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Abstract. We classify the sharp phase transition threshold from provability
to unprovability in fragments of Peano Arithmetic for the Kanamori-McAloon
principle for fixed dimension. For a non negative integer d let IΣd be the
fragment of Peano arithmetic where the induction is restricted to formulas
of alternating quantifier depths d (bounded quantifiers are not counted). We
prove that the threshold for IΣd-unprovable totality of f -regressive Ramsey

numbers lies above all functions n 7→
g−1(n)

q

logd−1
(n) where g−1 is the func-

tional inverse of an increasing function g which is primitive recursive in some
fast growing function Fα from the Schwichtenberg-Wainer-hierarchy for some
α < ωd. Moreover we show that the threshold for IΣd-provable totality of

f -regressive Ramsey numbers lies below the function n 7→
F−1

ωd
(n)

q

logd−1
(n).

1. Introduction and Motivation

The Peano Axioms (PA) for the natural numbers have been designed in a way
such that every true statement about the natural numbers should follow from these
axioms. It came therefore as a great surprise when Gödel showed in 1931 that
there are true statements about the natural numbers which do not follow from
these axioms. Gödel’s original witnesses for the incompleteness of PA have a pecu-
liar logical flavour and it has been suspected that incompleteness might be a purely
logical phenomenon. Nevertheless logicians have searched, since Gödel’s discovery,
for mathematically interesting examples of incompleteness phenomena. A break-
through has been obtained in 1977 by Paris and Harrington [16] who showed that a
slight modification of the finite Ramsey theorem does not follow from PA. Further
examples have later been given by Kirby and Paris [11], Pudlak [8], Friedman [19]
and Kanamori-McAloon [9].

It is a natural mathematical problem to investigate how the incompleteness
emerges in these examples. These investigations led to a recent research program
on phase transitions for incompleteness results which surprisingly is connected to
areas like analytic number theory, combinatorial probability and, of course, finite
combinatorics [23, 24].
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The underlying idea can be briefly outlined as follows. Assume that we have
a given assertion A(F ) which depends on a (weakly increasing) number-theoretic
function f : N → N. Let us assume that for a slow growth of f the assertion
A(f) does follow from PA and that for a fast-growing f the assertion A(f) is not a
consequence of PA. In analogy with random graph theory or statistical mechanics
one is tempted to ask for a threshold function where the phase transition from
provability to unprovability occurs.

In the examples considered so far a threshold classification has always been
obtained by using a certain phase transition principle. The principle asserts that
finite combinatorics places restrictions on the logical strength of a combinatorial
principle. In cases where we have an assertion with a built-in condition which forces
to exceed the bounds from finite combinatorics an independence emerges.

Let us explain this principle in case of the Paris-Harrington assertion. There
the homogeneous set Y which is asserted to exist for a given partition exceeds in
cardinality a given number and in addition has to satisfy the (so called largeness-)
condition that the cardinality of Y is larger than the minimum of Y .

The largeness condition can be fulfilled easily by applying compactness to the
infinite Ramsey theorem. Unexpectedly adding the largeness condition to the asser-
tion of the finite Ramsey theorem leads to an independent statement for PA. One
might argue that adding an artificial extra condition might produce incompleteness
phenomena and logical tricks have been introduced thus somehow indirectly.

But finite combinatorics allows us to give an intrinsic explanation. By bounds
from Erdös and Rado [5] it is known that adding a largeness condition of the form
card(Y ) > log∗(min(Y )) (where log∗ is the functional inverse of the superexponen-
tial function) does not change the nature of the finite Ramsey theorem. If we choose
a function like an iterated log function (which slightly exceeds log∗) in the largeness
condition which prevents the Erdös-Rado bounds then we come to an incomplete-
ness phenomenon. Moreover, measuring the excess of the Erdös-Rado bounds in
terms of hierarchies of recursive functions leads directly to a mathematical proof
for the resulting incompleteness.

In this paper we classify the phase transition threshold for the Kanamori-McAloon
assertion [9]. This assertion is considered by some authors to yield the most natural
incompleteness result for PA. Our proof strategy is, as sketched above, to measure
the excess of bounds from finite combinatorics in terms of hierarchies of recursive
functions. Unfortunately, there is no underlying theory of Ramsey numbers avail-
able for this purpose and, thus, we develop this theory from scratch in the course
of the proof of the main theorem.

The corresponding bootstrapping as well as the modified Erdös-Rado bounds
seem to be of independent interest by themselves.

The final result will be somewhat surprising. It is well known that for a fixed di-
mension d the corresponding Kanamori-McAloon and Paris-Harrington statements
are equivalent over a weak theory like IΣ1 or even I∆0 + exp. Instead, the corre-
sponding phase transitions turn out to be intrinsically different. Only in the limit,
when unbounded dimension is assumed, the phase transition thresholds will become
identical.

The paper is organized as follows. In section 2 we recall some relevant material
from logic which is needed later on. In section 3 we show that finite combinatorics
yields upper bounds on the strength of the Kanamori-McAloon principle in case
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of a slow growing parameter functions. This bound is obtained by adapting the
classical Erdös and Rado [5] bound to the present situation.

In section 4 we analyze in detail the excess of our Erdös-Rado-style bounds in
terms of hierarchies of recursive functions. For this purpose we develop a bit of
hierarchy theory which is needed later on. To excess the Erdös-Rado-style bounds
we prove lower bounds for certain Ramsey functions which are defined with respect
to min-homogeneity. The proof is an adaptation of the Stepping up Lemma (see,
for example, [7]). Surprisingly, we are forced to simultaneously consider Ramsey
functions which are defined with respect to max-homogeneity as well. (These results
will presumably have generalizations to other homogeneity constraints as well.) A
main crux of the proof will be the proof of the Sparseness Lemma (Lemma 4.15,
Section 4.3). Here we use a peculiar colour-diagonalization construction to excess
the Erdös-Rado-style bounds.

This part of the proof is very different from the corresponding treatment of the
Paris-Harrington assertion in [27], where the diagonalization proceeds along the
cardinality of homogeneous sets ). After passing this basic threshold we adapt the
machinery from Kanamori and McAloon [9] to iterate the sparseness properties
through the hierarchy of fast growing functions.

In the last section we sum up the main results of this paper. This paper is
essentially self contained. Nevertheless, basic familiarity with the Kanamori and
McAloon paper [9] and the Ketonen and Solovay paper [10] might be useful.

2. Background Notions and Results

We recall the definition of the Fast-Growing Hierarchy (Fα)α<ε0 (see [2, 18, 21]).
If f is a function and d ≥ 0 we denote by fd the d-th iteration of f , with f0(x) := x.

F0(x) := x + 1

Fα+1(x) := F x
α (x)

Fλ(x) := Fλ[x](x)

Here · [·] : ε0 × N → ε0 is a fixed assignment of fundamental sequences to ordinals
below ε0, defined as follows. We assume a normal form condition, e.g. Cantor
Normal Form. (γ + ωλ)[x] := γ + ωλ[x], (γ + ωβ+1)[x] := γ + ωβ · x, ε0[x] := ωx+1,
where ω0(x) := x, ωd+1(x) := ωωd(x) and ωd := ωd(1). For technical reasons we
put (β + 1)[x] := β and 0[x] := 0.

Let IΣd be the subsystem of PA obtained by replacing full first-order induction
with induction restricted to IΣd- formulas (IΣd-induction). It is well-known that the
provably total function of IΣd are characterized as the functions that are primitive
recursive in some Fα for α < ωd (see, e.g. [2, 18, 22]). Also, the function Fωd

eventually dominates every provably total function of IΣd. We summarize these
facts in the following Theorem.

Theorem 2.1. Let d > 0. Then

(1) IΣd ⊢ (∀x)(∃y)[Fα(x) = y] iff α < ωd.
(2) Let f be a Σ1-definable function. Then IΣd proves the totality f if and

only if f is primitive recursive in Fα for some α < ωd.
(3) Fωd

eventually dominates all IΣd-provably total functions.
(4) PA ⊢ (∀x)(∃y)[Fα(x) = y] iff α < ε0.
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(5) Let f be a Σ1-definable function. Then PA proves the totality f if and only
if f is primitive recursive in Fα for some α < ε0.

(6) Fε0 eventually dominates all IΣd-provably total functions.

Let us formally introduce the Kanamori-McAloon and the Paris-Harrington prin-
ciples. If X ⊆ N, d ∈ N, let [X ]d be the set of all subsets of X with d elements. As
usual in Ramsey Theory, we identify a positive integer m with its set of predeces-
sors {0, . . . , m − 1}. If C is a colouring defined on [X ]d we write C(x1, . . . , xd) for
C({x1, . . . , xd}) where x1 < · · · < xd. A subset H of X is called homogeneous or
monochromatic for C if C is constant on [H ]d. We write

X → (m)d
k

if for all C : [X ]d → k there exists H ⊆ X s.t. card(H) = m and H is homoge-
neous for C. Ramsey [17] proved the following result, known as the Finite Ramsey
Theorem.

(∀d)(∀k)(∀m)(∃ℓ)[ℓ → (m)d
k].

Erdös and Rado gave in [5] a primitive recursive upper bound for such an ℓ. This
shows that the Finite Ramsey Theorem is provable in IΣ1. The asymptotics of
Ramsey numbers is a main concern in Ramsey Theory [7].

The Paris-Harrington principle is a seemingly innocent variant of the Finite
Ramsey Theorem. Let f be a number-theoretic function. A set X is called f -
relatively large if card(X) ≥ f(min X). If f = id, the identity function, we call
such a set relatively large or just large. We write

X →∗
f (m)d

k

if for all C : [X ]d → k there exists H ⊆ X s.t. card(H) = m, H is homogeneous
for C and H is relatively f -large. The Paris-Harrington principle is just the Fi-
nite Ramsey Theorem with the extra condition that the homogeneous set is also
relatively large.

