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Abstract

Let f be a number-theoretic function. A finite set X of natural numbers is called
f -large if card(X) ≥ f(min(X)). Let PHf be the Paris Harrington statement where
we replace the largeness condition by a corresponding f -largeness condition. We
classify those functions f for which the statement PHf is independent of first order
(Peano) arithmetic PA. If f is a fixed iteration of the binary length function then
PHf is independent. On the other hand PHlog∗ is provable in PA. More precisely let
fα(i) := |i|

H−1
α (i)

where | i |h denotes the h-times iterated binary length of i and H−1
α

denotes the inverse function of the α-th member Hα of the Hardy hierarchy. Then
PHfα is independent of PA (for α ≤ ε0) iff α = ε0.
MSC: 03F30 (03D20,03C62,05D10)
Keywords: Paris Harrington theorem, rapidly growing Ramsey functions, indepen-
dence results, fast growing hierarchies, Peano arithmetic.

1 Introduction and motivation

The Peano axioms PA seem to be designed in a way such that every true assertion about
the natural numbers (when formulated in a canonical first order language LPA to reason
about natural numbers) should be a logical consequence of these axioms. Nevertheless, in
1931 Gödel showed that there are true metamathematical statements in the language LPA

which are not logical consequences of PA. Since then mathematicians have been searching
for natural and mathematically interesting statements (i.e. statements that are appealing
to mathematicians in general and not only to logicians) which are true but not provable
from the axiom system PA.

In their celebrated 1977 paper [13] Paris and Harrington were able to show that a
certain extension of the finite Ramsey theorem is true but not provable in PA. Their
extension was based on a certain additional largeness requirement for the homogeneous
sets which are asserted to exist by Ramsey’s theorem.

It is now an obvious mathematical problem to classify this extra largeness condition
with respect to its proof-theoretic strength. Moreover it is also natural to ask whether it is
possible to give a motivation for this condition in terms of finite combinatorics or even in
terms of Ramsey theory. In this article we aim at a complete solution to these problems.
In particular we will indicate how the Paris Harrington assertion emerges naturally from
the Erdös Rado bound on the Ramsey function [6].

Since these matters are crucial for the paper we discuss these in more detail. For a
given set Y let [Y ]p be the set of p-element subsets of Y . Moreover we identify a natural
number k with {0, . . . , k − 1}. Ramsey’s theorem (see, for example, [9] for more details)
then reads as follows:

(∀p, k, n)(∃r)(∀F : [r]p → k)(∃Y ⊆ r)[card(Y ) ≥ n & F � [Y ]p = constant].

Moreover the least such r depending on p, k, n is denoted by r(p, k, n). This function is
called the Ramsey function. It is known from a classical paper by Erdös Rado [6] that the
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function r(n, n, n) is bounded by a superexponential function (where the iterations of the
exponential function depends linearly on n).

Let [n, r] = {n, n + 1, . . . , r} and [n, r]p := [[n, r]]p. For a given function f : N → N let
PHf be the assertion

(∀p, k, n)(∃r)(∀F : [n, r]p → k)(∃Y ⊆ [n, r])[card(Y ) ≥ f(min(Y )) & F � [Y ]p = constant].

The least such r depending on p, k, n is denoted by r∗f (p, k, n). According to Paris Har-
rington 1977 [13] the assertion PHid is true but not provable in PA. Equivalently, the
function n 7→ r∗id(n, n, n) grows so fast that its totality can not be proven in PA.

Let log∗ be the inverse function of n 7→ r∗id(n, n, n), i.e. log∗ is essentially the in-
verse function of the superexponential function. Then the Erdös Rado bound yields
r∗log∗(n, n, n) ≤ r(n, n, n) as one can verify by a short calculation.

