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Abstract. We investigate natural systems of fundamental sequences for
ordinals below the Howard Bachmann ordinal and study growth rates of
the resulting slow growing hierarchies. We consider a specific assignment
of fundamental sequences which depends on a non negative real num-
ber ε. We show that the resulting slow growing hierarchy is eventually
dominated by a fixed elementary recursive function if ε is equal to zero.
We show further that the resulting slow growing hierarchy exhausts the
provably recursive functions of ID1 if ε is strictly greater than zero. Fi-
nally we show that the resulting fast growing hierarchies exhaust the
provably recursive functions of ID1 for all non negative values of ε.
Our result is somewhat surprising since usually the slow growing hierar-
chy along the Howard Bachmann ordinal exhausts precisely the provably
recursive functions of PA. Note that the elementary functions are a very
small subclass of the provably recursive functions of PA and the provably
recursive functions of PA are a very small subclass of the provably recur-
sive functions of ID1. Thus the jump from ε equal to zero to ε greater
than zero is one of the biggest jumps in growth rates for subrecursive
hierarchies one might think of.

This article is part of our general research program on phase transitions in logic
and combinatorics. Phase transition phenomena are ubiquitous in a wide variety
of branches of mathematics and neighbouring sciences, in particular, physics
(see, for example, [6]). An informal description of a ‘phase transition effect’ is
the effect behaviour wherein ‘small’ changes in certain parameters of a system
occasion dramatic shifts in some globally observed behaviour of the system, such
shifts being marked by a ‘sharp threshold point’. An everyday life example of
this is the change from one material state to a different one as temperature
is increased, with the ‘threshold’ being given by melting/boiling point. Similar
phenomena occur in mathematical and computational contexts like evolutionary
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graph theory (see, e.g., [3, 10]), percolation theory (see, e.g., [9]), computational
complexity theory and artificial intelligence (see, for example, [7, 11]).
The purpose of PTLC is to study Phase Transitions in Logic and Combinatorics.
We are particularly interested in the transition from provability to unprovability
of a given assertion by varying a threshold parameter. On the side of hierarchies
of recursive functions this reduces to classifing the phase transition for the growth
rates of the functions involved. In this article we are concerned with phase tran-
sitions for the slow growing hierarchy and we continue the investigations from
[12–15].
From the pure logical side this article is motivated by the classical classification
problem for the recursive functions and the resulting problem of comparing the
slow and fast growing hierarchies. It has been claimed, for example in [3] p. 439
l.-5, that for sufficiently big prooftheoretic ordinals the slow and fast growing
hierarchies will match up. The results of this paper may indicate that this claim
might not be true in general.
To formulate the results precisely we introduce some notation. For an ordinal α
less than the Howard Bachmann ordinal let Nα be the number of symbols in α
which are different from 0 and +. The idea is essentially that Nα is the number
of edges in the tree which represents the term for α.
For a limit ordinal λ let λ[x] := max{β < λ : Nβ ≤ Nλ + x}. This assignment
of fundamental sequences is natural and does not change, as we will show in
the appendix, the growth rate of the induced fast growing hierarchy. But, as our
first main theorem shows, the induced slow growing hierarchy (along the Howard
Bachmann ordinal) consists of elementary functions only. This generalizes results
from [4] where we showed that the resulting slow growing hierarchy along Γ0

consists of elementary recursive functions only.
At first sight the resulting slow growing hierarchies seem always to collapse under
this assignment of fundamental sequences and one may wonder how robust this
phenomenon is. We prove therefore in a separate section a very surprising and
extremely sharp phase transition threshold for the slow growing hierarchy. The
upshot is that small changes prevent the hierarchies from collapsing. For a given
real number ε ≥ 0 let λ[x]ε := max{β < λ : Nβ ≤ (1 + ε) · Nλ + x}. Then, as
we just said, for ε = 0 the resulting slow growing hierarchy is very slow growing
but for any ε > 0 the resulting slow growing hierarchy becomes fast growing and
matches up with the fast growing hierarchy at all ε-numbers below the Howard-
Bachmann ordinal. We conjecture that within the phase transition, i.e. when in
the definition of λ[x]ε the number ε is a function of λ and x, we may arrange
other behaviours of the resulting slow growing hierarchy.
The paper is not fully self contained. The proof of the first main theorem requires
basic familiarity with Buchholz style notation systems for the Howard Bachmann
ordinal. (Knowledge of [4] is more then sufficient.) The proof of the second main
result should be generally accessible (at least when one restricts the consideration
to ordinals below ε0.



1 Proof of the first main result

1.1 Basic concepts

We recall some basic definitions and facts from Buchholz papers on ordinal
notations. Missing proofs can be found in [4].

Definition 1 Inductive definition of a set of terms T and a set P ⊆ T .
0 ∈ T,
a ∈ T & i ∈ {0, 1} ⇒ Dia ∈ P,
a0, . . . , an ∈ P and n ≥ 1 ⇒ (a0, . . . , an) ∈ T.

Notations for Section 1:
1. a, b, c, d, e range over T.
2. If a ∈ P , then we identify the one element sequence (a) with the term a.
3. The empty sequence ( ) is identified with the term 0.
4. x, y, z, i, l,m, n range over non negative integers.

Definition 2 Recursive definition of a ≺ b for a, b ∈ T.
a ≺ b holds, iff one of the following cases holds:
1. a = 0 and b 6= 0,
2. (a = D0a0 & b = D1b0),
3. (a = Dia0 & b = Dib0 & a0 ≺ b0),
4. a = (a0, . . . , am) & b = (b0, . . . , bn) & 1 ≤ m + n and
[(m < n &∀i ≤ n(ai = bi)) or (∃k ≤ min{m,n}(∀i < k(ai = bi) & ak ≺ bk))]

Lemma 1 (T,≺) is a linear order.

(T,≺) is not a well-order. To see this, let a0 := D10 and an+1 := D0an. Then
ai+1 ≺ ai for all i. In the sequel we thin out T to a smaller set OT which is
well-ordered by ≺.

Definition 3 Assume that M,N ⊆ T.
M � N : ⇐⇒ ∀x ∈ M∃y ∈ N(x � y).
a � N : ⇐⇒ {a} � N .
M ≺ a : ⇐⇒ ∀x ∈ M(x ≺ a).
(a1, . . . , am) + (b1, . . . , bn) := (a1, . . . , ai, b1, . . . , bn)
where i ∈ {1, . . . ,m} is maximal with b1 � ai.

Definition 4 Recursive definition of K∗a and Ka for a ∈ T.
K∗0 := ∅, K0 := ∅,
K∗(a0, . . . , an) :=

⋃
i≤n K∗ai, K(a0, . . . , an) :=

⋃
i≤n Kai,

K∗D1a := K∗a, KD1a := Ka,
K∗D0a := {a} ∪K∗a, KD0a := {D0a}.

