The fundamental solution of higher spin Dirac operators

Tim Raeymaekers

David Eelbode

May 30, 2012

In this talk, we will define the higher spin Dirac operators \mathcal{Q}_{λ} , with $\lambda = (l_1, \ldots, l_p)$ a highest weight for an irreducible Spin-representation. These operators act on a function f(x) on \mathbb{R}^m , which takes values in more complicated representations \mathcal{S}_{λ} of the spin group. They should be seen as generalizations of the classical Dirac operator and the Rarita-Schwinger operator. We shall construct the fundamental solution $e_{\lambda}(x)$ of these operators, satisfying the equation $Q_{\lambda}e_{\lambda}(x)P_{\lambda}=\delta(x)P_{\lambda}$, using distribution theory and techniques coming from representation theory, for each $P_{\lambda}\in\mathcal{S}_{\lambda}$, and $\delta(x)$ being the Dirac delta distribution. In view of proving the classical integral formulae with this fundamental solution, we choose P_{λ} to be the reproducing kernel, defined by using the proper inner product.