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Abstract. We give a short and elementary proof of the fact that a
finite special Moufang set with root groups of even order is isomorphic
to the unique Moufang set whose little projective group is PSL2(2

k) for
some integer k ≥ 1.

Introduction

Moufang sets were introduced in 1990 by J. Tits [T]. Finite Moufang
sets had already been studied “avant la lettre” a long time before that as
part of the classification of finite split BN -pairs of rank 1. Recall that the
class of finite split BN -pairs of rank 1 is a class of doubly transitive groups
and that their classification was carried out by Suzuki [Su], Shult [Sh] and
Peterfalvi [P1], when the degree is odd and by Hering, Kantor and Seitz
[HKSe], when the degree is even. With the exception of Perterfalvi’s paper,
all these papers are hard and rely, in addition to the Feit-Thompson odd
order theorem, on many other deep results in finite group theory.

Our goal in this paper is to give a short and elementary proof for the
classification of finite special Moufang sets M(U, τ), where |U | is even (i.e.
the degree is odd). The paper [S] deals with the case when |U | is odd. Our
proof uses the Feit-Thompson Theorem and Glauberman’s Z∗-Theorem, but
no other deep results are needed. We note that the special Moufang sets
form a restricted subclass of all Moufang sets, but nevertheless, our approach
illustrates that the new theory of (not necessarily finite) Moufang sets which
had been developed so far [DW, DS, SW, DST] can be used to simplify and
give more insight into the existing theory of finite Moufang sets.

More precisely, the goal of this paper is to show the following theorem.

Main Theorem. Let M(U, τ) be a finite special Moufang set such that

|U | = q is even. Then q is a power of 2, U is elementary abelian and
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M(U, τ) ∼= M(q), the unique Moufang set whose little projective group is

PSL2(q).

Recall that M(U, τ) is special if and only if (−x)τ = −(xτ), for all x ∈ U∗.
Hence, if U is an elementary abelian 2-group, then M(U, τ) is special, and
hence we have the following corollary to our Main Theorem.

Corollary. Let M(U, τ) be a finite Moufang set such that U is an elementary

abelian 2-group. Then M(U, τ) ∼= M(q), the unique Moufang set whose little

projective group is PSL2(q), where q = |U |.

The crucial point in the proof of the Main Theorem will be to study the
two point stabilizer H of the little projective group G, and the proof of the
Main Theorem will go in three steps. We first show that |H| is odd and
that H acts transitively on the q − 1 remaining points (i.e. on U∗), then we
deduce from this that H is cyclic, and finally we show that this implies that
the Moufang set is isomorphic to M(q).

1. Notation and definitions

We start by fixing the (standard) notation that we will use in this paper.

Notation 1.1 (Notation for groups). Let G be a group and p a prime.

(1) For x, y ∈ G, xy := y−1xy and [x, y] := x−1y−1xy.

(2) When we write an inequality sign H ≤ G, we always mean that H is
a subgroup of G (while A ⊆ G means that A is a subset of G).

(3) For A ⊆ G, 〈A〉 is the subgroup generated by A.

(4) For a set A we let |A| be the cardinality of A.

(5) For an element g ∈ G, |g| denotes the order of G.

(6) G∗ denotes the set of nontrivial elements of G.

(7) Inv(G) denotes the set of involutions of G.

Notation 1.2 (Notation for permutation groups). Let G be a permutation
group on a set Ω, and let Y ⊆ Ω be a nonempty subset.

(1) We let GY be the pointwise stabilizer of Y in G and we write G{Y }

for the global stabilizer of Y in G.

(2) We apply permutations on the right, and for g ∈ G{Y }, CY (g) :=
{y ∈ Y | yg = y}.

Definition 1.3. A Moufang set M is a set X together with a collection of
groups Ux ≤ Sym(X), one for each x ∈ X, such that each Ux fixes x and
acts sharply transitively on X \ {x}, and such that each Uy permutes the
set {Ux | x ∈ X} by conjugation. The groups Ux are called the root groups
of M.

Notation 1.4 (Notation for Moufang sets). Our notation for Moufang sets
follows [DS], and we refer the reader to that paper for details. We will
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briefly recall the construction M(U, τ) starting with a group (U,+) and a
permutation τ ∈ Sym(U∗).