Lemma 2 K∗c ≺ a =⇒ Kc ≺ D0a.



Definition 5 Inductive definition of a set of terms OT ⊆ T.
0 ∈ OT,
a0, . . . , an ∈ OT ∩ P , n ≥ 1 and an � . . . � a0 =⇒ (a0, . . . , an) ∈ OT,
a ∈ OT =⇒ D1a ∈ OT,
a ∈ OT & K∗a ≺ a =⇒ D0a ∈ OT.

Notations.
1 := D00, ω := D01, Ω := D10.
T0 := {x ∈ T : x ≺ Ω}, OT0 := OT ∩ T0.

Theorem 1 (OT,≺) is a well-order. The order type of (OT0,≺) is equal to the
Howard Bachmann ordinal.

Definition 6 b /c a : ⇐⇒ b ≺ a & ∀d ∈ OT (b � d � a ⇒ K∗b � K∗d ∪K∗c)
[ a, b, c ∈ T ].

Lemma 3 1. a ≺ D1a.
2. a, b ∈ OT0 & a ≺ b =⇒ K∗a � K∗b.
3. b /c a & K∗a ≺ a & K∗c ≺ b & a, b ∈ OT =⇒ K∗b ≺ b.
4. b /c a =⇒ d + b /c d + a & Dib /c Dia (i ∈ {0, 1}).

Proof. We prove assertion 3. Assume that b � K∗b. Choose a subterm d of b with
b � K∗d such that the length of d is minimal possible. Then d = D0e with K∗e ≺
b � e � a, since K∗b � K∗c ∪ K∗a ≺ a. Then we obtain K∗b � K∗c ∪ K∗e ≺ b.
Contradiction.

Definition 7 Definition of tp(a) ∈ {0, 1, ω,Ω} for a ∈ T.
tp(0) := 0.
tp(1) := 1.
tp(Ω) := Ω.
tp(a) = 1 ⇒ tp(Dia) := ω.
tp(a) = ω ⇒ tp(Dia) := ω
tp(a) = Ω ⇒ tp(D0a) := ω.
tp(a) = Ω ⇒ tp(D1a) := Ω.
tp((a0, . . . , an)) := tp(an).

Definition 8 Recursive definition of a{c} ∈ T for c ∈ T0 and a ∈ T with
tp(a) = Ω.
Ω{c} := c.
(D1a){c} := D1a{c}.
a = (a0, . . . , an) ⇒ a{c} := (a0, . . . , an−1) + an{c}.

Lemma 4 1. tp(a) = Ω & c ∈ T0 ⇒ a{c}�c a.
2. tp(a) = Ω & c, d ∈ T0 & c ≺ d ⇒ a{c} ≺ a{d}.
3. tp(a) = Ω & c ∈ T0 ⇒ K∗a{c} � K∗a{0} ∪K∗c.
4. a ∈ OT, tp(a) = Ω & c ∈ OT0 ⇒ a{c} ∈ OT.



1.2 Refined concepts

Here we collect some technical material which is needing during the proof of the
first main result.

Definition 9 Recursive definition of Na for a ∈ T .
N0 := 0.
N(a0, . . . , an) := Na0 + . . . + Nan.
NDia := 1 + Na.

Definition 10 Definition of a[x] and a[[x]] for a ∈ OT \ {0}.
a[x] := max{b ∈ OT : b ≺ a & Nb ≤ Na + x}.
a[[x]] := max{b ∈ OT : b ≺ a & Nb ≤ x}.

Lemma 5 1. (a0, . . . , an−1, an)[x] = (a0, . . . , an−1) + an[x].
2. a = (a0, . . . , an), b = (a1, . . . , an), x ≥ Na0 =⇒ a[[x]] = a0 + b[[x−Na0]].
3. a = (a0, . . . , an), x < Na0 =⇒ a[[x]] = a0[[x]].
4. a[[0]] = 0.
5. (D1a)[x] = D1a[x].
6. x > 0 =⇒ (D1a)[[x]] = D1a[[x− 1]].

Definition 11 Recursive definition of Ga(x) for a ∈ OT0.
G0(x) := 0.
Ga+1(x) := Ga(x) + 1.
Ga(x) := Ga[x](x) if tp(a) = ω.

Lemma 6 Let a, b ∈ OT0.
1. a = (a0, . . . , an) =⇒ Ga(x) = Ga0(x) + · · ·+ Gan

(x).
2. a = D0(b + 1) =⇒ Ga(x) = GD0b(x) + Ga[[x+1]](x).
3. a � b & Na ≤ x + 1 =⇒ Ga(x) ≤ Gb(x).

Assertion 2 motivates the definition of the assignment ·[[·]]. Moreover it gives a
first indication why the resulting slow growing hierarchy will collapse since the
second term Ga[[x+1]](x) refers to a[[x + 1]] which is in general very small when
compared to a. In the sequel we verify that this phenomenon also holds true in
more complicated situations.

Definition 12 Definition of Ta(x) for a ∈ T .
T0(x) := 1.
Ta(x) := Ta[[x]](x) + 2.

Remark. Ta(x) is defined by recursion on the cardinality of the set {b ≺ a :
Nb ≤ x}. The asymptotic of Ta is very interesting from the analytic number
theory point of view. We conjecture that sharp bounds on Ta will prove useful
to obtain good upper bounds on Ga but in this article we will just prove that
each Ga is elementary for a ∈ OT.



Lemma 7 1. a � b & Na ≤ x ⇒ Ta(x) ≤ Tb(x).
2. a � b ⇒ Ta(x) ≤ Tb(x).

Proof. 1. By induction on the cardinality of the set {c ≺ b : Nc ≤ x}. Assume
that Tb(x) = Tb[[x]](x)+2 and a 6= b. Then a � b[[x]] and the induction hypothesis
yields Ta(x) ≤ Tb[[x]](x) and the assertion follows.
2. If a = 0 then the assertion is clear. Assume that Ta(x) = Ta[[x]](x) + 2 and
Tb(x) = Tb[[x]](x) + 2. Then a[[x]] � b[[x]] and the assertion follows from 1.

Definition 13 Recursive definition of Cx(a, g) for a ∈ OT and g, x < ω.
1. Cx(0, g) := 0.
2. Cx((a0, . . . , an), g) := Cx(a0, g) + · · ·+ Cx(an, g).
3. Cx(D0a, g) := g ·GD0a(x).
4. Cx(D1a, g) := g2

TD1a(x+1)
· (Cx(a, g) + 1).

Lemma 8 If a ∈ OT0 then Cx(a, g) = g ·Ga(x).