However one can do much better. Let |i|d be the d-th times iterated binary length of
i and let 2d(i) be the d-th times iterated exponential with respect to base 2 and topmost
exponent i. For a given unbounded and monotonic increasing function g let g−1 be its
inverse function. We will show later that the Erdös Rado bound yields

r∗f (n, n, n) ≤ 2n+3(g(n)) (1)

where f(i) := |i|g−1(i).
Thus if g is a recursive function whose totality is provable in PA then PHf is provable

in PA. Moreover (1) shows that, for PHf to be an unprovable statement, f has to grow
at least as f(i) = |i|g−1(i) where g grows faster than any PA provably recursive function.
We will show that this condition is sufficient (at least when g is chosen as Hε0 , the ε0-th
function from the Hardy hierarchy). In particular it follows that PHid is independent
which gives the original result by Paris and Harrington.

This discussion indicates that the largeness condition (i.e. card(Y ) ≥ min(Y )) in the
Paris Harrington assertion is well motivated, and that its motivation is autonomous in that
it does not depend intrinsically on the infinitary version of Ramsey’s theorem. A profound
discussion of such naturalness conditions for independence results has been provided by
Harvey Friedman in some of his contributions to the Foundations of Mathematics project.
See, for example, his posting from 05.02.1999 [7].

The paper is largely self contained. It is in the combinatorial spirit of the Ketonen
Solovay analysis of the Paris Harrington theorem [12] and does not use model theoretic
methods. For further information on Ramsey theory the reader is referred e.g. to [9] and
for further information on subrecursive hierarchies the reader may consult, for example,
[4, 8, 15].

This paper is based in part on a modification of Buchholz’ technical report [3]. Accord-
ing to Buchholz, his paper is based on a manuscript by Loebl and Nešetřil. A final version
of the latter manuscript has later been published (cf. [14]). The difference between this
paper and Buchholz’ paper are the definition of m(α), Lemma 4, assertion 2 of Lemma
5, the third case in Definition 2.2, Case 2.2 in Lemma 6 and the remaining part after the
proof of Lemma 6.

2 Proof of the main theorem

We follow the notations of Buchholz [3]. Thus d, i, j, k, l, m, n, p, s, t,M,N range over nat-
ural numbers, α, β, γ, δ, σ, τ, ξ range (if not stated otherwise) over ordinals less than ε0

(which by definition is the least ordinal ξ such that ξ = ωξ) and X, Y, Z range over sets.
For formulating the result we fix some terminology and abbreviations. As indicated above,
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we write [X]p := {Y : Y ⊆ X & card(Y ) = p} and [n, N ]p := [{n, n + 1, . . . , N}]p for
n ≤ N . For each function F with dom(F ) = [X]p we define Y to be F -homogeneous iff
Y ⊆ X and card(F [Y ]p)) = 1. We write (in arrow notation)

N →∗
f (n)p

k

if n ≤ N , and for each function F : [n, N ]p → k there exists an F -homogeneous Y such
that card(Y ) ≥ f(min(Y )). (Note that this yields in particular card(Y ) ≥ f(n).) The
corresponding Skolem function r∗f is defined via r∗f (p, k, n) := min{N : N →∗

f (n)p
k}. As

usual the well-definedness of r∗f follows from the infinite Ramsey theorem.
PHf is the assertion that the Paris Harrington assertion holds with respect to f -

largeness. Formally PHf is the assertion

(∀p, k, n)(∃N)[N →∗
f (n)p

k].

We define ωα
0 := α, ωα

n+1 := ωωα
n and ωn := ω1

n. Further let h(α) := min{n : α < ωn}
be the height of α.