(PH) :≡ (∀d)(∀k)(∀m)(∃ℓ)[ℓ →∗
id (m)d

k].

Let f : N → N be a number-theoretic function. A function C : [X ]d → N is called
f -regressive is for all s ∈ [X ]d such that f(min(s)) > 0 we have C(s) < f(min(s)).
When f is the identity function we just say that C is regressive. A set H is min-

homogeneous for C if for all s, t ∈ [H ]d with min(s) = min(t) we have C(s) = C(t).
We write

X → (m)d
f-reg

if for all f -regressive C : [X ]d → N there exists H ⊆ X s.t. card(H) = m and H
is min-homogeneous for C. In [9] Kanamori and McAloon introduced the following
statement and proved it for any choice of f .

(KM)f :≡ (∀d)(∀m)(∃ℓ)[ℓ → (m)d
f-reg].

The main result of [9], proved by a model-theoretic argument, is that (KM)id is
unprovable in PA. As a corollary one obtains the (provable in PA) equivalence of
(KM) with (PH).

Weiermann considered the concept of f -largeness in [25] order to study the phase
transition for (PH). He accordingly introduced the following parametrized Paris-
Harrington principle

(PH)f :≡ (∀d)(∀k)(∀m)(∃ℓ)[ℓ →∗
f (m)d

k]
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and characterized for which f the principle (PH)f remains unprovable in PA. We
summarize his results in the following Theorem. Let | · |d be the d-times iterated
binary length function and log∗ the inverse of the superexponential function:

|x| := log2(x + 1), |x|d+1 := ||x|d|, and log∗ x := min{d : |x|d ≤ 2}
For an unbounded function f : N −→ N we denote by f−1 the inverse of f defined
as follows. f−1(x) := min{y : f(y) > x}. Observe that we have f−1(x) ≤ y if and
only if x < f(y).

Theorem 2.2 (Weiermann [25]). For α ≤ ε0 let

fα(i) = |i|F−1
α (i).

Then

(1) IΣ1 ⊢ (PH)log∗ .
(2) For all d ∈ N, PA 0 (PH)|·|d .
(3) PA ⊢ (PH)fα if and only if α < ε0.

In his Ph.D. thesis [15], the second author showed that the same situation occurs
in the case of (KM). That is, the phase transition threshold is the same when
unbounded dimensions are considered. Lee also obtained partial results for (KM)
with fixed dimensions with respect to fragments of PA.

Let us formally define the version of (PH) and (KM) for fixed dimensions, the
latter being the main concern of the present paper:

(PH)d
f :≡ (∀k)(∀m)(∃ℓ)[ℓ →∗

f (m)d
k]

(KM)d
f :≡ (∀m)(∃ℓ)[ℓ → (m)d

f-reg]

When f is the identity function we drop the subscript. In our investigation we
will study the growth rate of the functions that are naturally associated with Π0

2

combinatorial principles. In particular, we define

R(µ)n
f (m) := min{ℓ : ℓ → (m)d

f-reg}.
That is, R(µ)n

f is the Skolem-function associated with (KM)n
f .

In his Ph.D. thesis [15], the second author proved the following Theorem.

Theorem 2.3 (Lee, [15]). Let d ≥ 1. Then

(1) IΣ1 ⊢ (KM)d+1
⌊ logd ⌋.

(2) IΣd 0 (KM)d+1
⌊ logd−2 ⌋.

The case d − 1 was left open. Lee formulated the following Conjecture.

Conjecture 2.4 (Lee, 2005). For all n ≥ 1, for all d ≥ 1

IΣd 0 (KM)d+1

⌊ n
√

logd−1 ⌋.

We will prove a general Theorem that implies the truth of Conjecture 2.4 and
closes the gap in Theorem 2.3.

Recall that from [9] we have the following.

Theorem 2.5. Let d ≥ 1.

(1) IΣ1 ⊢ (PH)d+1 ↔ (KM)d+1.
(2) IΣd ⊢ (KM)d.
(3) IΣd 0 (KM)d+1.
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The third author has characterized as follows the phase transition for (PH)d:

Theorem 2.6 (Weiermann [27]). Let

fd
α(i) =

⌊ |i|d
F−1

α (i)

⌋

.

Then

IΣd ⊢ (PH)d+1
fd

α
iff α < ωd.

In this paper we classify the phase transition threshold for the (KM)d principles.
Surprisingly (in view of Theorems 2.2 and 2.5 (i) above), for fixed dimensions, the
phase transition of the Kanamori-McAloon principle turns out to be different from
that of the Paris-Harrington principle. Let logd be the d-th iterated logarithm in
base 2. We stipulate log(0) := 0. Let 2c

d be the tower function in base 2 with height
d and exponent c. 20(x) := x and we sometimes write 2d(c) for 2c

d. Our main result
(Theorem 5.1 in section 5) is the following.

Theorem. Let

fd
α(i) = ⌊ F−1

α (i)
√

logd(i)⌋.
Then

IΣd ⊢ (KM)d+1

fd−1
α

iff α < ωd.

The case d = 1 has been proved by Kojman, Lee, Omri and Weiermann in [12]
generalizing methods from Kojman and Shelah [13] and [4]. Our proof does not

follow these lines.

3. Provability (Upper Bounds)

In this section we show the provability part of our main result. Essentially, the
bound for standard Ramsey functions from Erdös-Rado’s [5] is adapted to the case
of regressive functions.

Definition 3.1. Let C : [ℓ]d → k be a coloring. Call a set H s-homogeneous for C if
for any s-element set U ⊆H and for any (d − s)-element sets V, W ⊆H such that
maxU < min{minV, min W}, we have

C(U ∪ V ) = C(U ∪ W ).

(d − 1)-homogeneous sets are called end-homogeneous.

Note that 0-homogeneous sets are homogeneous and 1-homogeneous sets are
min-homogeneous. Let

X →s 〈m〉dk
denote that given any coloring C : [X ]d → k, there is H s-homogeneous for C
such that card(H) ≥ m. The following lemma shows a connection between s-
homogeneity and homogeneity.

Lemma 3.2. Let s ≤ d and assume

(1) ℓ →s 〈p〉dk,
(2) p − d + s → (m − d + s)s

k.

Then we have

ℓ → (m)d
k.
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Proof. Let C : [ℓ]d → k be given. Then assumption 1 implies that there is H ⊆ ℓ
such that |H | = p and H is s-homogeneous for C. Let z1 < · · · < zd−s be the last
d − s elements of H . Set H0 := H \ {z1, . . . , zd−s}. Then card(H0) = p − d + s.
Define D : [H0]

s → k by

D(x1, . . . , xs) := C(x1, . . . , xs, z1, . . . , zd−s).

By assumption 2 there is Y0 such that Y0 ⊆H0, card(Y0) = m − d + s, and homo-
geneous for D. Hence D ↾[Y0]

s = e for some e < k. Set Y := Y0 ∪ {z1, . . . , zd−s}.
Then card(Y ) = m and Y is homogeneous for C. Indeed, we have for any sequence
x1 < · · · < xd from Y

C(x1, . . . , xd) = C(x1, . . . , xs, z1, . . . , zd−s) = D(x1, . . . , xs) = e.

The proof is complete. �

Given d, s such that s ≤ d define Rs
µ(d, ·, ·) : N

2 → N by

Rs
µ(d, k, m) := min{ℓ : ℓ →s 〈m〉dk}.

Then

• R0
µ(1, k, m − d + 1) = k · (m − d) + 1,

• Rd
µ(d, k, m) = Rs

µ(d, 1, m) = m,
• Rs

µ(d, k, d) = d,

• Rs
µ(d, k, m) ≤ Rs−1

µ (d, k, m) for any s > 0.

Rs
µ are called Ramsey functions. Set

R(d, k, m) := R0
µ(d, k, m) and Rµ(d, k, m) := R1

µ(d, k, m).

Then R(µ)d
fk

(m) = R1
µ(d, k, m) where fk is the constant function with value k.

Define a binary operation ∗ by putting, for positive natural numbers x and y,

x ∗ y := xy .

Further, we put for p ≥ 3

x1 ∗ x2 ∗ · · · ∗ xp := x1 ∗ (x2 ∗ (· · · ∗ (xp−1 ∗ xp) · · · ))
Erdös and Rado [5] gave an upper bound for R(d, k, m): Given d, k, m such that
k ≥ 2 and m ≥ d ≥ 2, we have

R(d, k, m) ≤ k ∗ (kd−1) ∗ (kd−2) ∗ · · · ∗ (k2) ∗ (k · (m − d) + 1).

Theorem 3.3 (IΣ1). Let 2 ≤ d ≤ m, 0 < s ≤ d, and 2 ≤ k.

Rs
µ(d, k, m) ≤ k ∗ (kd−1) ∗ (kd−2) ∗ · · · ∗ (ks+1) ∗ (m − d + s) ∗ s.

In particular, Rµ(2, k, m) ≤ km−1.

Proof. The proof construction below is motivated by Erdös and Rado [5]. We shall
work with s-homogeneity instead of homogeneity.

Let X be a finite set. In the following construction we assume that card(X) is
large enough. How large it should be will be determined after the construction has
been defined. Throughout this proof the letter Y denotes subsets of X such that
card(Y ) = d − 2.

Let C : [X ]d → k be given and x1 < . . . < xd−1 the first d − 1 elements of X .
Given x ∈ X \ {x1, . . . , xd−1} put

Cd−1(x) := C(x1, . . . , xd−1, x).
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Then Im(Cd−1)⊆ k, and there is Xd ⊆X\{x1, . . . , xd−1} such that Cd−1 is constant
on Xd and

card(Xd) ≥ k−1 · (card(X) − d + 1).

