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In higher spin Clifford analysis, any irreducible representation of the
Spin(m)-group with a half-integer highest weight
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where l1, . . . , lk are natural numbers, can be modelled by the space of sim-
plicial monogenic polynomials in k vector variables u1, . . . , uk, homogeneous
of degree li in ui for each i ∈ {1, . . . , k}. This space is denoted by Sl1,...,lk ,
see [1].
The theory of generalised gradients (e.g. [2, 4]) tells us that the only con-
formally invariant first order differential operators acting on functions with
values in Sl1,...,lk (which can be identified with the space of polynomials
C∞(Rm,Sl1,...,lk)) are the higher spin Dirac operator Ql1,...,lk , at most k
twistor operators, and at most k + 1 dual twistor operators.
In this talk, it will be shown that these differential operators can be seen
as generators of a transvector algebra, hereby generalising the fact that the
classical Dirac operator and its symbol generate the orthosymplectic Lie al-
gebra osp(1, 2). To that end, we construct these operators using an extremal
projector, an object that is naturally appearing in the theory of transvector
algebras (see e.g. [3, 5, 6]).
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