We write α =NF ωα1 · n1 + · · · + ωαt · nt if α = ωα1 · n1 + · · · + ωαt · nt and α >
α1 > . . . > αt and n1, . . . , nt > 0. The existence and uniqueness of such a normal form
representation of α is guaranteed by the Cantor normal form from set theory. In this
case we write Si(α) := ωαi · ni, Ei(α) := αi, Ki(α) := ni for i ≤ t. For i > t we put
Si(α) := Ei(α) := Ki(α) := 0. In contrast to Buchholz’ paper we define m(0) := 0,

m(α) := max{n1, . . . , nt,m(α1), . . . ,m(αt)}

and p(α) := m(α) + h(α). Note that the width w(α) of α does not appear in the def-
inition of m(α) and p(α) where the width w(α) is defined by w(0) := 0 and w(α) :=
max{t, w(α1), . . . , w(αt)} if α =NF ωα1 · n1 + · · ·+ ωαt · nt. This has for our purposes the
crucial effect that the number of elements in {α < ωh : p(α) ≤ k} is not bounded by an
elementary recursive function in k and h.

If we had defined r(α) := max{m(α), w(α)} and p′(α) = r(α)+h(α) then the cardinality
of {α < ωh : p′(α) ≤ k} would have been bounded by a double exponential function 1.
This is perfect for proving the Paris Harrington theorem in its original form as shown in
[3] but in our case it would cause a problem for proving Theorem 1 since the corresponding
set M(l(i)), which is defined in the proof of Theorem 1 below, would not contain enough
elements.

The standard fundamental sequences are defined as follows. If α =NF ωα1 · n1 + · · ·+
ωαt · (nt + 1) then α[k] = ωα1 · n1 + · · · + ωαt · nt + ωαt [k]. If β is a limit ordinal and
α = ωβ then α[k] := ωβ[k], and if α = ωβ+1 then α[k] = ωβ · k. Further let ε0[k] = ωk. For
technical reasons we put (α + 1)[k] := α and 0[k] := 0.

Lemma 1. 1. m(α[k]) ≤ max{m(α), k}.

2. If m(α) ≤ n then m(α[n]) ≤ n.

Proof. The first assertion follows by induction on α. The second assertion is immediate by
the first assertion.

For α ≤ ε0 we define the Hardy function Hα as follows. H0(n) := n, Hα+1(n) =
Hα(n + 1) and Hα(n) := Hα[n](n + 1) if α is a limit. The theory of these functions is
developed, for example, in [4, 8, 16].

1This crucial information has been provided to the author by Philippe Flajolet in a private email. The
author is very grateful for this.
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Lemma 2. Let αn := α < ε0, n > m(α) and αi+1 := αi[i] for i ≥ n. Moreover let
N := min{i ≥ n : αi = 0}. Then m(αi) < i for all i ∈ {n, . . . , N} and Hα(n) = N .

Proof. Lemma 1 yields m(αi) < i for i ≥ n by induction on i. Moreover Hαi
(i) =

Hαi+1(i + 1) for N > i ≥ n, and therefore Hα(n) = HαN
(N) = H0(N) = N.

For α > β set d(α, β) := min{i : Si(α) > Si(β)}, K(α, β) = Kd(α,β)(α), E(α, β) =
Ed(α,β)(α).

Lemma 3. If α > β > γ, d(α, β) ≤ d(β, γ) and K(α, β) ≤ K(β, γ) then E(α, β) > E(β, γ).

Proof. If d(α, β) = d(β, γ) =: i then Si(α) > Si(β) and Ki(α) ≤ Ki(β), hence Ei(α) >
Ei(β). If i := d(α, β) < d(β, γ) =: j then Ei(α) ≥ Ei(β) > Ej(β).

Lemma 4. Assume β0 > β1 > . . . > βm where m ≥ 2. Let δl := E(βl, βl+1) for l < m
and assume δ0 < . . . < δm−1. Assume βm−1 =NF ωα1 ·n1 + · · ·+ ωαs ·ns and assume that
δm−1 = αi for some i ∈ {1, . . . , s}. Then there exists a τ =NF ωτ1 · p1 + · · ·+ ωτt · pt such
that β0 =NF ωα1 · n1 + · · ·+ ωαi · ni + τ .