Let xd := minXd and given x ∈ Xd \ {xd} put

Cd(x) :=
∏

{C(Y ∪ {xd, x}) : Y ⊆{x1, . . . , xd−1}}.

Then Im(Cd)⊆ c ∗
(
d−1
d−2

)
, and there is Xd+1 ⊆Xd \ {xd} such that Cd is constant

on Xd+1 and

card(Xd+1) ≥ k−(d−1
d−2) · (card(Xd) − 1) .

Generally, let p ≥ d, and suppose that x1, . . . , xp−1 and Xd, Xd+1, . . . , Xp have
been defined, and that Xp 6= ∅. Then let xp := minXp and for x ∈ Xp \ {xp} put

Cp(x) :=
∏

{C(Y ∪ {xp, x}) : Y ⊆{x1, . . . , xp−1}}.

Then Im(Cp)⊆ k ∗
(
p−1
d−2

)
, and there is Xp+1 ⊆Xp \ {xp} such that Cp is constant

on Xp+1 and

card(Xp+1) ≥ k−(p−1
d−2) · (card(Xp) − 1) .

Now put

ℓ := 1 + Rs
µ(d − 1, k, m− 1).

Then ℓ ≥ m ≥ d. If card(X) is sufficiently large, then Xp 6= ∅, for all p such
that d ≤ p ≤ ℓ, so that x1, . . . , xℓ exist. Note also that x1 < · · · < xℓ. For
1 ≤ ρ1 < · · · < ρd−1 < ℓ put

D(ρ1, . . . , ρd−1) := C(xρ1 , . . . , xρd−1
, xℓ).

By definition of ℓ there is Z ⊆{1, . . . , ℓ − 1} such that Z is s-homogeneous for D
and card(Z) = m − 1. Finally, we put

X ′ := {xρ : ρ ∈ Z} ∪ {xℓ}.
We claim that X ′ is min-homogeneous for C. Let

H := {xρ1 , . . . , xρd
} and H ′ = {xη1 , . . . , xηd

}
be two subsets of X ′ such that ρ1 = η1, . . . , ρs = ηs and

1 ≤ ρ1 < · · · < ρd ≤ ℓ, 1 ≤ η1 < · · · < ηd ≤ ℓ.

Since xρd
, xℓ ∈ Xρd

, we have Cρd−1
(xρd

) = Cρd−1
(xℓ) and hence

C(xρ1 , . . . , xρd−1
, xρd

) = C(xρ1 , . . . , xρd−1
, xℓ).

Similarly, we show that

C(xη1 , . . . , xηd−1
, xηd

) = C(xη1 , . . . , xηddn−1
, xℓ).

In addition, since {xρ1 , . . . , xρd−1
} ∪ {xη1 , . . . , xηd−1

}⊆X ′, we have

D(ρ1, . . . , ρd−1) = D(η1, . . . , ηd−1),

i.e.,

C(xρ1 , . . . , xρd−1
, xℓ) = C(xη1 , . . . , xηd−1

, xℓ).

This means that C(H) = C(H ′). So X ′ is min-homogeneous for C.
We now return to the question how large card(X) should be in order to ensure

that the construction above can be carried through.
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Set

td := k−1 · (card(X) − d + 1),

tp+1 := k−(p−1
d−2) · (tp − 1) (d ≤ p < ℓ).

Then we require that tℓ > 0, where

tℓ = k−(ℓ−2
d−2) ·

(
k−(ℓ−3

d−2) ·
(
· · ·

(
k−(d−1

d−2) ·
(
td − 1

))
· · ·

)
− 1

)

= k−(ℓ−2
d−2)−···−(d−1

d−2) · td − k−(ℓ−2
d−2)−···−(d−1

d−2) − · · · − k−(ℓ−2
d−2)−(ℓ−3

d−2) − k−(ℓ−2
d−2) .

Since k = k(d−2
d−2) a sufficient condition on card(X) is then

card(X) − d + 1 > k(ℓ−3
d−2)+···+(d−2

d−2) + k(ℓ−4
d−2)+···+(d−2

d−2) + · · · + k(d−2
d−2) .

A possible value is

card(X) = d +
ℓ−2∑

p=d−1

k( p
d−1),

so that

Rs
µ(d, k, m) ≤ d +

ℓ−2∑

p=d−1

k( p
d−1) ≤ d +

ℓ−2∑

p=d−1

kpd−1

≤ d +

ℓ−2∑

p=d−1

(
k(p+1)d−1 − kpd−1)

= d + k(ℓ−1)d−1 − k(d−1)d−1

≤ k(ℓ−1)d−1

= kRµ(d−1,k,m−1)d−1

.

Hence

Rs
µ(d, k, m) ∗ d ≤ (kd) ∗ Rs

µ(d − 1, k, m − 1) ∗ (d − 1).

After (d − s) times iterated applications of the inequality we get

Rs
µ(d, k, m) ∗ d ≤ (kd) ∗ (kd−1) ∗ · · · ∗ (ks+1) ∗ Rs

µ(s, k, m − d + s) ∗ s

= (kd) ∗ (kd−1) ∗ · · · ∗ (ks+1) ∗ (m − d + s) ∗ s.

This completes the proof. �

Remark 3.4. Lemma 26.4 in [3] gives a slight sharper estimate for s = d − 1 :

Rd−1
µ (d, k, m) ≤ d +

m−2∑

i=d−1

k( i
d−1)

Corollary 3.5. Let 2 ≤ d ≤ m and 2 ≤ k.

Rµ(d, k, m) ≤ k ∗ (kd−1) ∗ (kd−2) ∗ · · · ∗ (k2) ∗ (m − d + 1).

Now we come back to f -regressiveness and prove the key upper bound of the
present section.



10 LORENZO CARLUCCI, GYESIK LEE, AND ANDREAS WEIERMANN

Lemma 3.6. Given d ≥ 1 and α ≤ ε0 set fd
α(i) := ⌊ F−1

α (i)
√

logd(i) ⌋. Then

R(µ)d+1

fd−1
α

(m) ≤ 2
Fα(q)m+p

d−1

for some p, q ∈ N depending (primitive-recursively) on d and α.

Proof. Given d and α note first that there are two natural numbers p and q such
that d < p < q and for all m

ℓ := 2
Fα(q)m+d+1
d−1 + Fα(q) ≤ 2

Fα(q)m+p

d−1 =: N .

Let C : [N ]d+1 → N be any fd
α-regressive function and

D : [Fα(q), ℓ]d+1 → N

be defined from C by restriction. Then for any y ∈ [Fα(q), ℓ], we have

F−1
α (y)

√

logd−1(y) ≤ F−1
α (Fα(q))

√

logd−1(2d−1(Fα(q)m+p))

= q
√

Fα(q)m+p.

Hence

Im(D)⊆⌊Fα(q)(m+p)/q ⌋+1.

Put now k := ⌊Fα(q)(m+p)/q ⌋+1. Then

(k) ∗ (kd) ∗ · · · ∗ (k2) ∗ (m − d) < 2d−1(Fα(q)m+d + 1)

if q is sufficiently larger than p. By Theorem 3.3 there is an H ⊆ N min-homogeneous
for D, hence for C, such that card(H) ≥ m. �

Theorem 3.7. Let d ≥ 1.

(1) (KM)log∗ is provable in IΣ1.

(2) (KM)d+1
⌊ logd ⌋ is provable in IΣ1.

(3) (KM)d+1

⌊ F−1
α (·)

√
logd−1(·) ⌋

is provable in IΣd if α < ωd.

Proof. (1) Let d, m ≥ 1 be given. Note first that there is x larger than d and
m such that for k := x + m and ℓ := x + 2x+m

d

k ∗ (kd−1) ∗ (kd−2) ∗ · · · ∗ (k2) ∗ (k ·− d + 1) < 2x+m
d .

and

log∗ ℓ ≤ k

We claim that R(µ)d
log∗(m) ≤ ℓ. Let C : [ℓ]d → N be log∗-regressive and

C′ : [x, ℓ]d → N be defined from C by restriction. By Theorem 3.3 we can
find an H ⊆ ℓ min-homogeneous for C′, hence for C, such that card(H) ≥
m.

(2) Let d, m ≥ 1 be given. Note first that there is x larger than d and m such
that for k := 2x + m and ℓ := x + 2x+m

d

k ∗ (kd) ∗ (kd−1) ∗ · · · ∗ (k2) ∗ (m ·− d) < 2x+m
d .

and

⌊ logd(ℓ) ⌋ ≤ k

We claim that R(µ)d+1
logd

(m) ≤ ℓ. Let C : [ℓ]d+1 → N be logd-regressive

and C′ : [x, ℓ]d+1 → N be defined from C by restriction. By Theorem 3.3
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we can find an H ⊆ ℓ min-homogeneous for C′, hence for C, such that
card(H) ≥ m.

(3) Fα is provably recursive in IΣd for α < ωd. Then the assertion follows from
Lemma 3.6 �

4. Unprovability (Lower Bounds)

In this section we present the unprovability part of the phase transition for
the Kanamori-McAloon principle with fixed dimension. The key arguments in
subsection 4.4 are a non-trivial adaptation of Kanamori-McAloon’s [9], Section 3.
Before being able to apply those arguments we need to develop, by bootstrapping,
some relevant bounds for the parametrized Kanamori-McAloon principle. This is
done in subsection 4.3 by adapting the idea of the Stepping up Lemma in [7]. We
begin with the base case d = 1 which is helpful for a better understanding of the
coming general cases. The following subsection 4.1, covering the base case d = 1 of
our main result, is already done in [12, 15].

