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Abstract

It is well known that the Ackermann function can be defined via di-
agonalization from an iteration hierarchy (of Grzegorczyk type) which is
built on a start function like the successor function. In this paper we
study for a given start function g iteration hierarchies with a sublinear
modulus h of iteration. In terms of g and h we classify the phase transi-
tion for the resulting diagonal function from being primitive recursive to
being Ackermannian.

1 Introduction

This paper is part of a general program on phase transitions in logic and com-
binatorics. In general terms phase transition is a type of behavior wherein
small changes of a parameter of a system cause dramatic shifts in some glob-
ally observed behavior of the system, such shifts being usually marked by a
sharp ‘threshold point’. (An everyday life example of such thresholds are ice
melting and water boiling temperatures.) This kind of phenomena nowadays
occur throughout many mathematical and computational disciplines: statistical
physics, evolutionary graph theory, percolation theory, computational complex-
ity, artificial intelligence etc.

The last few years have seen an unexpected series of achievements that bring
together independence results in logic, analytic combinatorics and Ramsey The-
ory. These achievements can be intuitively described as phase transitions from
provability to unprovability of an assertion by varying a threshold parameter
[12, 15, 16, 20]. Another face of this phenomenon is the transition from slow-
growing to fast-growing computable functions [14, 17].

In this paper we investigate phase transition phenomena which are related to
natural subclasses of the recursive functions. In particular we take a closer look
at the Grzegorczyk hierarchy from the phase transition perspective. Assume
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that we have given two functions g, h : N → N. Define

B(g, h)0(x) := g(x),

B(g, h)k+1(x) := B(g, h)h(x)
k (x) i.e. h(x) many iterations,

B(g, h)ω(x) := B(g, h)x(x).

We recall that Ackermann’s function is defined as Ack(n) = B(g, h)ω(n)
where g(x) = x + 1 and h = Id, and that Ai(n) = B(g, h)i(n) is called the i-th
approximation of the Ackermann function. We use the term “Ackermannian”
to mean “eventually faster than every primitive recursive function”. There is
no “smallest” Ackermannian function; if B : N → N is Ackermannian, then so
is B/2 or B1/2, etc. If the composition f ◦ g is Ackermannian and one of {f, g}
is primitive recursive, then the other is Ackermannian. It is also important to
note that there are functions B : N → N which are neither Ackermannian nor
bounded by any primitive recursive function.

For an unbounded function g : N → N define the inverse function g−1 : N →
N by g−1(m) := min{n : g(n) ≥ m}. Let us remark that although Ack is not
primitive recursive, its inverse Ack−1 is primitive recursive.

To avoid trivialities we assume that for some positive ε > 0 we have g(x) ≥
x + ε and we assume that h is weakly increasing and unbounded. Now, fix-
ing g, one may ask for which h the function B(g, h)ω becomes Ackermannian.
Similarly, fixing h, one may ask for which g the function B(g, h)ω becomes Ack-
ermannian. So in contrast to the situations previously considered the phase
transition depends on two order parameters and we will indicate that the phase
transition has a rich structure.

2 Iteration hierarchies for g(x) := x + 1

In this section we fix g(x) := x + 1. This particular case was considered and
partially solved in [7]. This result was later on improved in [4]. The results given
in these two papers were rather indirect and involved the phase transition for
the Kanamori McAloon result for pairs. Nevertheless, they have independent
interest since they show how regressive Ramsey functions are intrinsically re-
lated to parameterized iteration hierarchies. The following yields a rather sharp
threshold on the behavior of such function hierarchies. Using the notation of
[7, 4] we denote B(g, x1/t), where t ∈ N is a constant, by (ft).

Claim 2.1. For every t > 0 and n > max({4, 3t, tt}) it holds that

(ft)i+t2+2t+1(n) > Ai(n).

Proof. See Claim 16 in [4]

Claim 2.2. For every i ∈ N and for every n ∈ N such that:

1. n > i + (lg lg n)2 + 2 lg lg n + 1
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2. Ack(lg lg n) > Ai(n)

it holds for h(n) = n
1

Ack−1(n) that

B(g, h)i+(lg lg n)2+2 lg lg n+1(n) > Ai(n).