Proof. By induction on m. Assume that βm−2 =NF ωα1 · n1 + · · · + ωαi · ni + ωγ1 · q1 +
· · · + ωγc · qc where δm−2 = γj for some j ∈ {1, . . . , c}. Then γl = αl+i and ql = nl+i for
l < j.

Moreover assume that βm−1 =NF ωα1 ·n1 + · · ·+ωαi ·ni +ωγ1 · q1 + · · ·+ωγj−1 · qj−1 +
ωξ1 · r1 + · · ·+ ωξk · rk where ξ1 < δm−2.

If m−2 = 0 then put τ =NF ωγ1 ·q1+· · ·+ωγc ·qc and the assertion follows. If m−2 > 0
then the induction hypothesis yields βm−2 =NF ωα1 ·n1 + · · ·+ωαi ·ni +ωγ1 ·q1 + · · ·+ωγj ·
qj + τ ′ for some suitable τ ′ =NF ωτ ′1 ·p′1 + · · ·+ωτ ′

t′ ·p′t′ Put τ = ωγ1 · q1 + · · ·+ωγj · qj + τ ′

and the assertion follows.

Definition 1. If β0 > β1 > β2 then
χ(β0, β1, β2) :=↗ if d(β1, β2) < d(β0, β1),
χ(β0, β1, β2) :=↑ if d(β0, β1) ≤ d(β1, β2) & K(β1, β2) < K(β0, β1),
χ(β0, β1, β2) :=↓ otherwise.

We follow the notation of [3, 14] in choosing the arrows ↗, ↑, ↓ for the colours given
by χ. Technically we only shall need that these symbols are different from certain natural
numbers.

Lemma 5. Let β0 > . . . > βm with m ≥ 2 and assume that c ∈ {↗, ↑, ↓} satisfies

{χ(βi, βi+1, βi+2) : i ≤ m− 2} = {c}.

1. If c =↑ then m ≤ m(β0) < p(β0).

2. If c =↗ then E(β0, β1) < . . . < E(βm−1, βm).

3. If c =↓ then E(β0, β1) > . . . > E(βm−1, βm).

Proof. 1) Let ki := K(βi, βi+1) for i < m. Then k0 ≤ m(β0) < p(β0). c =↑ yields
k0 > . . . > km−1 ≥ 1 hence m ≤ k0 ≤ m(β0) < p(β0).
2) Let di := d(βi, βi+1) for i < m. If c =↗ then d0 > . . . > dm−1 ≥ 1 hence E(β0, β1) <
. . . < E(βm−1, βm) by the definition of function d.
3) follows from Lemma 3.

We write k(s) := k + 3 + 32 + · · ·+ 3s.

Definition 2. Definition of Ck
s and χk

s : [ωk
s ]s+1 → Ck

s .
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1. Ck
1 := {0, . . . , k − 1}, Ck

s+1 := Ck
s ∪ {↗, ↑, ↓}s. Note that card(Ck

s ) = k(s).

2. If α = ωk−1 ·m0+ · · ·+ω0 ·mk−1 > ωk−1 ·n0+ · · ·+ω0 ·nk−1 = β where mi, ni ≥ 0 for
0 ≤ i ≤ k − 1 then χk

1(α, β) := min{i : ni < mi}. Note that χk
1(α, β) = 1 + d(α, β).

3. Assume that s ≥ 1, ωk
s+1 > β0 > . . . > βs+1, δi := E(βi, βi+1) and ci := χ(βi, βi+1, βi+2).

If c0 = . . . = cs−1 =↓ then χk
s+1(β0, . . . , βs+1) := χk

s(δ0, . . . , δs).
If c0 = . . . = cs−1 =↗ then χk

s+1(β0, . . . , βs+1) := χk
s(δs, . . . , δ0).

In all other cases put χk
s+1(β0, . . . , βs+1) := (c0, . . . , cs−1).