4.1. Ackermannian Ramsey functions. Throughout this subsection m denotes
a fixed positive natural number. Set

hω(i) := ⌊ F−1
ω (i)

√
i ⌋ and hm(i) := ⌊ m

√
i ⌋ .

Define a sequence of strictly increasing functions fm,n for as follows:

fm,n(i) :=

{

i + 1 if n = 0,

f
(⌊m√i ⌋)
m,n−1 (i) otherwise.

Note that fm,n are strictly increasing.

Lemma 4.1. R(µ)2hm
(R(2, c, i + 3)) ≥ fm,c(i) for all c and i.

Proof. Let k := R(2, c, i + 3) and define a function Cm : [R(µ)2hm
(k)]2 → N as

follows:

Cm(x, y) :=

{

0 if fm,c(x) ≤ y,

ℓ otherwise,

where the number ℓ is defined by

f (ℓ)
m,p(x) ≤ y < f (ℓ+1)

m,p (x)

where p < c is the maximum such that fm,p(x) ≤ y. Note that Cm is hm-regressive

since f
(⌊m

√
x ⌋)

m,p (x) = fm,p+1(x). Let H be a k-element subset of R(µ)2hm
(k) which is

min-homogeneous for Cm. Define a c-coloring Dm : [H ]2 → c by

Dm(x, y) :=

{

0 if fm,c(x) ≤ y,

p otherwise,

where p is as above. Then there is a (i + 3)-element set X ⊆H homogeneous for
Dm. Let x < y < z be the last three elements of X . Then i ≤ x. Hence, it suffices
to show that fm,c(x) ≤ y since fm,c is an increasing function.

Assume fm,c(x) > y. Then fm,c(y) ≥ fm,c(x) > z by the min-homogeneity. Let
Cm(x, y) = Cm(x, z) = ℓ and Dm(x, y) = Dm(x, z) = Dm(y, z) = p. Then

f (ℓ)
m,p(x) ≤ y < z < f (ℓ+1)

m,p (x).

By applying fm,p we get the contradiction that z < f
(ℓ+1)
m,p (x) ≤ fm,p(y) ≤ z. �
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We are going to show that Rhm is not primitive recursive. This will be done by
comparing the functions fm,n with the Ackermann function.

Lemma 4.2. Let i ≥ 4m and ℓ ≥ 0.

(1) (2i + 2)m < fm,ℓ+2m2(i) and fm,ℓ+2m2((2i + 2)m) < f
(2)
m,ℓ+2m2(i).

(2) Fn(i) < f
(2)
m,n+2m2(i).

Proof. (1) By induction on k it is easy to show that fm,k(i) > (⌊m
√

i ⌋)k for any
i > 0. Hence for i ≥ 4m

fm,2m2(i) > (⌊m
√

i ⌋)2m2 ≥ (⌊m
√

i ⌋)m2 · 2m2+m ≥ (m
√

i + 1 )m2 · 2m = (2i + 2)m

since 2 · ⌊m
√

i ⌋ ≥ m
√

i + 1. The second claim follows from the first one.

(2) By induction on n we show the claim. If n = 0 it is obvious. Suppose the
claim is true for n. Let i ≥ 4m be given. Then by induction hypothesis we have

Fn(i) ≤ f
(2)
m,n+2m2(i). Hence

Fn+1(i) ≤ F (i+1)
n (i) ≤ f

(2i+2)
m,n+2m2(i) ≤ fm,n+2m2+1((2i + 2)m) < f

(2)
m,n+2m2+1(i).

The induction is now complete. �

Corollary 4.3. Fn(i) ≤ fm,n+2m2+1(i) for any i ≥ 4m.

Theorem 4.4. R(µ)2hm
and R(µ)2hω

are not primitive recursive.

Proof. Lemma 4.1 and Corollary 4.3 imply that R(µ)2hm
is not primitive recursive.

For the second assertion we claim that

N(i) := R(µ)2hω
(R(2, i + 2i2 + 1, 4i + 3)) > Fω(i)

for all i. Assume to the contrary that N(i) ≤ A(i) for some i. Then for any

ℓ ≤ N(i) we have A−1(ℓ) ≤ i, hence i
√

ℓ ≤ A−1(ℓ)
√

ℓ. Hence

R(µ)2hω
(R(2, i + 2i2 + 1, 4i + 3)) ≥ R(µ)2hi

(R(2, i + 2i2 + 1, 4i + 3))

≥ fi,i+2i2+1(4
i)

> Fω(i)

by Lemma 4.1 and Corollary 4.3. Contradiction! �

Now we are ready to begin with the general cases.

4.2. Fast-growing hierarchies. We introduce some variants of the Schwichtenberg-
Wainer hierarchy and prove that they are still fast-growing, meaning they match
up with the Schwichtenberg-Wainer hierarchy.

Definition 4.5. Let d > 0, c ≥ 2 be natural numbers. Let ǫ be a real number such
that 0 < ǫ ≤ 1.

Bǫ,c,d,0(x) := 2
⌊ logd(x) ⌋c

d

Bǫ,c,d,α+1(x) := B
⌊ ǫ· c

√
logd(x) ⌋

ǫ,c,d,α (x)

Bǫ,c,d,λ(x) := B
ǫ,c,d,λ[⌊ ǫ· c

√
logd(x) ⌋](x)

In the following we abbreviate Bǫ,c,d,α by Bα when c , d, ǫ are fixed.
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Lemma 4.6. Let c, d, ǫ as above.

(1) Bi+1(2
⌊ ǫ−1·(x+1) ⌋c

d ) ≥ 2
⌊ ǫ−1·(Fi(x)+1) ⌋c

d for all i ∈ ω and x > 0.

(2) Bα(2
⌊ ǫ−1·(x+1) ⌋c

d ) ≥ 2
⌊ ǫ−1·(Fα(x)+1) ⌋c

d for all α ≥ ω and x > 0.

Proof. (1) We claim that Bm
0 (x) = 2

⌊ logd(x) ⌋cm

d for m > 0. Proof by induction
on m. The base case holds trivially. For the induction step we calculate:

Bm+1
0 (x) = B0(B

m
0 (x))

= 2
⌊ logd(Bm

0 (x)) ⌋c

d

= 2
⌊ logd(2

⌊ logd(x) ⌋cm

d ) ⌋c

d

= 2
⌊ ⌊ logd(x) ⌋cm ⌋c

d

= 2
⌊ logd(x) ⌋cm+1

d

We now claim that Bi+1(2
⌊ ǫ−1·(x+1) ⌋c

d ) ≥ 2
⌊ ǫ−1·(Fi(x)+1) ⌋c

d Proof by induc-
tion on i. For i = 0 we obtain

B1(2
⌊ ǫ−1·(x+1) ⌋c

d ) = B
⌊ ǫ· c

q

logd(2
⌊ ǫ−1·(x+1) ⌋c

d
) ⌋

0 (2
⌊ ǫ−1·(x+1) ⌋c

d )

= B
⌊ ǫ·⌊ ǫ−1·(x+1) ⌋ ⌋
0 (2

⌊ ǫ−1·(x+1) ⌋c

d )

≥ Bx+1
0 (2

⌊ ǫ−1·(x+1) ⌋c

d )

= 2
⌊ logd(2

⌊ ǫ−1·(x+1) ⌋c

d ) ⌋cx+1

d

= 2
⌊ ⌊ ǫ−1·(x+1) ⌋c ⌋cx+1

d

= 2
⌊ ǫ−1·(x+1) ⌋cx+2

d

≥ 2
⌊ ǫ−1·(F0(x)+1) ⌋c

d

since x > 0 and c > 1. For the induction step we compute

Bi+1(2
⌊ ǫ−1·(x+1) ⌋c

d ) = B
⌊ ǫ· c

q

logd(2
⌊ ǫ−1·(x+1) ⌋c

d ) ⌋
i (2

⌊ ǫ−1·(x+1) ⌋c

d )

≥ Bx+1
i (2

⌊ ǫ−1·(x+1) ⌋c

d )

≥ Bx
i (2

⌊ ǫ−1·(Fi−1(x)+1) ⌋c

d )

≥ Bx−1
i (2

⌊ ǫ−1·(F 2
i−1(x)+1) ⌋c

d )

≥ · · ·
≥ 2

⌊ ǫ−1·(F x+1
i−1 (x)+1) ⌋c

d

≥ 2
⌊ ǫ−1·(Fi(x)+1) ⌋c

d



14 LORENZO CARLUCCI, GYESIK LEE, AND ANDREAS WEIERMANN

(2) We prove the claim by induction on α ≥ ω. Let α = ω. We obtain

Bω(2
⌊ ǫ−1·(x+1) ⌋c

d ) = Bx+1(2
⌊ ǫ−1·(x+1) ⌋c

d )

≥ 2
⌊ ǫ−1·(Fx(x)+1) ⌋c

d

= 2
⌊ ǫ−1·(Fω(x)+1) ⌋c

d

For the successor case α + 1 we compute

Bα+1(2
⌊ ǫ−1·(x+1) ⌋c

d ) = B
⌊ ǫ· c

q

logd(2
⌊ ǫ−1·(x+1) ⌋c

d ) ⌋
α (2

⌊ ǫ−1·(x+1) ⌋c

d )

= Bx+1
α (2

⌊ ǫ−1·(x+1) ⌋c

d )

= Bx
α(Bα(2

⌊ ǫ−1·(x+1) ⌋c

d ))

≥ Bx
α(2

⌊ ǫ−1·(Fα(x)+1) ⌋c

d )

≥ · · ·
≥ 2

⌊ ǫ−1·(F x+1
α (x)+1) ⌋c

d

≥ 2
⌊ ǫ−1·(Fα+1(x)+1) ⌋c

d

If λ is a limit we obtain

Bλ(2
⌊ ǫ−1·(x+1) ⌋c

d ) = B
λ[⌊ ǫ· c

q

logd(2
⌊ ǫ−1·(x+1) ⌋c

d ) ⌋]
(2

⌊ ǫ−1·(x+1) ⌋c

d )

≥ Bd,λ[x+1](2
⌊ ǫ−1·(x+1) ⌋c

d )

≥ 2
⌊ ǫ−1·(Fλ[x+1](x)+1) ⌋c

d

≥ 2
⌊ ǫ−1·(Fλ(x)+1) ⌋c

d

�

Theorem 4.7. Let d > 0, c > 1 be natural numbers. Let 0 < ǫ ≤ 1.