Proof by induction on Na.
1. a = 0. Then the assertion is obvious.
2. a = (a0, . . . , an). Then the induction hypothesis yields Cx(a, g) = Cx(a0, g) +
· · ·+ Cx(an, g) = g ·Ga0(x) + · · ·+ g ·Gan

(x) = g ·G(a0,...,an)(x).
3. a = D0b. Then Cx(a, g) = g ·Ga(x).
The following Lemma is a crucial tool in proving the hierarchy collapse.

Lemma 9 (Mainlemma) If a, b ∈ OT, K∗b ≺ a, Nb ≤ x + 1 and g =
G(D0a)[[x+1]](x)
then

Cx(b, g) ≤ g2Tb(x+1)+1
.

Proof by induction on Nb.
1. b = 0. Then the assertion is obvious.
2. b = (b0, . . . , bn). Then n + 1 ≤ x + 1, Nbi ≤ x + 1 and K∗bi ⊆ K∗b ≺ a

for i = 0, . . . , n. The induction hypothesis yields Cx(bi, g) ≤ g2
Tbi

(x+1)+1

for
i = 0, . . . , n. Thus Cx(b, g) = Cx(b0, g) + · · · + Cx(bn, g) ≤ g2

Tb0
(x+1)+1

+ · · · +
g2

Tbn
(x+1)+1

≤ (x + 1) · g2Tb(x+1)−1 ≤ g2Tb(x+1)+1
,

since x + 1 ≤ g and Tbi(x + 1) < Tb(x + 1) by Lemma 7.
3. b = D0c. Then Cx(b, g) = g·GD0c(x). K∗b ≺ a yields b ≺ D0a. Thus Nb ≤ x+1
yields b � (D0a)[[x + 1]] and Gb(x) ≤ G(D0a)[[x+1]](x) hence Cx(b, g) ≤ g2.

4. b = D1c. Then the induction hypothesis yields Cx(c, g) ≤ g2Tc(x+1)+1
hence

Cx(b, g) = g2
TD1c(x+1)

· (Cx(c, g) + 1)

≤ g2
TD1c(x+1)

· (g2Tc(x+1)+1
+ 1)

≤ g2
TD1c(x+1)+1

= g2Tb(x+1)+1

since Tc(x + 1) + 1 < TD1c(x + 1) because c ≺ D1c and Nc ≤ x.



1.3 Collapsing ordinals with countable cofinalities

Lemma 10 If x < Na then K∗a[[x]] � K∗a.

Proof by induction on Na using Lemma 5.
1. a = 0. Then the assertion is obvious.
2. a = (a0, . . . , an). Let b := (a1, . . . , an).
2.1. x < Na0. Then a[[x]] = a0[[x]] and the induction hypothesis yields K∗a[[x]] =
K∗a0[[x]] � K∗a0 ⊆ K∗a by assertion 2 of Lemma 3.
2.2. x = Na0. Then a[[x]] = a0 and K∗a0 ⊆ K∗a.
2.3. x > Na0. Then a[[x]] = a0 + b[[x−Na0]]. x < Na yields x−Na0 < Nb and
the induction hypothesis yields K∗b[[x − Na0]] � K∗b. Thus K∗a[[x]] = K∗a0 ∪
K∗b[[x−Na0]] � K∗a0 ∪K∗b = K∗a.
3. a = D0b. Then a[[x]] ≺ a ≺ Ω, therefore K∗a[[x]] � K∗a by assertion 2 of
Lemma 3.
4. a = D1b. Then Na = 1 + Nb.
4.1. b = 0. Then Na = 1 hence x = 0 and the assertion is obvious.
4.2. tp(b) ∈ {ω, Ω}. We may assume that x > 0. Then (D1b)[[x]] = D1b[[x − 1]].
x < Na yields x− 1 < Nb. The induction hypothesis yields K∗b[[x− 1]] � K∗b,
hence K∗a[[x]] � K∗a.
4.3. b = c + 1. Then a[[x]] = D1c · y + (D1c)[[z]] where ND1c > z. The induction
hypothesis yields K∗(D1c)[[z]] � K∗D1c hence K∗a[[x]] � K∗a.

Lemma 11 If a, b ∈ OT , tp(b) = ω and b[x] � a � b then K∗b[x] ≤ K∗a.

Proof by induction on Nb.
1. b = (b0, . . . , bn). Then we have b[x] = (b0, . . . , bn−1) + bn[x] by assertion 1 of
Lemma 5. b[x] � a � b yields a = (b0, . . . , bn−1) + c for some c with bn[x] � c �
bn. The induction hypothesis yields K∗bn[x] � K∗c hence K∗b[x] � K∗a.
2. b = D0c. Then b[x] � a � b ≺ Ω and K∗b[x] � K∗a.
3. b = D1c.
3.1. tp(c) = ω. Then b[x] = D1c[x] � a � D1c. Thus a = D1d+e for some d with
c[x] � d � c. The induction hypothesis yields K∗c[x] � K∗d hence K∗b[x] � K∗a.
3.2. c = d + 1. Then (D1c)[x] = D1d · y + (D1d)[[z]] with z < ND1d and y > 0.
Lemma 10 yields K∗(D1d)[[z]] ≤ K∗D1d. D1d · y + (D1d)[[z]] � a � D1c yields
a = D1d + e for some e ≺ D1c hence K∗b[x] � K∗a.

Lemma 12 Assume that b ∈ OT and tp(b) = ω.
1. b[x] �x b.
2. K∗b[x] ≺ b[x].
3. D0b[x] ∈ OT .

Proof. Assertions 2 and 3 follow from assertion 1. Assertion 1 itself follows from
Lemma 11.

Lemma 13 Assume D0b ∈ OT. If x < ω and tp(b) = ω then D0b[x] ∈ OT and
(D0b)[x] = D0b[x].



Proof. Lemma 12 yields K∗b[x] ≺ b[x], hence D0b[x] ∈ OT. By definition we have
D0b[x] � (D0b)[x]. Assume now that (D0b)[x] = D0c+d for some d ≺ D0(c+1).
If d 6= 0 then D0(c + 1) would be a better choice for (D0b)[x] than D0c + d.
Hence d = 0. We have N(D0b)[x] = 1 + Nb + x = 1 + Nc, thus Nc = Nb + x.
c ≺ b yields c � b[x] hence D0c ≤ D0b[x]. Therefore D0b[x] = (D0b)[x].

Lemma 14 Assume that a, b ∈ OT , tp(b) = ω, K∗b ≺ a and g = G(D0a)[[x+1]](x).
Then Cx(b[x], g) ≤ Cx(b, g).