Note that according to Lemma 5 we have ωk
s > δ0 > . . . > δs if c0 = . . . = cs−1 =↓

and ωk
s > δs > . . . > δ0 if c0 = . . . = cs−1 =↗.

Lemma 6. Let 1 ≤ s, k & s < m & c ∈ Ck
s & ωk

s > β0 > . . . > βm. If χk
s(βi, . . . , βi+s) = c

for all i ≤ m− s then m < p(β0).

Proof. By induction on s.
Base case. s = 1. Let βi := ωk−1 · ni,0 + · · ·+ ω0 · ni,k−1. Then n0,c > . . . > nm,c and thus
m ≤ n0,c ≤ m(β0) < p(β0).
Induction step. Let 1 ≤ s, k & s + 1 < m & c ∈ Ck

s+1 & ωk
s+1 > β0 > . . . > βm and

χk
s+1(βi, . . . , βi+s+1) = c for all i ≤ m− s− 1.

Case 1: c ∈ {↗, ↑, ↓}s.
Let ci = χ(βi, βi+1, βi+2) for i ≤ m−2. Then for all i ≤ m−s−2 we have (ci, . . . , ci+s−1) =
χk

s+1(βi, . . . , βi+s+1) = χk
s+1(βi+1, . . . , βi+s+2) = (ci+1, . . . , ci+s). Hence ci = ci+1 =

. . . = ci+s for all i ≤ m − s − 2 and thus c0 = . . . = cm−2. ¿From this together with
χk

s+1(β0, . . . , βs+1) ∈ {↗, ↑, ↓}s we get c0 =↑ by Part 2 of Definition 2 and then m < p(β0)
by assertion 1 of Lemma 5.
Case 2. c ∈ Ck

s . Let δi := E(βi, βi+1) for i ≤ m− 1.
Case 2.1. c0 = . . . = cm−2 =↓ .
Then δ0 > . . . > δm−1. We have c = χk

s+1(βi, . . . , βi+s+1) = χk
s(δi, . . . , δi+s) for all

i ≤ m − 1 − s. The induction hypothesis yields m − 1 < p(δ0). But p(δ0) < p(β0) since
m(δ0) ≤ m(β0) and h(δ0) < h(β0).
Case 2.2. c0 = . . . = cm−2 =↗ .
Then δ0 < . . . < δm−1. We have c = χk

s+1(βi, . . . , βi+s+1) = χk
s(δi+s, . . . , δi) for all

i ≤ m − 1 − s. The induction hypothesis yields m − 1 < p(δm−1). But p(δm−1) < p(β0)
since an inspection of the involved Cantor normal form according to Lemma 4 yields that
δm−1 is a subterm of β0, hence m(δm−1) ≤ m(β0) and h(δm−1) < h(β0).

For counting the number of ordinals in certain sets we introduce the slow growing
hierarchy (Gα)α<ε0 as follows. G0(n) := 0, Gα+1(n) = Gα(n) + 1 and Gα(n) := Gα[n](n)
if α is a limit. Further, for a natural number l, let l0(k) := k and ln+1(k) := lln(k).

Lemma 7. 1. If α =NF ωα1 ·n1+· · ·+ωαt ·nt then Gα(n) = nGα1 (n)·n1+· · ·+nGαt (n)·nt.

2. If m(β) ≤ n then card{α < β : m(α) ≤ n} ≥ Gβ(n).

3. card{α < ωk
s : m(α) ≤ l} ≥ ls(k).

Proof. The first assertion is well known and can be proved by a simple induction on α.
The second assertion follows by induction on β using Lemma 1. The third assertion follows
from the first and second assertion.

For a number theoretic function f which converges weakly increasing to infinity we
define its inverse function f−1 by f−1(i) := min{k : f(k) ≥ i}.