(1) Bǫ,c,d,ω is Ackermannian.
(2) Bǫ,c,d,α is provably total in IΣn iff α < ωn.
(3) (Bǫ,c,d,α)α<ε0 is fast-growing.

Proof. Obvious by Lemma 4.6. �

4.3. Bootstrapping. In this section we show how one can use (KM)d+1
c
√

logd−1

to

obtain min-homogeneous sets whose elements are “spread apart” with respect to the
function 2d−1(logd−1(x)c) (i.e. Bǫ,c,d−1,0). This fact will be used next (Proposition
4.21) to show that one can similarly obtain from the same assumption even sparser
sets (essentially sets whose elements are Fωc

d−1
“spread apart”).

For the sake of clarity we work out the proofs of the main results of the present
section for the base cases d = 2 and d = 4 in detail in section 4.3.1 before general-
izing them in section 4.3.2. We hope that this will improve the readability of the
arguments.

Definition 4.8. We say that a set X if f -sparse iff for all a, b ∈ X we have f(a) ≤ b.
We say that two elements a, b of a set X are n-apart iff there exist e1, . . . , en from
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X such that a < e1 < · · · < en < b. We say that a set is (f, n)-sparse iff for all
a, b ∈ X such that a and b are n-apart we have f(a) ≤ b.

Definition 4.9. Let X be a set of cardinality > m · k. We define X/m as the set
{x0, xm, x2m, . . . , xk·m}, where xi is the (i + 1)-th smallest element of X .

Thus, if a set X is (f, m)-sparse of cardinality > k · m we have that X/m is
f -sparse and has cardinality > k.

4.3.1. Bǫ,2,1,0-sparse min-homogeneous sets - Base Cases. Given P : [ℓ]d → N we
call X ⊆ ℓ max-homogeneous for P if for all U, V ∈ [X ]d with max(U) = max(V )
we have P (U) = P (V ).

Let MINd
k(m) := Rµ(d, k, m), i.e., the least natural number ℓ such that for all

partitions P : [ℓ]d → k there is a min-homogeneous Y ⊆ ℓ such that card(Y ) ≥ m.

Let MAXd
k(m) be the least natural number ℓ such that for all partitions P : [ℓ]d → k

there is a max-homogeneous Y ⊆ ℓ such that card(Y ) ≥ m.

Let k ≥ 2 and m ≥ 1. Given an integer a < km let a = km−1 · a(m − 1) + · · · +
k0 · a(0) be in the unique representation with a(m − 1), . . . , a(0) ∈ {0, . . . , k − 1}.
Then D(k,m) : [km]2 → m is defined by

D(k,m)(a, b) := max{j : a(j) 6= b(j)}.
Lemma 4.10. Let k ≥ 2 and m ≥ 1.

(1) MIN2
k·m(m + 2) > km.

(2) MAX2
k·m(m + 2) > km.

Proof. Let us show the first item. Define R1 : [km]2 → k · m as follows.

R1(a, b) := k · D(a, b) + b(D(a, b)),

where D := D(k,m). Assume Y = {a0, . . . , aℓ} with a0 < . . . < aℓ is min-
homogeneous for R1. We claim ℓ ≤ m. Let ci := D(ai, ai+1), i < ℓ. Since
m > c0 it is sufficient to show ci+1 < ci for every i < ℓ − 1.

Fix i < ℓ−1. We have D(ai, ai+1) = D(ai, ai+2) since R1(ai, ai+1) = R1(ai, ai+2)
by min-homogeneity. Hence for any j > D(ai, ai+1) we have ai(j) = ai+1(j) =
ai+2(j) which means ci ≥ ci+1. Moreover, R1(ai, ai+1) = R1(ai, ai+2) further
yields ai+1(D(ai, ai+1)) = ai+2(D(ai, ai+2)), hence ci = ci+1 cannot be true, since
ai+1(D(ai+1, ai+2)) 6= ai+2(D(ai+1, ai+2)).

For the proof of the second item define R′
1 : [km]2 → k · m as follows.

R′
1(a, b) := k · D(a, b) + a(D(a, b)),

where D := D(k,m). Assume Y = {a0, . . . , aℓ} with a0 < . . . < aℓ is max-
homogeneous for R′

1. We claim ℓ ≤ m. Let ci := D(ai, ai+1), i < ℓ. Since
m > cℓ−1 it is sufficient to show ci+1 > ci for every i < ℓ − 1.

Fix i < ℓ − 1. We have D(ai, ai+2) = D(ai+1, ai+2) since R′
1(ai, ai+2) =

R′
1(ai+1, ai+2) by max-homogeneity. Hence for any j > D(ai+1, ai+2) we have

ai(j) = ai+1(j) = ai+2(j) which means ci ≤ ci+1. Moreover, R′
1(ai, ai+2) =

R′
1(ai+1, ai+2) further yields ai(D(ai, ai+2)) = ai+1(D(ai+1, ai+2)), hence ci = ci+1

cannot be true, since ai(D(ai, ai+1)) 6= ai+1(D(ai, ai+1)). �

Lemma 4.11. Let k, m ≥ 2.

(1) MIN3
2k·m(2m + 4) > 2km

.
(2) MAX3

2k·m(2m + 4) > 2km

.
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Proof. (1) Let k, m ≥ 2 be positive integers and put e := km. Let R1 and R′
1 be

the partitions from Lemma 4.10. Define R2 : [2e]3 → 2k · m as follows:

R2(u, v, w) :=

{

R1(D(u, v), D(v, w)) if D(u, v) < D(v, w),

k · m + R′
1(D(v, w), D(u, v)) if D(u, v) > D(v, w),

where D := D(2,e). The case D(u, v) = D(v, w) does not occur since we developed
u, v, w with respect to base 2. Let Y ⊆ 2e be min-homogeneous for R2. We claim
card(Y ) < 2m + 4.

Assume card(Y ) ≥ 2m + 4. Let {u0, . . . , u2m+3} ⊆ Y be min-homogeneous for
R2. We shall provide a contradiction. Let di := D(ui, ui+1) for i < 2m + 3.

Case 1: Assume there is some r such that dr < . . . < dr+m+1. We claim that Y ′ :=
{dr, . . . , dr+m+1} is min-homogeneous for R1 which would contradict Lemma 4.10.

Note that for all i, j with r ≤ i < j ≤ r + m + 2 we have

D(ui, uj) = max{D(ui, ui+1), . . . , D(uj−1, uj)}.
We have therefore for r ≤ i < j ≤ r + m + 1

R1(di, dj) = R1(D(ui, ui+1), D(ui+1, uj+1)) = R2(ui, ui+1, uj+1).

By min-homogeneity of Y we obtain similarly

R2(ui, ui+1, uj+1) = R2(ui, ui+1, up+1) = R1(di, dp)

for all i, j, p such that r ≤ i < j < p ≤ r + m + 1.

Case 2: Assume there is some r such that dr > . . . > dr+m+1. We claim that Y ′ :=
{dr+m+1, . . . , dr} is max-homogeneous for R′

1 which would contradict Lemma 4.10.
Assume r ≤ i < j < p ≤ r + m + 1, hence ui < uj < up and dp < dj < di. Note

that we also have dj = D(uj, up) and di = D(ui, up). Hence

k · m + R′
1(dp, dj) = k · m + R′

1(D(up, up+1), D(uj , up)) = R2(uj , up, up+1).

By min-homogeneity we obtain

k · m + R′
1(dp, di) = k · m + R′

1(D(up, up+1), D(ui, up))

= R2(ui, up, up+1)

= R2(ui, uj , uj+1)

= k · m + R′
1(dj , di).

Case 3: There is a local maximum of the form di < di+1 > di+2. Note then
that D(ui, ui+2) = di+1. Hence we obtain the following contradiction using the
min-homogeneity: k · m > R1(di, di+1) = R2(ui, ui+1, ui+2) = R2(ui, ui+2, ui+3) =
k · m + R′

1(di+2, di+1) ≥ k · m.

Case 4: Cases 1 to 3 do not hold. Then there must be two local minima. But then
inbetween we have a local maximum and we are back in Case 3.

(2) Similar to the first claim. Define R′
2 just by interchanging R1 and R′

1 and
argue as above interchanging the role of min-homogeneous and max-homogeneous
sets. �

Lemma 4.12. Let k, m ≥ 2.

(1) MIN4
4k·m(2(2m + 4) + 2) > 22km

.