Proof by induction on b.
1. b = (b0, . . . , bn) with tp(bn) = ω.
Then K∗bn ≺ a and the induction hypothesis yields Cx(bn[x], g) ≤ Cx(bn, g).
Then Cx(b[x], g) = Cx(b0, g) + · · ·+ Cx(bn[x], g) ≤ Cx(b0, g) + · · ·+ Cx(bn, g) =
Cx(b, g).
2. b = D0c.
Then b[x] ≺ Ω and Lemma 8 yields Cx(b[x], g) = g · Gb[x](x) = g · Gb(x) =
Cx(b, g).
3. b = D1c where tp(c) = ω.
We have K∗c ⊆ K∗b ≺ a and the induction hypothesis yields Cx(c[x], g) ≤
Cx(c, g). Therefore Lemma 7 yields

Cx(b[x], g) = Cx(D1c[x], g)

= g2
TD1c[x](x+1)

· (Cx(c[x], g) + 1)

≤ g2
TD1c(x+1)

· (Cx(c, g) + 1)
= Cx(b, g).

4. b = D1c where c = d + 1.
In this critical case we have b[x] = D1d + (D1c)[[x + 1]] = D1d · y + (D1c)[[z]]
where z < ND1c and y > 0. Lemma 10 yields K∗(D1c)[[z]] � K∗D1c � K∗b ≺ a.
Thus K∗(D1c)[[x + 1]] ≺ a. Hence Lemma 9 yields

Cx(b[x], g) = Cx(D1d, g) + Cx((D1c)[[x + 1]], g)

≤ g2
TD1d(x+1)

· (Cx(d, g) + 1) + g2
T(D1c)[[x+1]](x+1)+1

≤ g2
TD1c(x+1)

· (Cx(c, g) + 1)
= Cx(b, g)

since TD1c(x + 1) > T(D1c)[[x+1]](x + 1) + 1 and TD1c(x + 1) ≥ TD1d(x + 1).

1.4 Collapsing ordinals with uncountable cofinalities

Lemma 15 tp(a) = Ω & a{0} ≺ b ≺ a ⇒ Na{0} < Nb.

Proof by induction on Na.
1. a = Ω. Then a{0} = 0 and the assertion is obvious.



2. a = (a0, . . . , an). a{0} ≺ b ≺ a yields b = (a0, . . . , an−1, c) for some c with
an{0} ≺ c ≺ an. The induction hypothesis yields Nan{0} < Nc hence Na{0} <
Nb.
3. a = D1c. a{0} = D1c{0} ≺ b ≺ D1c yields b = D1d+e for some e ≺ D1(d+1)
and c{0} � d ≺ c. The induction hypothesis yields Nc{0} ≤ Nd. If e 6= 0 then
Nb ≥ Nd + Ne + 1 > Na. If e = 0 then c{0} ≺ d ≺ c. The induction hypothesis
yields Nc{0} < Nd hence the assertion.

Lemma 16 Assume that D0a, b, c ∈ OT , tp(a) = tp(c) = Ω, b � c � a, K∗b ≺ a
and Nb ≤ Nc + x. Then b � c{(D0a)[[x + 1]]}.

Proof by induction on Nb.
1. b = 0. Then the assertion is obvious.
2. b = (b0, . . . , bm). Assume that c = (c0, . . . , cn).
2.1. b0 = c0, . . . , bm = cm and m < n. Then b � (c0, . . . , cm) � c{(D0a)[[x + 1]]}.
2.2. ∃i ≤ min{m,n}[b0 = c0, . . . , bi−1 = ci−1, bi ≺ ci].
If i < n then b ≺ (c0, . . . , ci) � c{(D0a)[[x + 1]]}.
Assume i = n and bn, . . . , bm ≺ cn].
2.2.1. m = n. Nb ≤ Nc + x yields Nbn ≤ Ncn + x. The induction hypothesis
yields bn � cn{(D0a)[[x + 1]]} hence b � c{(D0a)[[x + 1]]}.
2.2.2. m > n. Nb ≤ Nc + x yields Nbn, . . . , Nbm ≤ Ncn + x− 1 The induction
hypothesis yields for x > 0 that bn, . . . , bm � cn{(D0a)[[x]]} ≺ cn{(D0a)[[x + 1]]}.
For x = 0 we obtain bn, . . . , bm � cn{0} = cn{(D0a)[[x]]} by Lemma 15. Since
cn{(D0a)[[x + 1]]} ∈ P we obtain (bn, . . . , bm) ≺ cn{(D0a)[[x + 1]]} hence b ≺
c{(D0a)[[x + 1]]} holds for x ≥ 0.
3. b = D0c. K∗b ≺ a yields K∗c ∪ {c} ≺ a hence b ≺ D0a, thus b � (D0a)[[Nb]].
3.1. c = Ω. Then Nc = 1 and b � (D0a)[[x + 1]] = c{(D0a)[[x + 1]]}.
3.2. Ω ≺ c. Then b � Ω � c[0] � c{(D0a)[[x + 1]]}.
4. b = D1d.
4.1. c = (c0, . . . , cn) with n ≥ 1.
Then b = D1d � c0 � c{0} ≤ c{(D0a)[[x + 1]]}.
4.2. c = D1e. Nb ≤ Nc+x yields Nd ≤ Ne+x. The induction hypothesis yields
d � e{(D0a)[[x + 1]]} since e ≺ D1e � a. Thus b = D1d � D1e{(D0a)[[x + 1]]} =
c{(D0a)[[x + 1]]}.

Corollary 1 Assume that tp(a) = Ω, b � a, K∗b ≺ b and Nb ≤ Na + x. Then
b ≤ a{(D0a)[[x + 1]]}.

Proof. Put c = a in Lemma 16.

Lemma 17 Assume that D0a ∈ OT and tp(a) = Ω. Let z < ND0a. Then
(D0a)[[z]] = D0a{0} if z = ND0a[0] and (D0a)[[z]] = (D0a{0})[[z]] else.

Proof. It suffices to show (D0a)[[z]] � D0a{0}. Assume for a contradiction that
D0a{0} ≺ (D0a)[[z]] ≺ D0a. Then (D0a)[[z]] = D0b + d for some b with a{0} �
b ≺ a. Lemma 15 yields Nb ≥ Na{0}. If d 6= 0 then N(D0b+d) ≥ ND0a{0}+1 =



ND0a. This contradicts z < ND0a. Hence d = 0 and a{0} ≺ b ≺ a. Lemma 15
yields Nb > Na{0} hence ND0b ≥ ND0a. This contradicts z < ND0a.

Lemma 18 Assume that D0a ∈ OT and tp(a) = Ω. Let z < N(D0a). Let
d0a(0, z) := (D0a{0})[[z]] and d0a(y + 1, z) := D0a{d0a(y, z)}. Then d0a(y, z) ≺
d0a(y + 1, z) and d0a(y, z) ∈ OT . Moreover (D0a)[[x]] = d0a(y, z′) where y and
z′ are chosen such that (Na + 1) · y + z′ = x and z′ < Na + 1.