5



Theorem 1. 1. Let fd,s(i) := s + d

√
|i|s−1 + 2. Then r∗fd,s

(s + 1, k(s), 3s(s + k + 3)) ≥
Hωk

s
(k − 1) for s ≥ 1, d ≥ 2 and k ≥ d2.

2. Let fs(i) := |i|s−2. Then r∗fs
(s + 1, k(s), 3s(s + k + 3)) ≥ Hωk

s
(k − 1) for k ≥ 4 and

s ≥ 2.

3. Let hε0(i) := |i|H−1
ε0 (i) and g(s) := 3s(s + 4) + 2. Then r∗hε0

(s + 1, s(s), 3s(s · 2 + 3)) ≥
Hε0(s− 2) for s ≥ 4.

4. Let hs(i) := s+ H−1
ωs+1

(i)

√
|i|s−1 +2. Then r∗hs

(s+1, (d2)(s), 3s(s+d2 +3)) ≥ Hωs+1(d)
for s ≥ 1 and d ≥ 2

Proof. Proof of the first assertion. Assume k ≥ d2. Let αk−1 := ωk
s and, for i ≥ k − 1,

αi+1 := αi[i]. Moreover put N := min{i ≥ k − 1 : αi = 0}. Lemma 2 yields N = Hωk
s
(k)

and
m(αi) ≤ i (2)

for k ≤ i ≤ N . For any natural number l let

M(l) := {α < ωk−1
s : m(α) ≤ l}

and enumM(l)(i) be the i-th member of M(l) with respect to the standard ordering of the
ordinals less than ε0. Let n := 3s(s + k + 3) and put βn−1 := ωk

s and

βi := ωk−1
s · αl(i) + enumM(l(i))(2s−1(l(i)d)− i)

for n ≤ i ≤ N where l(i) is the unique natural number such that l(i)− 1 < d

√
|i|s−1 ≤ l(i).

Then
k ≤ l(i) (3)

for n ≤ i ≤ N . Indeed, this follows from the monotonicity of l(i) and the inequality
k ≤ l(n) where the latter follows from the choice of n, since k ≤ d

√
3s+k+3 for k ≥ d2.

Moreover the βi are well-defined and βi+1 < βi < ωk
s for n ≤ i < N since card(M(l(i))) ≥

l(i)s(k − 1) ≥ 2s−1(l(i)d) ≥ i by assertion 3 of Lemma 7. We have m(βi) = max{m(ωk
s ·

αl(i)), l(i)} ≤ l(i) < d

√
|i|s−1 + 1 by (2) and (3). Hence p(βi) ≤ s + d

√
|i|s−1 + 2 for

n ≤ i ≤ N . Define F : [n, N ]s+1 → k(s) by

F (i0, . . . , is) := χk
s(βi0 , . . . , βis

).

Let Y = {i0, . . . , im}< be F -homogeneous. Then {βi0 , . . . , βim
} is χk

s -homogeneous, hence
Lemma 6 yields card(Y ) = m + 1 ≤ max{p(βi0), s + 1} < s + d

√
|i0|s−1 + 2 ≤ s +

d

√
|min(Y )|s−1 + 2. The first assertion follows.
The second assertion follows by putting d = 2 in the proof of the first assertion and

noting that s + d

√
|min(Y )|s−1 + 2 ≤ |min(Y )|s−2 in this case.

Note that in both cases N is too small for the Ramsey number in question since for
the particular partition F there exists a homogeneous set Y which does not satisfy the
largeness condition.

For a proof of the third assertion we extend the proof of the (first and) second assertion.
Put M := Hε0(s−2). Then Hε0(s−2) = Hωs−2(s−1) ≤ Hωs

s
(s−1). Let k = s. Then M ≤

N where N := min{i ≥ k−1 : αi = 0} is defined as in the proof of the first assertion. Let G
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be the restriction of F to [n, M ]s+1. If Z is G homogeneous then Z is F homogeneous and as
before card(Z) ≤ |min(Z)|s−2 For i ≤ M we have H−1

ε0
(i) ≤ H−1

ε0
(Hε0(s−2)) = s−2. Thus

hε0(i) ≥ |i|s−2 for n ≤ i ≤ M . Since Z ⊆ [n, M ] we obtain |min(Z)|s−2 ≤ hε0(min(Z)).
The third assertion follows from the proof of the second assertion.