(2) MAX4
4k·m(2(2m + 4) + 2) > 22km

.
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Proof. (1) Let k, m ≥ 2 be positive integers and put ℓ := 2km

. Let R2 and R′
2 be the

partitions from the Lemma 4.11. Let D := D(2,ℓ). Then define R3 : [2ℓ]4 → 4k · m
as follows:

R3(u, v, w, x) :=







R2(D(u, v), D(v, w), D(w, x)) if D(u, v) < D(v, w) < D(w, x)

2k · m + R′
2(D(w, x), D(v, w), D(u, v)) if D(u, v) > D(v, w) > D(w, x)

0 if D(u, v) < D(v, w) > D(w, x)

2k · m if D(u, v) > D(v, w) < D(w, x)

The cases D(u, v) = D(v, w) or D(v, w) = D(w, x) don’t occur since we developed
u, v, w, x with respect to base 2.

Let Y ⊆ 2ℓ be min-homogeneous for R3. We claim card(Y ) ≤ 2(2m + 4) + 1.
Let Y = {u0, . . . , uh} be min-homogeneous for R3, where h := 2(2m + 4) + 1. Put
di := D(ui, ui+1) and g := 2m + 3.

Case 1: Assume that there is some r such that dr < . . . < dr+g. We claim
that Y ′ := {dr, . . . , dr+g} is min-homogeneous for R2 which would contradict
Lemma 4.11.

Note again that for r ≤ i < j ≤ r + g + 1 we have

D(ui, uj) = max{D(ui, ui+1), . . . , D(uj−1, uj)} = D(uj−1, uj).

Therefore for r ≤ i < p < q ≤ r + g

R2(di, dp, dq) = R2(D(ui, ui+1), D(ui+1, up+1), D(up+1, uq+1))

= R3(ui, ui+1, up+1, uq+1).

By the same pattern we obtain for r ≤ i < u < v ≤ r + g

R2(di, du, dv) = R2(D(ui, ui+1), D(ui+1, uu+1), D(uu+1, uv+1))

= R3(ui, ui+1, uu+1, uv+1).

By min-homogeneity of Y for R3 we obtain then R2(di, dp, dq) = R2(di, du, dv).
Thus Y ′ is min-homogeneous for R2.

Case 2: Assume that there is some r such that dr > . . . > dr+g. We claim
that Y ′ := {dr+g, . . . , dr} is max-homogeneous for R′

2 which would contradict
Lemma 4.11.

Then for r ≤ i < p < q ≤ r + g

2k · m + R′
2(dq, dp, di) = 2k · m + R′

2(D(up+1, uq+1), D(ui+1, up+1), D(ui, ui+1))

= R3(ui, ui+1, up+1, uq+1).

By the same pattern we obtain for r ≤ i < u < v ≤ r + g

2k · m + R′
2(dv, du, di) = 2k · m + R′

2(D(uu+1, uv+1), D(ui+1, uu+1), D(ui, ui+1))

= R3(ui, ui+1, uu+1, uv+1).

By min-homogeneity of Y for R3 we obtain then R′
2(dq, dp, di) = R′

2(dv, du, di).
Thus Y ′ is max-homogeneous for R′

2.
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Case 3: There is a local maximum of the form di < di+1 > di+2. Then we obtain
the following contradiction using the min-homogeneity

0 = R3(ui, ui+1, ui+2, ui+3)

= R3(ui, ui+2, ui+3, ui+4)

≥ 2k · m
since D(ui, ui+2) = di+1 > di+2.

Case 4: Cases 1 to 3. do not hold. Then there must be two local minima. But
then inbetween we have a local maximum and we are back in Case 3.

(2) Similar to the first claim. Define R′
3 just by interchanging R2 and R′

2 and argue
interchanging the role of min-homogeneous and max-homogeneous sets. �

We now show how one can obtain sparse min-homogeneous sets for certain func-
tions of dimension 3 from the bounds from Lemma 4.11. It will be clear that the
same can be done for functions of dimension 4 using the bounds from Lemma 4.12.
In section 4.3.2 we will lift the bounds and the sparseness results to the general
case.

Lemma 4.13. Let f(i) := ⌊
√

log(i) ⌋. Let ℓ := 2(16·17+1)2 . Then there exists an
f -regressive partition P : [N]3 → N such that if Y is min-homogeneous for P and

of cardinality not below 3ℓ− 1, then we have 2(log(a))2 ≤ b for all a, b ∈ Ȳ /4, where

Ȳ := Y \ ({the first ℓ elements of Y } ∪ {the last ℓ − 2 elements of Y }).

Proof. Let u0 := 0, u1 = ℓ and ui+1 := MIN3
f(ui)−1(ℓ+1)−1 for i > 0. Notice that

ui < ui+1. This is because ui ≥ 2(16·17+1)2 implies by Lemma 4.11, letting m = 8,

ui+1 = MIN3
f(ui)−1(ℓ + 1) − 1

≥ MIN3
f(ui)−1(20) − 1

≥ 2⌊
f(ui)−1

16 ⌋8

> 2f(ui)
4

= 2log(ui)
2

≥ ui

Let G0 : [u1]
3 → 1 be the constant function with the value 0 and for i > 0 choose

Gi : [ui+1]
3 → f(ui)−1 such that every Gi-min-homogeneous set Y ⊆ ui+1 satisfies

card(Y ) < ℓ + 1. Let P : [N]3 → N be defined as follows:

P (x0, x1, x2) :=

{

Gi(x0, x1, x2) + 1 if ui ≤ x0 < x1 < x2 < ui+1,

0 otherwise.

Then P is f -regressive by the choice of the Gi. Assume that Y ⊆ N is min-
homogeneous for P and card(Y ) ≥ 3ℓ − 1 and Ȳ is as described, i.e., card(Ȳ ) ≥
ℓ + 1. If Ȳ ⊂ [ui, ui+1[ then Ȳ is Gi-min-homogeneous hence card(Ȳ ) ≤ ℓ which
is excluded. Hence each interval [ui, ui+1[ contains at most two elements from Y
since we have omitted the last ℓ − 2 elements from Y .

If a, b are in Ȳ /4. Then there are e1, e2, e3 ∈ Ȳ such that a < e1 < e2 < e3 < b,
and so there exists an i ≥ 1 such that a ≤ ui < ui+1 ≤ b. Hence b ≥ ui+1 ≥
2f(ui)

4 ≥ 2log(a)2 as above by Lemma 4.11. �
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We just want to remark that 2(16·17+1)2 is not the smallest number which satisfies
Lemma 4.13.

4.3.2. Bǫ,c,d,0-sparse min-homogeneous sets - Generalization. We now show how
the above results Lemma 4.12 and Lemma 4.13 can be generalized to arbitrary
dimension. Let gd be defined inductively as follows. g0(x) := x, gd+1(x) := 2 ·
gd(x) + 2. Thus

gd(x) := 2(. . . (2(2
︸ ︷︷ ︸

d

x + 2) + 2) . . . ) + 2,

i.e. d iterations of the function x 7→ 2x + 2.

Lemma 4.14. Let d ≥ 1 and k, m ≥ 2.

(1) MINd+1
2d−1k·m(gd−2(2m + 4)) > 2d−1(k

m).

(2) MAXd+1
2d−1k·m(gd−2(2m + 4)) > 2d−1(k

m).

Proof Sketch. By a simultaneous induction on d ≥ 1. The base cases for d ≤ 2 are
proved in Lemma 4.10 and Lemma 4.11. Let now d ≥ 2. The proof is essentially
the same as the previous ones.

Let Rd : [2d−1(k
m)]d+1 → 2d−1k · m (or R′

d : [2d−1(k
m)]d+1 → 2d−1k · m) be

a partition such that every min-homogeneous set for Rd (or max-homogeneous set
for R′

d) is of cardinality < gd−2(2m + 4).

We define then Rd+1 : [2km

d ]d+2 → 2dk · m as follows. Rd+1(x1, . . . , xd+2) :=







Rd(d(x1, x2), . . . , d(xd+1, xd+2)) if d(x1, x2) < · · · < d(xd+1, xd+2),

2d−1k · m + R′
d(d(xd+2, xd+1), . . . , d(x2, x1)) if d(x1, x2) > · · · > d(xd+1, xd+2),

0 if d(x1, x2) < d(x2, x3) > d(x3, x4)

2d−1k · m else.

And R′
d+1 : [2km

d ]d+2 → 2dk · m is defined similarly by interchanging Rd and R′
d.

Now we can argue analogously to Lemma 4.12. �

We now state the key result of the present section, the Sparseness Lemma. Let
f(i) := ⌊ c

√
logd−1(i) ⌋. We show how an f -regressive function P of dimension d + 1

can be defined such that all large min-homogeneous sets are (2
(logd−1(·))c

d−1 , 3)-sparse.

Lemma 4.15 (Sparseness Lemma). Given c ≥ 2 and d ≥ 1 let f(i) := ⌊ c
√

logd−1(i) ⌋.
And define m := 2c2, n := 2d−1 · m, and ℓ := 2d−1((n · (n + 1) + 1)c). There exists
an f -regressive partition Pc,d : [N]d+1 → N such that, if Y is

• min-homogeneous for Pc,d and
• card(Y ) ≥ 3ℓ − 1,

then we have 2
(logd−1(a))c

d−1 ≤ b for all a, b ∈ Ȳ /4, where

Ȳ := Y \ ({the first ℓ elements of Y } ∪ {the last ℓ − 2 elements of Y }).
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Proof. Let u0 := 0, u1 := ℓ and ui+1 := MINd+1
f(ui)−1(ℓ+1)−1. Notice that ui < ui+1.