Proof. By induction on y we show d0a(y, z) ≺ d0a(y + 1, z).
Assume first that y = 0.
Then d0a(0, z) = (D0a{0})[[z]] and d0a(1, z) = D0a{(D0a{0})[[z]]}. If z = 0
then d0a(0, z) < d0a(1, z) is obvious. Assume that z 6= 0. Lemma 10 yields
K∗(D0a{0})[[z]] � K∗(D0a{0}) � K∗a{0}∪{a{0}} ≺ a{(D0a{0})[[z]]}. Lemma 2
yields K(D0a{0})[[z]] ≺ D0a{(D0a{0})[[z]]} hence (D0a{0})[[z]] ≺ D0a{(D0a{0})[[z]]}.

Now assume that y = y′ + 1.
The induction hypothesis yields d0a(y′, z) ≺ d0a(y′ +1, z) hence a{d0a(y′, z)} ≺
a{d0a(y′ + 1, z)} thus d0a(y, z) ≺ d0a(y + 1, z).

By induction on y we show d0a(y, z) ∈ OT.
Assume y = 0.
Then d0a(y, z) = (D0a{0})[[z]] ∈ OT.
Assume y = y′ + 1.
Then d0a(y, z) := D0a{d0a(y′, z)}. The induction hypothesis yields d0a(y′, z) ∈
OT hence a{d0a(y′, z)} ∈ OT.
We have to show K∗a{d0a(y′, z)} ≺ a{d0a(y′, z)} and compute K∗a{d0a(y′, z)} �
K∗a{0} ∪ K∗d0a(y′, z). Lemma 4 yields a{0} �0 a hence K∗a{0} ≺ a{0} since
K∗a ≺ a.
We first consider the case y′ = 0. If z = 0 then d0a(y′, z) = 0 hence K∗a{d0a(y′, z)} =
K∗a{0} ≺ a{0} = a{d0a(y′, z)}. If z > 0 then (D0a{0})[[z]] 6= 0 and Lemma 10
yields K∗d0a(y′, z) � K∗D0a{0} � K∗a{0} ∪ {a{0}} � a{0} ≺ a{(D0a{0})[[z]]}.
Now assume that y′ > 0. We already have shown that {d0a(y′ − 1, z)} ≺
d0a(y′, z). The induction hypothesis yields d0a(y′, z) ∈ OT hence K∗a{d0a(y′ −
1, z)} ≺ a{d0a(y′ − 1, z)} hence K∗a{d0a(y′, z)} = K∗D0a{d0a(y′ − 1, z)} �
K∗a{0} ∪K∗{d0a(y′ − 1, z)} ∪ {d0a(y′ − 1, z)} � {d0a(y′ − 1, z)} ≺ d0a(y′, z).

Now we prove (D0a)[[x]] = d0a(y, z′) by induction on x where (Na+1)·y+z′ = x
and z′ < Na+1. If x < N(D0a) then the assertion follows from Lemma 17. Now
assume that x ≥ N(D0a). The choice of y and z′ and the definition of (D0a)[[x]]
yield (D0a)[[x]] ≥ d0a(y, z′) since Nd0a(y, z′) = x.
Now assume that (D0a)[[x]] = D0b+ c with b ≺ a and c ≺ D0(b+1). Then c = 0
since otherwise D0(b + 1) would be a better choice than D0b + c for (D0a)[x].
We have b � a, tp(a) = Ω, K∗b ≺ b and Nb ≤ x = Na + 1 + x − Na − 1. The
induction hypothesis yields (D0a)[[x−Na− 1]] = d0a(y − 1, z). Lemma 1 yields
b � a{(D0a)[[x−Na]]} hence D0b � D0a{(D0a)[[x−Na−1]]} = d0a(y, z) ∈ OT.



Corollary 2 Assume that tp(a) = Ω. Then D0a{(D0a)[[x + 1]]} ∈ OT and
(D0a)[x] = D0a{(D0a)[[x + 1]]}.

Proof. Lemma 18 yields (D0a)[x] = (D0a)[[Na + 1 + x]] = D0a{(D0a)[[x + 1]]} ∈
OT.

Definition 14 Recursive definition of a nominal form Cx(a, g) for a ∈ OT with
tp(a) = Ω and g < ω.
1. Cx(Ω, g) := ?.
2. Cx((a0, . . . , an−1, an), g) := Cx(a0, g) + · · ·+ Cx(an−1, g) + Cx(an, g).
3. Cx(D1a, g) := g2

TD1a(x+1)
· (Cx(a, g) + 1).

If C is a nominal form then C[? := c] denotes the result of replacing every
occurrence of ? in C by c.

Lemma 19 If a ∈ OT, tp(a) = Ω and c ∈ OT0 then Cx(a[c], g) ≤ Cx(a, g)[? :=
g ·Gc(x)].

Proof by induction on Na.
1. a = Ω. Then Lemma 8 yields Cx(a[c], g) = Cx(c, g) = g · Gc(x) = ?[? :=
g ·Gc(x)].
2. a = (a0, . . . , an). Then the induction hypothesis yields Cx(a[c], g) = Cx(a0, g)+
· · ·+ Cx(an−1, g) + Cx(an[c], g) ≤ Cx(a0, g) + · · ·+ Cx(an−1, g) + Cx(an, g)[? :=
g ·Gc(x)] = Cx(a, g)[? := g ·Gc(x)]
3. a = D1b.
Then assertion 2 of Lemma 7 and the induction hypothesis yields

Cx(a[c], g) = Cx(D1(b[c]), g)

= g2
TD1b[c](x+1)

· (Cx(b[c], g) + 1)

≤ g2
TD1b(x+1)

· (Cx(b, g)[? := g ·Gc(x)] + 1)
= Cx(a, g)[? := g ·Gc(x)].

Lemma 20 If a ∈ OT and tp(a) = Ω then Cx(a, g)[? := g2] ≤ Cx(a, g).

Proof by induction on Na.
1. a = Ω. Then Cx(a, g)[? := g2] = g2 and Cx(D10, g) = g2

TD10(x+1) ·(0+1) ≥ g2.
2. a = (a0, . . . , an)
Then the induction hypothesis yields Cx(a, g)[? := g2] = Cx(a0, g) + · · · +
Cx(an−1, g) + Cx(an, g)[? := g2] ≤ Cx(a0, g) + · · · + Cx(an−1, g) + Cx(an, g) =
Cx(a, g).
3. a = D1b. Then the induction hypothesis yields

Cx(a, g)[? := g2] = g2
TD1b(x+1)

· (Cx(b, g)[? := g2] + 1)

≤ g2
TD1b(x+1)

· (Cx(b, g) + 1)
= Cx(a, g).



1.5 Putting things together

Theorem 2 Let D0a ∈ OT0 and g := G(D0a)[[x+1]](x). Let D0b ∈ OT and as-
sume that K∗D0b ≺ a. Then

GD0b(x) ≤ 1 + Cx(b, g).