Proof. To show that, we examine two cases. First, if it holds that
B(g, h)i+(lg lg n)2+2 lg lg n+1(n) ≥ Ack(lg lg n), then we are done by demand 2.
Otherwise, we may fix t := lg lg n and we have that for all y ∈ [o . . . Ack(t)) it

holds that y
1
t < y

1
Ack−1(y) . Thus, since B(g, h)i+t2+2t+1 is monotone, it holds

that B(g, h)i+t2+2t+1(n) ≥ (ft)i+t2+2t+1(n) which by Claim 2.1 is larger than
Ai(n).

We remark that the choice of t = lg lg n is arbitrary and any α−1, such that
α is a monotone increasing primitive recursive function and α(x) > xx for large
enough x, would do the job.

Theorem 1. Let g(x) := x + 1 Let hα(x) := x
1

B(g,id)−1
α (x) . Then B(g, hα)ω is

Ackermannian iff α = ω.

Proof. The ‘if’ direction is in fact the claim that if hα(x) = x
1

Ack−1(x) , then
B(g, hα)ω eventually grows faster than any primitive recursive function. This
direction is a direct corollary of Claim 2.2, since it is clear that for every i ∈ N
there exists some x0 ∈ N such that for all x > x0 it holds that B(g, hα)x(x) ≤
B(g, hα)i+(lg lg x)2+2 lg lg x+1(x) which by Claim 2.2 is larger than Ai(x). In other
words, for every primitive recursive function f , B(g, hα)x(x) eventually domi-
nates f .

The ‘only if’ direction is the claim that if hα is of the form hα(x) = x
1

A−1
i

(x)

for some i ∈ N, then B(g, hα)ω(x) is not Ackermannian in terms of x. Note

this implies the same for any hα of the form hα(x) = x
1

β−1(x) where β is a non-
decreasing primitive recursive function. To show this direction, we again refer
to [4]. Theorem 2.1 in [4] states that the hα-regressive Ramsey number Rreg

hα
(k)

where hα(k) = k
1

β−1(k) is bounded by β(k). Namely, is primitive recursive
in k. On the other hand, Corollary 2.6 in [4] asserts that if B(g, hα)ω(k) is

Ackermannian in k, then the lower bound for Rreg
h (k) for h = k

1
β−1(k) where

β−1(k) = k

1 lg k A−1
i

(k)

lg k+A−1
i

(k)


is also Ackermannian, but this would be a contradiction

to Theorem 2.1 of [4] as clearly β(k) ≤ 2Ai(k) and thus bounded by a primitive
recursive function.

3 Slow growing iteration hierarchies

For the rest of this section let F0(x) := 2x and Fk+1(x) := F x
k (x). Then Fk

primitive recursive. Let 2l(x) := F l
0(x) and |x| be the binary length of x adjusted
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so that |2x| = x. Thus |x| is a numbertheoretic logarithm function with respect
to base two. Let |x|l+1 := ||x||l where |x|0 := x. Then |·|l is the l-th iterate of
|·| so that |2l(x)|l = x.

Further let F (x) := Fx(x). Then F is Ackermannian and hence not primitive
recursive. The following results classifies slow growing iteration hierarchies for
a rather large class of order parameters.

Theorem 2. Let 1 ≥ ε > 0 and let d be a natural number. Let g0(x) := x + ε.

Define recursively gk+1(x) := 2gk(|x|). Define h(d)l(x) := |x|l
1

F
−1
d

(|x|l) and

B(d, l)k(x) := B(gl, h(d)l)k(x).

Let C := max{2l(Fd(2k+2)), 2l(Fd( 1
ε ))}. Then for all x ≥ C and all i ≤

|x|
1

F
−1
d

(|x|l)

l we have

B(d, l)i
k(x) ≤ 2l(|x|l + ε · |x|

2k+1

F
−1
d

(|x|l)

l · i).

Proof. Without loss of generality let ε = 1. We prove the claim by main induc-
tion on k. If k = 0 then B(l)i

0(x) = gi
l(x). We prove the claim by subsidiary

induction on i. Assume first that i = 1. We prove the claim by another sub-
sidiary induction on l. Assume l = 0. Then for x ≥ C:

B(d, 0)10(x) = g0(x) = x + 1

≤ 20(|x|0 + |x|
21

F
−1
d

(|x|0)

0 ).