This is because ui ≥ ℓ implies by Lemma 4.14

ui+1 = MINd+1
f(ui)−1(ℓ + 1) − 1

≥ MINd+1
f(ui)−1(gd−2(2m + 4)) − 1

≥ 2
⌊ f(ui)−1

2d−1·m
⌋m

d−1

> 2
f(ui)

m/2

d−1

= 2log(ui)
c

≥ ui

Note that ℓ > gd−2(2m + 4). Let G0 : [u1]
d+1 → 1 be the constant function with

value 0 and for i > 0 choose Gi : [ui+1]
d+1 → f(ui) − 1 such that every Gi-min-

homogeneous set Y ⊆ ui+1 satisfies card(Y ) ≤ ℓ. Let P : [N]d+1 → N be defined as
follows:

Pc,d(x0, . . . , xd) :=

{

Gi(x0, . . . , xd) + 1 if ui ≤ x0 < · · · < xd < ui+1

0 otherwise.

Then Pc,d is f -regressive by choice of the Gi’s. Assume Y ⊆ N is min-homogeneous
for Pc,d and card(Y ) ≥ 3ℓ − 1. Let Ȳ be as described, i.e. card(Ȳ ) ≥ ℓ + 1. If
Ȳ ⊆ [ui, ui+1[ for some i then Ȳ is min-homogeneous for Gi, hence card(Ȳ ) ≤ ℓ,
which is impossible. Hence each interval [ui, ui+1[ contains at most two elements
from Ȳ , since we have omitted the last ℓ − 2 elements of Y .

Given a, b ∈ Ȳ /4 let e1, e2, e3 ∈ Ȳ such that a < e1 < e2 < e3 < b. Then there

exists an i ≥ 1 such that a ≤ ui < ui+1 ≤ b. Hence b ≥ ui+1 ≥ 2f(ui)
m/2 ≥ 2log(a)c

as above by Lemma 4.14. �

4.4. Combinatorics. Given c ≥ 2 and d ≥ 1 let fc,d(x) := ⌊ c
√

logd(x) ⌋. We first

want to show that the regressive Ramsey function R(µ)d+1
fc,d−1

eventually dominates

Bǫ,c,d,ωc
d−1

(for suitable choices of ǫ). Now let fωd,d−1 be ⌊ B−1
ωd

(·)
√

logd−1 ⌋. We will

conclude that the regressive Ramsey function R(µ)d+1
fωd,d−1

eventually dominates

Bωd
. The latter fact will be seen to imply our main result of the present section,

i.e.:

IΣd 0 (KM)d+1

⌊ F−1
ωd

(·)
√

logd−1 ⌋

4.4.1. Bωc
d
-sparse min-homogeneous sets. We begin by recalling the definition of

the “step-down” relation on ordinals from [10] and some of its properties with
respect to the hierarchies defined in Section 4.2.

Definition 4.16. Let α < β ≤ ε0 Then β −→n α if for some sequence γ0, . . . , γk of
ordinals we have γ0 = β, γi+1 = γi[n] for 0 ≤ i < k and γk = α.

We first recall the following property of the −→n relation. It is stated and proved
as Corollary 2.4 in [10].

Lemma 4.17. Let β < α < ε0. Let n > i. If α −→i β then α −→n β.

Proposition 4.18. Let α ≤ ε0. For all c ≥ 2, d ≥ 1, let f(x) = ⌊ c
√

logd(x) ⌋. Let
0 < ǫ ≤ 1. Then we have the following.
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(1) If f(n) > f(m) then Bǫ,c,d,α(n) > Bǫ,c,d,α(m).
(2) If α = β + 1 then Bǫ,c,d,α(n) ≥ Bǫ,c,d,β(n); if ǫ · f(n) ≥ 1 then Bǫ,c,d,α(n) >

Bǫ,c,d,β(n).
(3) If α −→⌊ ǫ·f(n) ⌋ β then Bǫ,c,d,α(n) ≥ Bǫ,c,d,β(n).

Proof. Straightforward from the proof of Proposition 2.5 in [10]. �

We denote by Tωc
d
,n the set {α : ωc

d −→n α}. We recall the following bound from
[10], Proposition 2.10.

Lemma 4.19. Let n ≥ 2 and c, d ≥ 1. Then

card(Tωc
d,n) ≤ 2d−1(n

6c).

Observe that, by straightforward adaptation of the proof of Lemma 4.19 (Propo-
sition 2.10 in [10]), we accordingly have card(Tωc

d,f(n)) ≤ 2d−1(f(n)6c) for f a

non-decreasing function and all n such that f(n) ≥ 2.

Definition 4.20. Let τ be a function of type k. We say that τ is weakly monotonic

on first arguments on X (abbreviated w.m.f.a.) if for all s, t ∈ [X ]k such that
min(s) < min(t) we have τ(s) ≤ τ(t).

In the rest of the present section, when ǫ, c, d are fixed and clear from the context,
Bα stands for Bǫ,c,d,α for brevity.

Proposition 4.21 (Capturing). Given c, d ≥ 2 let ǫ = 6c
√

1/3. Put

f(x) :=
⌊

c

√

logd−1(x)
⌋

g(x) :=
⌊

6c2
√

logd−1(x)
⌋

h(x) :=
⌊

6c
√

1/3 · 6c2
√

logd−1(x)
⌋

Then there are functions τ1 : [N]2 → N 2d−2

(
1
3f

)
-regressive, τ2 : [N]2 → N f -

regressive, τ3 : [N]2 → 2 so that the following holds: If H ⊆ N is of cardinality > 2
and s.t.

(a) H is min-homogeneous for τ1,
(b) ∀s, t ∈ [H ]2 if min(s) < min(t) then τ1(s) ≤ τ1(t) (i.e. τ1 is w.m.f.a. on H),

(c) H is 2
⌊ logd−1(·)c ⌋
d−1 -sparse (i.e. Bǫ,c,d−1,0-sparse),

(d) min(H) ≥ h−1(2),
(e) H is min-homogeneous for τ2, and
(f) H is homogeneous for τ3,

then for any x < y in H we have Bǫ,c,d−1,ωc
d−1

(x) ≤ y (i.e. H is Bǫ,c,d−1,ωc
d−1

-sparse).

Proof. Define a function τ1 as follows.

τ1(x, y) :=

{

0 if Bωc
d−1

(x) ≤ y or h(x) < 2,

ξ ·− 1 otherwise, where ξ = min{α ∈ Tωc
d−1,h(x) : y < Bα(x)}.

ξ ·− 1 means 0 if ξ = 0 and β if ξ = β + 1. We have to show that τ1 is well-defined.
First observe that the values of τ1 can be taken to be in N since, by Lemma 4.19,

we can assume an order preserving bijection between Tωc
d−1,h(x) and 2

h(x)6c

d−2 :

τ1(x, y) < 2d−2(h(x)6c) = 2

“

6c
√

1
3

6c2
√

logd−1(x)
”6c

d−2 = 2
( 1
3

c
√

logd−1(x) )

d−2 .
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In the following we will only use properties of values of τ1 that can be inferred by
this assumption.

Let ξ = min{α ∈ Tωc
d−1,h(x) : y < Bα(x)}. Note that ξ 6= 0 by condition (c).

Suppose that the minimum ξ is a limit ordinal, call it λ. Then, by definition of the
hierarchy, we have

Bλ(x) = Bλ[h(x)](x) > y.

But λ[h(x)] < λ and λ[h(x)] ∈ Tωc
d−1,h(x), against the minimality of λ.

Define a function τ2 as follows.

τ2(x, y) :=

{

0 if Bωc
d−1

(x) ≤ y or h(x) < 2,

k − 1 otherwise, where Bk−1
τ1(x,y)(x) ≤ y < Bk

τ1(x,y)(x).

If ξ = min{α ∈ Tωc
d−1,h(x) : y < Bα(x)} = 0, i.e., B0(x) > y, then τ2(x, y) = 0. On

the other hand, if ξ > 0 then one observes that k− 1 < ǫ · c
√

logd−1(x) by definition
of τ1 and of B, so that τ2 is f -regressive.

Define a function τ3 as follows.

τ3(x, y) :=

{

0 if Bωc
d−1

(x) ≤ y or h(x) < 2,

1 otherwise.

Suppose H is as hypothesized. We show that τ3 takes constant value 0. This
implies the Bωc

d−1
-sparseness since h(min(H)) ≥ 2. Assume otherwise and let

x < y < z be in H . Note first that by the condition (c)

min{α ∈ Tωc
d−1,h(x) : y < Bα(x)} > 0 and hence τ2(x, y) > 0.

By hypotheses on H , τ1(x, y) = τ1(x, z), τ2(x, y) = τ2(x, z), τ1(x, z) ≤ τ1(y, z).
We have the following, by definition of τ1, τ2.

B
τ2(x,z)
τ1(x,z)(x) ≤ y < z < B

τ2(x,z)+1
τ1(x,z) (x).

This implies that B
τ2(x,z)+1
τ1(x,z) (x) ≤ Bτ1(x,z)(y), by one application of Bτ1(x,z).

We now show that τ1(y, z) −→h(y) τ1(x, z). We know τ1 ∈ Tωc
d−1,h(x), i.e.

ωc
d−1 −→h(x) τ1(x, z). Since x < y implies h(x) ≤ h(y) we have ωc

d−1 −→h(y)

τ1(x, z). But since τ1(y, z) ∈ Tωc
d−1,h(y) and τ1(y, z) ≥ τ1(x, z) by hypotheses on H ,

we can conclude that τ1(y, z) −→h(y) τ1(x, z).
Hence, by Lemma 4.17 and Proposition 4.18.(3), we have Bτ1(x,z)(y) ≤

Bτ1(y,z)(y), and we know that Bτ1(y,z)(y) ≤ z by definition of τ1. So we reached
the contradiction z < z.