Proof by induction on D0b.
1. GD00(x) = 1 ≤ 1 + Cx(0, g).
2. b = c + 1. Then GD0b(x) = GD0c+(D0b)[[x+1]](x) = GD0c(x) + G(D0b)[[x+1]](x) ≤
1 + Cx(c, g) + g = 1 + Cx(c + 1, g) since Cx(1, g) = g and G(D0b)[[x+1]](x) ≤
G(D0a)[[x+1]](x) by assertion 3 of Lemma 6.
3. tp(b) = ω.
Then the induction hypothesis, Lemma 13 and Lemma 14 yield
GD0b(x) = G(D0b)[x](x) = GD0(b[x])(x) ≤ 1 + Cx(b[x], g) ≤ 1 + Cx(b, g)
4. tp(b) = Ω.
Then the induction hypothesis, Lemma 2, Lemma 19 and Lemma 20 yield

GD0b(x) = GD0b[(D0b)[[x+1]]](x)
≤ 1 + Cx(b{(D0b)[[x + 1]]}, g)
≤ 1 + Cx(b, g)[? := g ·G(D0b)[[x+1]](x)](x)

≤ 1 + Cx(b, g)[? := g2]
≤ 1 + Cx(b, g).

Lemma 21 Let Ux := {a ∈ T : Na ≤ x} and #Ux be the cardinality of Ux.
Then #Ux ≤ 444x

.

Proof. By induction on x. Obviously #U0 = 1 and #Ux+1 is less than or equal
to one plus the cardinality of the Cartesian product {0, 1, 2} ×Ux × · · ·Ux ×Ux

with x + 2 factors. For, if a ∈ T then a is either of the form (a0, . . . , an) with
n ≤ x and ai ∈ Tx or a is of the form D0b or D1b for b ∈ Tx. Hence, arguing by
induction, #Ux+1 ≤ 3 · (#Ux)x ≤ 3 · (444x

)x ≤ 444x+1

.

Theorem 3 Let p(x) := 444x

. If a ∈ OT0 and Na ≤ x then Ga(x) ≤ p(p(Ta(x+
1))).

Proof. By induction on Na.
1. a = 0. Then the assertion is obvious.
2. a = (a0, . . . , an)
Then the induction hypothesis yields Ga(x) = Ga0(x)+· · ·+Gan(x) ≤ p2(Ta0(x+
1)) + · · ·+ p2(Tan

(x + 1)) ≤ p2(Ta(x + 1)).
2. a = D0b. Let g := (D0a)[[x + 1]]. Then the induction hypothesis and Lemma
9 yield

Ga(x) ≤ 1 + Cx(b, g)



≤ g2Tb(x+1)+1

≤ (p2(Ta[[x+1]](x + 1)))2
44

4x

≤ p2(Ta(x + 1)).

Corollary 3 Let 40(x) := x and 4n+1(x) := 44n(x). If a ∈ OT0 and Na ≤ x
then Ga(x) ≤ 49(x).

Proof. By Lemma 21 and Theorem 3.
We find it an interesting open question to decide whether Ga can be majorized
eventually by a double (or triple) exponential function. Another interesting open
question is whether our first main result extends to the proof-theoretic ordinal of
the theory ID<ω. Then the usual first subrecursively inaccessible ordinal would
not be subrecursively inaccessible for the assignment of fundamental sequences
considered in this section. The corresponding phase transition would then even
sharper than the one obtained in this paper.

2 The second main result

2.1 Preliminaries

We collect here some folklore material which proves useful in proofs later on. In
this section we denote ordinals by small Greek letters. The idea is to indicate
that the results of this chapter are independent of the notation system OT to a
large extent. In particular, for ε > 0 the resulting slow growing hierarchy, when
restricted to the segment of ordinals below ε0 will exactly exhaust all provably
recursive functions of PA. Therefore this section can be read by readers without
knowledge of higher ordinal notations.

Definition 15 For a given real number ε ≥ 0 let λ[x]ε := max{β < λ : Nβ ≤
(1 + ε) · Nλ + x}. Any such system will be called a norm based assignment of
fundamental sequences. If ε = 0 we call ·[·]ε the standard norm based assignment.

Definition 16
Let ·[·] be an assignment of fundamental sequences. With respect ·[·] we define
certain ordinal relations as follows:

1. α �x β
: ⇐⇒ (∃n > 0)(∃γ0, . . . , γn)[α = γ0 & β = γn & (∀i < n)[γi+1 = γi[x]]].

2. α �x β : ⇐⇒ α ≺x β ∨ α = β.
3. β wx m : ⇐⇒ (∃α)[β �x α & Nα ≥ m].

The following lemma provides some useful properties for investigating the growth
rate of pointwise hierarchies.



Lemma 22 Let ·[·] be a norm based assignment of fundamental sequences and
let the slow growing hierarchy (Gα) be defined with respect to ·[·]. Then we have:

1. α �x β ⇒ Gα(x) ≥ Gβ(x).
2. Gβ(x) ≥ Nβ.
3. β wx m ⇒ Gβ(x) ≥ m.

Proof. Straightforward. 2

Lemma 23 Assume that ·[·] is a norm based assignment. Let λ ∈ Lim. Then
Nλ + x ≤ Nλ[x]. If further λ[x] + 1 < α < λ then λ[x] + 1 ≤ α[0].

Proof. The first claim is obvious. Assume that α[0] < λ[x] + 1 < α < λ. Then
Nλ[x] + 1 > Nα[0] ≥ Nα > Nλ[x] + 1. Contradiction. 2

Corollary 4 Assume that ·[·] is a norm based assignment. Let �y be defined
with respect to ·[·].

1. Let λ ∈ Lim. Then λ[x + 1] �y λ[x] + 1.
2. Assume that α �x β and δ = ωγ + α where α < ωγ+1. Then δ �x ωγ + β.
3. Assume that α �x . Then ωα �x ωβ.

Proof. Assertion 1) follows from Lemma 23. The assertions 2) are 3) are proved
by induction on β with the use of 1). 2

The following lemma shows that monotonicity for the indices of the assignment
of fundamental sequences yields the expected monotonicity for the induced as-
signments and pointwise hierarchies.

Lemma 24 Let ε, ε′ be real numbers with 1 ≤ ε ≤ ε′.
Let (Gα) be defined with respect to ·[·]ε and let (G′

α) be defined with respect to
·[·]ε. Let �y be defined with respect to ·[·]. Then the following holds:

1. If λ ∈ Lim then λ[x]′ε �y λ[x]ε.
2. Gα(x) ≤ G′

α(x) for any α ∈ OT and x < ω.

Proof. Straightforward. 2

We are going to show that for ε > 0 the pointwise hierarchies consists in fact of
fast growing functions. For this purpose we recall some basic facts from hierarchy
theory.

Definition 17 (The Hardy-Hierarchy) With regard to the a given norm based
system ·[·] of fundamental sequences we define recursively numbertheoretic func-
tions Hα as follows.