Assume now l > 0. Then the induction hypothesis for l−1 yields for x ≥ C:

B(d, l)10(x) = gl(x)
= 2gl−1(|x|)

≤ 22l−1(||x||l−1+||x||

2
F
−1
d

(||x||l−1)
l−1 )

= 2l(|x|l + |x|
2

F
−1
d

(|x|l)

l ).

Now consider the case 1 ≤ i < |x|
1

F
−1
d

(|x|l)

l . Then we obtain

B(d, l)i+1
0 (x) = B(d, l)0(B(d, l)i

0(x))

≤ B(d, l)0(2l(|x|l + |x|
2

F
−1
d

(|x|l)

l · i))

= 2l(|(2l(|x|l + |x|
2

F
−1
d

(|x|l)

l · i))|
l
+ ε)

≤ 2l(|x|l + |x|
2

F
−1
d

(|x|l)

l · i + 1)

= 2l(|x|l + |x|
2

F
−1
d

(|x|l)

l · (i + 1))
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since by assumption x ≥ 2l(Fd( 1
ε )).

Now assume that k > 0. We prove the claim by subsidiary induction on i.
If i = 1 then

B(d, l)k(x) = B(d, l)|x|
1

F
−1
d

(|x|l)
l

k−1 (x)

≤ 2l

(
|x|l + |x|

2k

F
−1
d

(|x|l)

l · |x|
1

F
−1
d

(|x|l)

l

)
≤ 2l

(
|x|l(x) + |x|

2k+1

F
−1
d

(|x|l)

l

)
.

If 1 ≤ i < |x|
1

F
−1
d

(|x|l)

l then we obtain

B(d, l)i+1
k (x) = B(d, l)k(B(d, l)i

k(x))

≤ B(d, l)k(2l(|x|l + |x|
2k+1

F
−1
d

(|x|l)

l · i)).

Now set y := 2l(|x|l + |x|
2k+1

F
−1
d

(|x|l)

l · i). Then we obtain from the main induction

hypothesis and i < |x|
1

F
−1
d

(|x|l)

l that

B(d, l)i+1
k (x) = B(d, l)|y|

1
F
−1
d

(|y|l)
l

k−1 (y)

≤ 2l

(
|y|l + |y|

2k

F
−1
d

(|y|l)

l · |y|
1

F
−1
d

(|y|l)

l

)

= 2l

(
|x|l + |x|

2k+1

F
−1
d

(|x|l)

l · i + (|x|l + |x|
2k+1

F
−1
d

(|x|l)

l )

2k+1

F
−1
d

(|x|l+|x|

2k+1

F
−1
d

(|x|l)
l

·i)
)
.

The claim would now follow from

(|x|l + |x|
2k+1

F
−1
d

(|x|l)

l )

2k+1

F
−1
d

(|x|l+|x|

2k+1

F
−1
d

(|x|l)
l

·i) ≤ |x|
2k+1

F
−1
d

(|x|l)

l .

Since F−1
d (|x|l + |x|

2k+1

F
−1
d

(|x|l)

l · i) ≥ F−1
d (|x|l) this would follow from

|x|l + |x|
2k+1

F
−1
d

(|x|l)

l ≤ |x|
2k+1

2k+1
l .

This finally follows from the assumption that x ≥ 2l(Fd(2k+2)).

4 Fast growing iteration hierarchies

In this section we show that replacing the functions hl from Theorem 2 by
slightly faster growing functions yields Ackermannian growth. Let us recall the
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definition of the Ackermann hierarchy from Section 1. We put A0(x) := x+1 and
Ak+1(x) := Ax

k(x). Thus, if we put Ack(x) := Ax(x), then Ack is Ackermann’s
function which eventually dominates every primitive recursive function.

Theorem 3. Let 1 ≥ ε > 0 and let d be a natural number. Let g0(x) := x + ε.
Define recursively gk+1(x) := 2gk(|x|). Define h0(x) := d

√
x and hk+1(x) :=

hk(|x|) and
B(l)k(x) := B(gl, hl)k(x).

Then we have

B(l)d+d+d+i+1(2l(xd)) ≥ 2l((Ai(x))d).