So let (U,+) be an arbitrary group (possibly non-abelian), and let τ be
a permutation of U∗ := U \ {0}. We set X := U ∪ {∞}, and we extend τ
to X by 0τ = ∞ and ∞τ = 0. For each a ∈ U , we define αa ∈ Sym(X) by
∞αa = ∞ and xαa = x + a for all x ∈ U . Clearly, U∞ := {αa | a ∈ U}
is a subgroup of Sym(X) isomorphic to U . We now define U0 := U τ

∞ (by
conjugation in Sym(X)), and for each a ∈ U∗ we let Ua := Uαa

0 . We then
write M(U, τ) for the collection (X, (Ux)x∈X); this is not always a Moufang
set, but every Moufang set can be obtained in this way.

Now let M := M(U, τ) be a Moufang set. Throughout this paper we fix
the following notation.

(1) G denotes the little projective group 〈Ux | x ∈ X〉 of M.

(2) N := G{0,∞} is the global stabilizer in G of {0,∞}.

(3) H := G0,∞ is the pointwise stabilizer in G of 0,∞; this is the Hua

subgroup of M. Since M is a Moufang set, H is a subgroup of Aut(U).

(4) For each a ∈ U∗, we let µa be the unique element of the double coset
U0αaU0 interchanging 0 and ∞.

(5) For a field F, we let M(F) be the unique Moufang set whose little
projective group is isomorphic to PSL2(F). More precisely, this is
the Moufang set M(F;x 7→ −x−1) see [DW, Example 3.1]; we write
M(q) := M(Fq).

Definition 1.5. A Moufang set M = M(U, τ) is called special, if we have
(−a)τ = −(aτ) for all a ∈ U∗.

From now until the end of the paper we assume that M(U, τ) is a finite
special Moufang set such that |U | is even.

2. H has odd order

Since |U | is even, [DST, Theorem 5.5] implies that U is an elementary
abelian 2-group, and by [DS, Lemma 4.3(5)] or [DST, Theorem 6.3], µ2

x = 1
for all x ∈ U∗.

Proposition 2.1. (1) |H| is odd;

(2) H is transitive on U∗.

Proof. The idea of the proof is taken from [P1]. Let

I :=
⋃

x∈X

U∗
x .

Notice that I ⊆ Inv(G), and that

(2.1) if t ∈ I ∩ G∞ then t ∈ U∞.
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Note further that

(2.2) if t ∈ U∗
∞, s ∈ I, and [s, t] = 1, then s, st ∈ U∞.

This is because ∞ is the unique fixed point of t and hence s ∈ I ∩ G∞, so
by (2.1), s ∈ U∞, and then st ∈ U∞. It follows that

(2.3) if s, t ∈ I and s /∈ U∞ ∋ t, then |st| is odd.

Indeed, suppose |st| is even, and let w ∈ Inv(〈st〉). Then wt is conjugate to
t or s (in 〈s, t〉), so wt ∈ I and hence by (2.2), w ∈ U∞. Similarly ws ∈ I,
and applying (2.2) once more we see that s ∈ U∞, a contradiction.

By (2.3) any involution in U∞ is conjugate to s and so all involutions in
U∞ are conjugate, that is

(2.4) I is a conjugacy class of involutions in G.

Note that since any s, t ∈ U∗
∞ are conjugate in G, they are actually conjugate

in G∞ = U∞H, so they are conjugate by an element of H; since αh
a = αah

for all a ∈ U and h ∈ H, this shows (2).
Further, since µh

a = µah for each a ∈ U∗ and h ∈ H (see [DS, Prop. 3.9(2)]),
it follows that

(2.5) {µa | a ∈ U∗} is a conjugacy class of involutions in N .

Notice however that for a, b ∈ U∗ with a 6= b, [µa, µb] 6= 1, because µµb
a =

µaµb
(again by [DS, Prop. 3.9(2)]), so if µaµb

= µa, then by [DS, Prop. 4.9(4)],
aµb = a; but by [DS, Lemma 4.3(5)], µb is conjugate to αb and therefore has
a unique fixed point, which is equal to b by [DS, Lemma 4.3(2)], implying
a = b.