1. H0(x) := x.
2. Hα+1(x) := Hα(x + 1).



3. Hλ(x) := Hλ[x](x) if λ is a limit.

Lemma 25 Let �x be defined with respect to a given norm based assignment
·[·]. Then α �x β yields Hα(y) ≥ Hβ(y) for all y ≥ x. Furthermore each function
Hα is strictly monotonic increasing.

Lemma 26 Let ε, ε′ be real numbers with 1 ≤ ε ≤ ε′. Let (Hα) be defined with
respect to ·[·]ε and let (H ′

α) be defined with respect to ·[·]ε. Let �y be defined with
respect to ·[·]. Then Hα(x) ≤ H ′

α(x) for any α and x < ω.

Proof. Straightforward. 2

Lemma 27 Let (Hα) be defined with respect to a norm based assignment Then
(Hα) is a fast growing hierarchy.

Proof. This is postponed into the appendix. Using techniques from [14] the proof
is straightforward.

2.2 Putting things together

If f is an operation on natural numbers we write f(m/n) for f(l) where l is the
largest integer less than or equal to m/n := m · n−1. In the sequel we show the
fast growingness of (Gα) when defined with respect to ·[·] for ε > 0 by a straight
forward but tedious calculation.

Theorem 4 Assume k ≥ 4. Let ·[·] := ·[·]1/k and let w0,�0 and (Hα) be defined
with respect to ·[·] If γ=NF δ + ωωα · kk then γ w0 Hα(Nδ/k).

Proof. By induction on α. In the following calculations we frequently make use
of assertions 1),2) and 3) of Corollary 4.
We may assume that α > 0.
Case 1. α = β + 1.
Then δ + ωωβ+1 · kk �0 δ + ωωβ+1 · (kk − 1) + ωωβ+γ for some γ < ωβ+1 with
Nγ ≥ (Nβ + 1) · kk−1 + 1. Let ξ0 := δ + ωωβ+1 · (kk − 1) + ωωβ+γ .
If γ < ω then ξ0 �0 δ + ωωβ+1 · (kk − 1) + ωωβ+(1+Nβ)·kk−1+1 =: ξ1. If γ ≥ ω

then ξ0 �0 δ + ωωβ+1 · (kk − 1) + ωωβ+ω �0 ξ1. In both cases ξ0 �0 ξ1. We
have ξ1 �0 δ + ωωβ+1 · (kk − 1) + ωωβ+(1+Nβ)·kk−1 · 2 =: ξ2 since Nξ1 · 1/k ≥
(3+Nβ) ·(kk−1)/k+(2+Nβ+1+Nβ ·kk−1) ·k ≥ (3+Nβ) ·kk−1+Nβ ·kk−2 ≥
Nωωβ+(1+Nβ)·kk−1

. Similarly we obtain

ξ2 = δ + ωωβ+1
· (kk − 1) + ωωβ+(1+Nβ)·kk−1

· 2

�0 δ + ωωβ+1
· (kk − 1) + ωωβ+(1+Nβ)·kk−1

+ ωωβ+(1+Nβ)·kk−1−1 · 2



�0 . . .

�0 δ + ωωβ+1
· (kk − 1) + ωωβ+(1+Nβ)·kk−1

+ ωωβ+(1+Nβ)·kk−1−1 + · · ·

+ωωβ+2 + ωωβ+1 =: ξ3

We have Nξ3·(1/k) ≥ (1/k)·(Nδ+(3+Nβ)·(kk−1−1))+(1/k)·
∑2+Nβ+(1+Nβ)·kk−1

i=1 i ≥
(2 + Nβ) · kk hence the induction hypothesis yields

ξ3 = δ + ωωβ+1
· (kk − 1) + ωωβ+(1+Nβ)·kk−1

+ ωωβ+(1+Nβ)·kk−1−1 + · · ·

+ωωβ+2 + ωωβ+1

�0 δ + ωωβ+1
· (kk − 1) + ωωβ+(1+Nβ)·kk−1

+ ωωβ+(1+Nβ)·kk−1−1 + · · ·

+ωωβ+2 + ωωβ

· kk

w0 Hβ((N(δ + ωωβ+1
· (kk − 1) + . . .))/k) ≥ Hβ(Nδ/k + 1) = Hα(Nδ/k).

Case 2. α ∈ Lim. We have

δ + ωωα

· kk �0 δ + ωωα

· (kk − 1) + ωωα[Nδ/k+(2+Nα)·kk−1]

�0 δ + ωωα

· (kk − 1) + ωωα[Nδ/k+(1+Nα)·kk−1+1]

�0 δ + ωωα

· (kk − 1) + ωωα[Nδ/k+(1+Nα)·kk−1]+1
=: η0

�0 δ + ωωα

· (kk − 1) + ωωα[Nδ/k+(1+Nα)·kk−1]·2 =: η1

since Nη0 ·1/k ≥ Nδ/k+(2+Nα)kk +(1+Nα) ·kk−2 ≥ N [ωα[Nδ/k+(1+Nα)·kk−1]

Further

η1 �0 δ + ωωα

· (kk − 1) + ωωα[Nδ/k+(1+Nα)·kk−1]
+ ωωα[Nδ/k+(1+Nα)·kk−1−1]+1

�0 δ + ωωα

· (kk − 1) + ωωα[Nδ/k+(1+Nα)·kk−1]
+ ωωα[Nδ/k+(1+Nα)·kk−1−1]·2

�0 . . .

�0 δ + ωωα

· (kk − 1) + ωωα[Nδ/k+(1+Nα)·kk−1]

+ωωα[Nδ/k+(1+Nα)·kk−1−1]+...+ωα[1]+ω

�0 δ + ωωα

· (kk − 1) + ωωα[Nδ/k+(1+Nα)·kk−1]

+ωωα[Nδ/k+(1+Nα)·kk−1−1]+...+ωα[1]+Nδ/k·kk−1

Let η2 := ωα[Nδ/k+(1+Nα)·kk−1−1] + . . . + ωα[1]. Then

η2 = δ + ωωα

· (kk − 1) + ωη2+Nδ/k·kk−1

�0 δ + ωωα

· (kk − 1) + ωη2+Nδ/k·kk−1−1 + ωη2+Nδ/k·kk−1−1

�0 δ + ωωα

· (kk − 1) + ωη2+Nδ/k·kk−1−1 + ωωα[Nδ/k+(1+Nα)·kk−1]



�0 δ + ωωα

· (kk − 1) + ωη2+Nδ/k·kk−1−1

+ωωα[Nδ/k+(1+Nα)·kk−1−1]+ωα[Nδ/k+(1+Nα)·kk−1−2]+···ωα[1]+Nδ/k·kk−1−1

+ · · ·+
+ωωα[Nδ/k]+···+Nδ/k·kk−1−1

�0 δ + ωωα

· (kk − 1) + · · ·+ ωωα[Nδ/k]+1 =: η3

The induction hypothesis yields

η3 = . . . + ωωα[Nδ/k]+1

�0 ωωα[Nδ/k]
· kk

w0 Hα[Nδ/k](Nδ/k) = Hα(k)

since Nη3 ≥ Nδ/k · kk−1 · kk−1 +1/2 · (Nα +1)2 · (kk−1)2 ≥ (2+Nα(k +1)/k +
Nδ/k)kk.