For a proof of the fourth assertion we extend the proof of the first assertion. Put M :=
Hωs+1(d). Let k = d2. Then Hωs+1(d) = Hωd

s
(d) ≤ Hωk

s
(k−1) hence M ≤ N . Let G be the

restriction of F to [n, M ]s+1. If Z is G homogeneous then Z is F homogeneous and as before
card(Z) < s+ d

√
|min(Z)|s−1+2 For i ≤ M we have H−1

ωs+1
(i) ≤ H−1

ωs+1
(Hωs+1(d)) = d. Thus

hs(i) ≥ s+ d

√
|i|s−1+2 for n ≤ i ≤ M . Since Z ⊆ [n, M ] we obtain s+ d

√
|min(Z)|s−1+2 ≤

hs(min(Z)).

Corollary 1. Let fα(i) := |i|H−1
α (i). Then PHfε0

is unprovable in PA.

Proof. Assume otherwise. Then r∗fε0
would be provably recursive in PA. Hence, by a

classical result about the provably recursive functions of PA (see, for example, [2, 5, 8, 17]
for a proof), there is an α < ε0 such that r∗fε0

(n + 1, n(n), 3n(n · 2 + 3)) ≤ Hα(n) for n ≥ 0.
Assertion 3 of Theorem 1 yields Hε0(n − 2) ≤ r∗fε0

(n + 1, n(n), 3n(n · 2 + 3)) for n ≥ 4.
Thus Hε0(n + 1) ≤ Hα(n + 3) = Hα+3(n) for n ≥ 1. This contradicts the fact that Hα+3

is eventually dominated by Hε0 .

Corollary 2. Let gd(i) := |i|d. Then, for any fixed d, PHgd
is unprovable in PA.

Theorem 2. For α ≤ ε0 let fα(i) := |i|H−1
α (i). Then r∗fα

(n, n, n) ≤ 2n+3(Hα(n + 3)).

Proof. Let N := 2n+3(Hα(n + 3)). Then N > 2n+1(n · Hα(n + 3)) + Hα(n + 3) =: M .
Let F : [n, N ]n → n. Then by restriction F induces a map G : [Hα(n + 3),M ]n → n. By
Theorem 1 of [6] we find Y homogeneous for G (and hence for F ) such that card(Y ) ≥
Hα(n + 3). Moreover |min(Y )|H−1

α (min(Y ) ≤ |N |H−1
α (Hα(n+3)) = Hα(n + 3).

Corollary 3. Let fα(i) := |i|H−1
α (i). Then PHfα

is provable in PA for any α < ε0.

Proof. Hα is provably recursive in PA for α < ε0. (See, for example, [2, 8, 16, 17] for a
proof.) The assertion follows from Theorem 2 (which can be proved in PA for α < ε0).

Let log∗(i) := min{d : |i|d ≤ 2}.

Corollary 4. PHlog∗ is provable in PA.

Remarks: An inspection of the proofs above (cf. in particular assertion 4 of Theo-
rem 1) yields corresponding results for the fragments of PA. Without proof we mention
that similar results also hold for the hydra battle and the Goodstein process. (See, for
example,[11, 5] for an introduction into these topics.) Related results for Friedman style
miniaturizations can be found in [18]. We conjecture that a refined result also holds for re-
gressive Ramsey functions in the sense of Kanamori and McAloon [10]. (Some preliminary
results confirming this conjecture have recently been obtained by Lee and the author.)
Acknowledgements. The author is very grateful to the referee for her or his excellent
work.
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