Proof. An induction on l yields that gl(x) = 2l(ε + |x|l). By induction on i one
verifies B(l)i

0(x) = 2l(ε · i + |x|l).
Now we claim

B(l)i
k(x) ≥ 2l(ε · i · |x|

k
d

l + |x|l) (1)

for i, k ≥ 1 and x sufficiently large. We now present a proof of the claim by main
induction on k and subsidiary induction on i. Assume that k = 1. Then we

obtain for i = 1 that B(l)11(l)(x) = B(l)(|x|l)
1
d

0 (x) ≥ 2l(ε · |x|
1
d

l + |x|l). Assuming
the claim for i we obtain

B(l)i+1
1 (x)

= B(l)11(B(l)i
1(x))

≥ B(l)11(2l(ε · i · |x|
1
d

l + |x|l))

≥ 2l(ε · (|2l(ε · i · |x|
1
d

l + |x|l)|l)
1
d + |2l(ε · i · |x|

1
d

l + |x|l)|l)

≥ 2l(ε · |x|
1
d

l + ε · i · |x|
1
d

l + |x|l)

Assuming the claim for k we show it for k + 1 as follows: First let i = 1. Then

B(l)k+1(x)

= B(l)(|x|l)
1
d

k (x)

≥ 2l(ε · |x|
1
d

l · |x|
k
d

l + |x|l)

= 2l(ε · |x|
k+1

d

l + |x|l)

Now we assume the assertion for i and we show it for i + 1:

B(l)i+1
k+1(x)

= B(l)k+1(B(l)i
k+1(x))

≥ B(l)k+1(2l(ε · i · |x|
k+1

d

l + |x|l))

≥ 2l(ε · (|2l(ε · i · |x|
k+1

d

l + |x|l)|l)
k+1

d + |2l(ε · i · |x|
k+1

d

l + |x|l)|l)

≥ 2l(ε · |x|
k+1

d

l + ε · i · |x|
k+1

d

l + |x|l)
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The claim yields B(l)3·d(x) ≥ 2l(|x|2l ) for x ≥ C for C a suitable constant
depending on l and ε.

By induction on i we see that B(l)i
3·d(x) ≥ 2l((|x|l)2

i

)
We claim now that

B(l)d·3+i+1(2l(xd)) ≥ 2l((Ai(x))d)

for x ≥ C. Proof by induction on i. For i = 0 we find

B(l)3·d+1(2l(xd))
= B(l)x

3·d(2l(xd))
= 2l((|2l(xd)|l)2

x

)
≥ 2l((A0(x))d)

Assuming the claim for i we obtain it for i + 1 as follows:

B(l)3·d+1+i(2l(xd))
= B(l)x

3·d+i(2l(xd))

≥ 2l((Ax
i (x))d)

= 2l((Ai+1(x))d).

Theorem 4. Let 1 ≥ ε > 0. Let g0(x) := x + ε. Define recursively gk+1(x) :=
2gk(|x|). Define h?

l (x) := Ack−1(x)
√
|x|l. Let

B(l)?
k(x) := B(gl, h

?
l )k(x)

and
B(l)?(x) := B(l)?

x(x).

Then we have
B(l)?(2l((4 · d + 1)d)) > Ack(d).

Proof. Assume for a contradiction that Ack(d) ≥ B?(l)(2l((4 · d + 1)d)). Then

for any i ≤ B?(l)4·d+1(2l((4 ·d+1)d)) we have Ack−1(i) ≤ d hence i
1
d ≤ i

1
Ack−1(i)

and therefore

B?(l)(2l((4 · d + 1)d)) ≥ B(d, l)4·d+1(2l((4 · d + 1)d))
> 2l(Ad(4 · d + 1))d

> Ack(d).

Contradiction!

It seems plausible that Theorems 2, 3 and 4 hold for all start functions gl

such where x + ε ≤ g0(x) ≤ x + |x|c and the same functions h(d)l and h(l)?.
For the record let us consider the situation when one starts with an ex-

ponential or double exponential function. This leads easily to Ackermannian
growth
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Theorem 5. 1. Let g(x) := 2x and h(x) = |x|k. Then B(g, h) is Ackerman-
nian.

2. Let g(x) := 22x

and h(x) := log?(x). Then B(g, h) is Ackermannian.

Proof. 1. By induction on k one easily shows B(g, h)k(2k(x)) ≥ 2k(Ak(x)).
2. By induction on k one easily shows B(g, h)k(2k(x)) ≥ 2Ak(x)(Ak(x)).
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