Lemma 28 ωωωα+1

· kk + ωωωα+ω �x ωωωα+1

· kk + ωωωα+x · kk

Proof. We obtain

ωωωα+1

· kk + ωωωα+ω

�x ωωωα+1

· kk + ωωωα+x+kk−1

�0 ωωωα+1

· kk + ωωωα+x+kk−1−1
· 2

�0 ωωωα+1

· kk + . . . + ωωωα+x+1

�0 ωωωα+1

· kk + kk + ωωωα+x+kk−1−1
+ ... + ωωωα+x

· kk

Theorem 5 Assume k ≥ 4. Let ·[·] := ·[·]1/k. Assume that (Gα) is defined with
respect to ·[·] and that (Hα) is defined with respect to the standard norm based
assignment. Then G

ωωωα+1
·kk+ωωωα+ω (x) ≥ Hωα(x).

Proof. This follows from assertion 2 of Lemma 22 and Lemma 28

Corollary 5 Let ε > 0 and assume that the hierarchy (Gα) is defined with
respect to ·[·]ε. Then (Gα) is fast growing.

Proof. This follows from Theorem 5

Appendix

We stick to the notational conventions of Section 1. In this appendix we first
describe the standard system of fundamental sequences in terms of the norms



function and show that it gives rise to a normed Bachmann system. Second,
we define the standard Hardy hierarchy (H∗

a) along OT and compare it with
(Ha). For an intermediate calculation we introduce in addition a fast growing
(as shown in [1]) hierarchy (Aa) (which looks slow growing at first sight).

Definition 18 For a ∈ OT with tp(a) = ω and x < ω we define a non negative
integer p(a + x) as follows.

1. a = (a0, . . . , an−1, an) ⇒ p(a + x) := Na0 + . . . + Nan−1 + p(an + x).
2. a = Di(b + 1) ⇒ p(a + x) := (Nb + 1) · (x + 1).
3. a = Dib & tp(b) = ω ⇒ p(a + x) := 1 + p(b + x).
4. a = D0b & tp(b) = Ω ⇒ p(a + x) := (Nb + 1) · (x + 1).

Definition 19 Definition of a{{x}} for a ∈ OT0 with tp(a) = ω and x < ω.
a{{x}} := max{b ∈ OT : b ≺ a & Nb ≤ p(a + x)}.

Lemma 29 The structure 〈OT0, ·{{·}}, N〉 is a normed Bachmann system.

Proof. This follows from Theorem 5 of [5].

Lemma 30 Characterization of a{{x}} for a ∈ OT0 with tp(a) = ω and x < ω.

1. a = (a0, . . . , an−1, an) ⇒ a{{x}} = (a0, . . . , an−1) + an{{x}}.
2. a = D0(b + 1) ⇒ a{{x}} = D0b · (x + 1).
3. a = D0b & tp(b) = ω ⇒ a{{x}} = D0b{{x}}.
4. a = D0b & tp(b) = Ω ⇒ a{{x}} = D0bx where b0 := b{0} and by+1 :=

b{D0by}.

Lemma 30 shows that ·{{·}} coincides with Buchholz usual definition of funda-
mental sequences for the limits below the Howard Bachmann ordinal.
In the sequel a, b, c, d range over OT0.

Lemma 31 1. N(a{{0}}) = N(a) + 1.
2. N(ω · a{0}) ≤ N(ω · a) + 1.
3. N(a{{x}}) ≤ Na · (x + 1).
4. N(ωi · a) ≤ Na · (i + 1).

Definition 20

1. (a) H∗
0 (x) := x,

(b) H∗
a+1(x) := H∗

a(x + 1),
(c) H∗

a(x) := H∗
a{{x}}(x) if tp(a) = ω.

2. (a) A0(x) := x,
(b) Aa(x) := max{Ab(x) + 1 : b ≺ a & Nb ≤ Na + x}.

Lemma 32 1. NF (a, b) ⇒ Ha+b(x) = Ha(Hb(x)).
2. Hω·10(x) ≥ 10 · x.



3. Hω2·a+ω·a+ω·(k+11)(x) ≥ Hω2·a+ω·a+ω·(k+1(10 · x).
4. a ≺ b & Na ≤ Nb + x ⇒ Ha(x) < Hb(x).
5. Aa(x) ≤ Ha(x) ≤ H∗

a(x).

Definition 21 1. a �1
x b : ⇐⇒ a � b & Na ≥ Nb + x.

2. a �x b : ⇐⇒ (∃a0, . . . , an)[a0 = a & an = b & (∀i < n)[ai �x ai+1]].
3. a ≥x k : ⇐⇒ (∃b)[a �x b & Nb ≥ k].

Lemma 33 1. a �x b ⇒ Aa(x) ≥ Ab(x).
2. Aa(x) ≥ Na.
3. a ≥x k ⇒ Aa(x) ≥ k.
4. ω · a ≥10·x Na · (10 · x− 1).

Lemma 34 1. x ≥ 2 ⇒ ω2 · a + ω · a + ω · k + ω ≥x H∗
a(k + x).

2. x ≥ 2 ⇒ Hω2·a+ω·a+ω·k+ω(x) ≥ H∗
a(k + x).

3. c = ωω+d ⇒ (∀a ≺ c)(∃b ≺ c)(∀x)[H∗
a(x) ≤ Hb(x)]

Proof of the first assertion by induction on a.
1. a = 0.

ω · k + ω �10·x ω · k + 10 · x + 1
�10·x · · ·
�10·x k · (10 · x + 1) + 10 · x + 1
≥10·x k + x = H∗

0 (k + x).

2. a = b + 1. Then the induction hypothesis yields

ω2 · a + ω · a + ω · k + ω

�10·x ω2 · b + ω · b + ω2 + ω · (k + 1) + ω

≥10·x H∗
b (k + x + 1) = H∗

a(k + x).

3. tp(a) = ω. Then the induction hypothesis yields

ω2 · a + ω · a + ω · k + ω

�10·x ω2 · a + Na · (10 · x− 1) + ω · k + ω

�10·x ω2 · a{{x}}+ ω · a{{x}}+ ω · k + ω

≥10·x H∗
a{{x}}(k + x) = H∗

a(k + x).

The second assertion follows from assertion 3 of the Lemma 33 and assertion 5
of Lemma 32 and the last assertion follows from the second assertion.
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