By (2.5) and Glauberman’s Z∗-Theorem (see, e.g., [A, p. 261]), µaµb ∈
O2′(N), for all a, b ∈ U∗, where O2′(N) is the largest normal subgroup of
odd order of N . However by [DW, Theorem 3.1(ii)], H = 〈µaµb | a, b ∈ U∗〉,
so H ≤ O2′(N) and hence |H| is odd. �

3. H is cyclic

To show that H is cyclic, we will rely on the following result, the elemen-
tary proof of which is due to T. Peterfalvi.

Lemma 3.1. Let p be an odd prime, let q be an arbitrary prime, and suppose

that P is a p-group acting faithfully on an elementary abelian q-group E. If

|CP (a)| = |CP (b)| for all a, b ∈ E∗, then P is cyclic and CE(P ) = 0.

Proof. See [P2, Lemme, Appendix X, p. 281]. �

Proposition 3.2. H is cyclic.

Proof. Recall that H ≤ Aut(U). By Proposition 2.1(1), |H| is odd, so in par-
ticular, by the Feit-Thompson theorem H is solvable. By Proposition 2.1(2),

(3.1) |COp(H)(e)| = |COp(H)(f)|, for all primes p and all e, f ∈ U∗.
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By (3.1) and Lemma 3.1 (with Op(H) in place of P and U in place of E),
Op(H) is cyclic, for all odd primes p and hence

(3.2) H is solvable of odd order and the Fitting group F (H) is cyclic.

Now by Proposition 2.1(2), H acts transitively on U∗. Since F (H) is cyclic,
every subgroup of F (H) is normal in H, and in particular 〈h〉 is normal in
H for all h ∈ F (H). Hence

(3.3) CU (h) = 0, for all h ∈ F (H)∗.

Let x ∈ U∗ and h ∈ F (H). If µxh = µh
x = µx, then xh = x and hence by

(3.3), h = 1. Hence

(3.4) CF (H)(µx) = 1 for all x ∈ U∗.

But now, since µ2
x = 1, (3.2) and (3.4) imply that µx inverts F (H). We thus

see that
µxµy ∈ CH(F (H)) ≤ F (H),

for all x, y ∈ U∗, so since H = 〈µxµy | x, y ∈ U∗〉 by [DW, Theorem 3.1(ii)],
we see that H = F (H) is cyclic. �

4. Proof of the Main Theorem

We will follow the convention of [DW, Remark 3.2] and choose an identity
element e ∈ U∗, so that its Hua map he is the identity map on U . We will
explicitly reconstruct the field Fq (with identity e) and show that M(U, τ) ∼=
M(q).

Proposition 4.1. M(U, τ) ∼= M(q), where q = |U | is a power of 2.

Proof. Observe that by [DS, Prop. 5.2(4)], we have hahb
= hah

2
b for all

a, b ∈ U∗, and since H = 〈ha | a ∈ U∗〉, it follows that

(4.1) hah = hah
2

for all a ∈ U∗ and all h ∈ H.
Now let a, b ∈ U∗ be arbitrary, and let h ∈ H be such that h2 = hb.

Then hahb = hah
2 = hah by equation (4.1), and hence H = {ha | a ∈ U∗}.

Since ha = hb if and only if a = b by [DS, Prop. 5.2(5)], this implies that
|H| = |U∗| = q − 1. In particular, hq = h for all h ∈ H.

We now define a multiplication on U by setting

a · b := ah
q/2
b

for all a, b ∈ U (where, by convention, h0 is the zero map). Then, by equation
(4.1), we have ha·b = hah

q
b = hahb for all a, b ∈ U∗. Since H is abelian, this

implies ha·b = hb·a, and hence this multiplication is commutative. It is also
associative, since h(a·b)·c = hahbhc = ha·(b·c) for all a, b, c ∈ U∗. Moreover, it
is obvious that (a+ b) · c = a · c+ b · c, so the distributive laws hold. Finally,
by construction e is the identity of our multiplication, and this choice forces
τ = µe, so hahaτ = he, for all a ∈ U∗; see for example [DS, Prop. 5.2(3)].
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Hence a · aτ = e for all a ∈ U∗. We conclude that (U,+, ·) is a commutative
field with identity e and multiplicative inverse τ . Since |U | = q, we conclude
that this field must be Fq, and hence M(U, τ) ∼= M(q); see, for example,
[DW, Example 3.1]. �
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