{1} and \tilde{Q}_{2} and P are as in [3, Section 5]. In terms of the coordinates $z_{1}, z_{2}, z_{3}, z_{4}$, we get that

$$
\Pi(a)=z_{1} \gamma z_{1}^{\sigma}-s_{2} \cdot z_{2} \gamma^{\sigma} z_{2}^{\sigma}-s_{3} \cdot z_{3} \gamma^{\sigma} z_{3}^{\sigma}-s_{4} \cdot z_{4} \gamma^{\sigma} z_{4}^{\sigma} .
$$

So Π is a pseudoquadratic form over D, with involution σ and with $D_{0}=k$. By [3, Theorem 4.2], we have $a \pi(a)=\Pi(a) * a$ for all $a \in X$, so if $\Pi(a) \in k$, then $a \pi(a) \in a k$, but then $\pi(a) \in k \epsilon$, which can only happen if $a=0$ by [2, (13.49)]. Hence Π is anisotropic.

As in the E_{6} case, we let $H: X \times X \rightarrow E$ be the corresponding skewhermitian form, and let

$$
G(a, b):=\Pi(a+b)-\Pi(a)-\Pi(b)-H(b, a)
$$

for all $a, b \in X$. It can be shown, in a completely similar way as in the E_{6} case, that $G(a, b)=g(a, b)$ for all $a, b \in X$.

4 The isomorphism to Moufang sets of pseudoquadratic form type

We now consider the two cases E_{6} and E_{7} together. In the E_{6} case, we let $D=E$; in the E_{7} case, we keep our meaning of D as in the previous paragraph. We will explicitly describe the Moufang set $\mathbb{M}(\tilde{U}, \tilde{\tau})$ corresponding to the pseudoquadratic form $\Pi: X \rightarrow D$. Let $\tilde{U}=X \times k$ as a set, with addition in \tilde{U} given by

$$
(a, t)+(b, s)=(a+b, t+s+G(a, b))
$$

for all $(a, t),(b, s) \in \tilde{U}$. Using [2, (32.9)] and applying the isomorphism $T \rightarrow \tilde{U}:(a, t) \mapsto(a, t-\Pi(a))$, we obtain that the map $\tilde{\tau}$ is given by

$$
\begin{equation*}
\tilde{\tau}(a, t)=\left((\Pi(a)+t)^{-1} * a, \frac{-t+T(\Pi(a))}{N(\Pi(a)+t)}\right) \tag{4.1}
\end{equation*}
$$

for all $(a, t) \in \tilde{U}^{*}$.
Lemma 4.1. For all $(a, t) \in S$, we have
(i) $T(\Pi(a))=g(a, a)$;
(ii) $N(\Pi(a)+t)=q(\pi(a)+t \epsilon)$;
(iii) $(\Pi(a)+t) * a=a \cdot(\pi(a)+t \epsilon)$;
(iv) $(\Pi(a)+t)^{\sigma} * a=a \cdot \overline{(\pi(a)+t \epsilon)}$.

Proof. (i) It follows from the definition of G that $G(a, a)=2 \Pi(a)-$ $H(a, a)$. By $[2,(11.19)]$, however, $H(a, a)=\Pi(a)-\Pi(a)^{\sigma}$, and hence $G(a, a)=\Pi(a)+\Pi(a)^{\sigma}=T(\Pi(a))$. Since we have shown that $G=g$, this implies (i).
(ii) In the E_{6} case, this follows from [3, Theorem 4.2] and a little bit of calculation. In the E_{7} case, this is precisely [3, Theorem 5.12].
(iii) In the E_{6} case, this is [3, Theorem 4.2]; in the E_{7} case, this is [3, Theorem 5.3].
(iv) This follows from (i) and (iii) since $\pi(a)+\overline{\pi(a)}=g(a, a)$.

Theorem 4.2. The Moufang sets $\mathbb{M}(S, \tau)$ and $\mathbb{M}(\tilde{U}, \tilde{\tau})$ are isomorphic.
Proof. This follows from the expressions (1.1), (4.1), and Lemma 4.1.

References

[1] T. De Medts and R. M. Weiss, Moufang sets and Jordan division algebras, Math. Ann. 335 (2006), no. 2, 415-433.
[2] J. Tits and R. M. Weiss, "Moufang Polygons", Springer Monographs in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 2002.
[3] R. M. Weiss, Moufang quadrangles of type E_{6} and E_{7}, J. Reine Angew. Math. 590 (2006), 189-226.