�

A comment about the utility of Proposition 4.21. If, assuming (KM)d+1

⌊ c
√

logd−1 ⌋,

we are able to infer the existence of a set H satisfying the conditions of Proposi-
tion 4.21, then we can conclude that R(µ)d+1

⌊ c
√

logd−1 ⌋ has eventually the same growth

rate of Bωc
d−1

. In fact, suppose that there exists a M such that for almost all x

there exists a set H satisfying the conditions of Proposition 4.21 and such that
H ⊆ R(µ)d+1

⌊ c
√

logd−1 ⌋(x + M), which means that such an H can be found as a con-

sequence of (KM)d+1

⌊ c
√

logd−1 ⌋. Also suppose that, for almost all x we can find such

an H of cardinality ≥ x+2. Then for such an H = {h0, . . . , hk} we have k ≥ x+1,
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hk−1 ≥ x and, by Proposition 4.21 hk ≥ Bωc
d−1

(hk−1). Hence we can show that

R(µ)d+1

⌊ c
√

logd−1 ⌋ has eventually the same growth rate as Bωc
d−1

:

R(µ)d+1

⌊ c
√

logd−1 ⌋(x + M) ≥ hk ≥ Bωc
d−1

(hk−1) ≥ Bωc
d−1

(x)

In the following we show how to obtain a set H as in Proposition 4.21 from
(KM)d+1

⌊ c
√

logd−1 ⌋.

4.4.2. Glueing and logarithmic compression of f -regressive functions. We here col-
lect some tools that are needed to combine or glue distinct f -regressive functions
in such a way that a min-homogeneous set (or a subset thereof) for the resulting
function is min-homogeneous for each of the component functions. Most of these
tools are straightforward adaptations of analogous results for regressive partitions
from [9].

The first simple lemma (Lemma 4.22 below) will help us glue the partition en-
suring sparseness obtained by the Sparseness Lemma 4.15 with some other relevant
function introduced below. Observe that one does not have to go to an higher di-
mension if one is willing to give up one square root in the regressiveness condition.

Lemma 4.22. Let P : [N]n → N be Q : [N]n → N be ⌊ 2c
√

logk ⌋-regressive functions.
And define (P ⊗ Q) : [N]n → N as follows:

(P ⊗ Q)(x1, . . . , xn) := P (x1, . . . , xn) · ⌊ 2c
√

logk(x1) ⌋+Q(x1, . . . , xn)

Then (P ⊗Q) is ⌊ c
√

logk ⌋-regressive and if H is min-homogeneous for (P ⊗Q) then
H is min-homogenous for P and for Q.

Proof. We show that (P ⊗ Q) is c
√

logk-regressive:

(P ⊗ Q)(~x) = P (~x) · ⌊ 2c
√

logk(x1) ⌋+Q(~x)

≤ ( 2c
√

logk(x1) − 1) · 2c
√

logk(x1) + ( 2c
√

logk(x1) − 1)

= c
√

logk(x1) − 1

< ⌊ c
√

logk(x1) ⌋
We show that if H is min-homogeneous for (P ⊗Q) then H is min-homogeneous

for both P and Q. Let x < y2 · · · < yn and x < z2 < · · · < zn be in H . Then
(P ⊗ Q)(x, ~y) = (P ⊗ Q)(x, ~z). Then we show a := P (x, ~y) = P (x, ~z) =: c and
c := Q(x, ~y) = Q(x, ~z) =: d.

If w := ⌊ 2c
√

logk(x1) ⌋ = 0 then it is obvious since a = b = 0. Assume now
w > 0. Then a · w + b = c · w + d. This, however, implies that a = c and b = d,
since a, b, c, d < w. �

The next two results are adaptations of Lemma 3.3 and Proposition 3.6 of
Kanamori-McAloon [9] for f -regressiveness (for any choice of f). Lemma 4.23
is used in [9] for a different purpose, and it is quite surprising how well it fits in the

present investigation. Essentially, it will be used to obtain, from an 2f
d−2-regressive

of dimension 2, an f -regressive function of dimension d − 2 such that both have
almost same min-homogeneous sets. Each iteration of the following Lemma costs
one dimension.
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Lemma 4.23. If P : [N]n → N is f -regressive, then there is a P̄ : [N]n+1 → N

f -regressive s.t.

(i) P̄ (s) < 2 log(f(min(s))) + 1 for all s ∈ [N]n+1, and
(ii) if H̄ is min-homogeneous for P̄ then H = H̄ − (f−1(7) ∪ {max(H̄)}) is

min-homogeneous for P .

Proof. Write P (s) = (y0(s), . . . , yd−1(s)) where d = log(f(min(s))). Define P̄ on
[N ]n+1 as follows.

P̄ (x0, . . . , xn) :=







0 if either f(x0) < 7 or {x0, . . . , xn}
is min-homogeneous for P,

2i + yi(x0, . . . , xn−1) + 1 otherwise, where i < log(f(x0))

is the least s.t. {x0, . . . , xn}
is not min-homogeneous for yi.

Then P̄ is f -regressive and satisfies (i). We now verify (ii). Suppose that H̄
is min-homogeneous for P̄ and H is as described. If P̄ |[H ]n+1 = {0} then we are
done, since then all {x0, . . . , xn} ∈ [H ]n+1 are min-homogeneous for P . Suppose
then that there are x0 < · · · < xn in H s.t. P̄ (x0, . . . , xn) = 2i+yi(x0, . . . , xn−1)+1.
Given s, t ∈ [{x0, . . . , xn}]n with min(s) = min(t) = x0 we observe that

P̄ (s ∪ max(H̄)) = P̄ (x0, . . . , xn) = P̄ (t ∪ max(H̄))

by min-homogeneity. But then yi(s) = yi(t), a contradiction. �

The next proposition allows one to glue together a finite number of f -regressive
functions into a single f -regressive. This operation costs one dimension.

Proposition 4.24. There is a primitive recursive function p : N → N such that for
any n, e ∈ N, if Pi : [N]n → N is f -regressive for every i ≤ e and P : [N]n+1 → N is
f -regressive, there are ρ1 : [N]n+1 → N f -regressive and ρ2 : [N]n+1 → 2 such that
if H̄ is min-homogeneous for ρ1 and homogeneous for ρ2, then

H = H̄ \ (max{f−1(7), p(e)} ∪ {max(H̄)})
is min-homogeneous for each Pi and for P .

Proof. Note that given any k ∈ N there is an m ∈ N such that for all x ≥ m

(2 log(f(x)) + 1)k+1 ≤ f(x).

Let p(k) be the least such m.
For each Pi, let P̄i be obtained by an application of the Lemma 4.23. Define

ρ2 : [N]n+1 → 2 as follows.

ρ2(s) :=

{

0 if P̄i(s) 6= 0 for some i ≤ e,

1 otherwise.

Define ρ1 : [N]n+1 → N f -regressive as follows.

ρ1(s) :=

{

〈P̄0(s), . . . , P̄e(s)〉 if ρ2(s) = 0 and min(s) ≥ p(e),

P (s) otherwise.

Observe that ρ1 can be coded as a f -regressive function by choice of p(·).
Suppose H̄ is as hypothesized and H is as described. If ρ2 on [H ]n+1 were

constantly 0, we can derive a contradiction as in the proof of the previous Lemma.
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Thus ρ2 is constantly 1 on [H ]n+1 and therefore ρ1(s) = P (s) for s ∈ [H ]n+1 and
the proof is complete. �

The following proposition is an f -regressive version of Proposition 3.4 in
Kanamori-McAloon [9]. It is easily seen to hold for any choice of f , but we in-
clude the proof for completeness. This proposition will allow us to find a min-
homogeneous set on which τ1 from Proposition 4.21 is weakly monotonic increasing
on first arguments. The cost for this is one dimension.

Proposition 4.25. If P : [N]n → N is f -regressive, then there are σ1 : [N]n+1 →
N f -regressive and σ2 : [N]n+1 → 2 such that if H is of cardinality > n + 1,
min-homogeneous for σ1 and homogeneous for σ2, then H \ {max(H)} is min-
homogeneous for P and for all s, t ∈ [H ]n with min(s) < min(t) we have P (s) ≤
P (t).

Proof. Define σ1 : [N]n+1 → N as follows:

σ1(x0, . . . , xn) := min(P (x0, . . . , xn−1), P (x1, . . . , xn))

Obviously σ1 is f -regressive since P is f -regressive. Define σ2 : [N]n+1 −→ N as
follows:

σ2(x0, . . . , xn) :=

{

0 if P (x0, . . . , xn−1) ≤ P (x1, . . . , xn),

1 otherwise

Now let H be as hypothesized. Suppose first that σ2 is constantly 0 on [H ]n+1.
Then weak monotonicity is obviously satisfied. We show that H \{max(H)} is min-
homogeneous for P as follows. Let x0 < x1 · · · < xn−1 and x0 < y1 < · · · < yn−1

be in H \ {max(H)}. Since σ2 is constantly 0 on H , we have F (x0, x1, . . . , xn−1) ≤
F (x1, . . . , xn−1, max(H)), and F (x0, y1, . . . , yn−1) ≤ F (y1, . . . , yn−1, max(H)). Since
H is also min-homogeneous for σ1, we have

σ1(x0, x1, . . . , xn−1, max(H)) = σ1(x0, y1, . . . , yn−1, max(H)).

Thus, F (x0, x1, . . . , xn−1) = F (x0, y1, . . . , yn−1).
Assume by way of contradiction that σ2 is constantly 1 on [H ]n+1. Let x0 <

· · · < xn+1 be in H . Then, by two applications of σ2 we have

F (x0, . . . , xn−1) > F (x1, . . . , xn) > F (x2, . . . , xn+1),

so that σ1(x0, . . . , xn) = F (x1, . . . , xn) while σ1(x0, x2, . . . , xn+1) = F (x2, . . . , xn+1),
against the min-homogeneity of H for σ1. �

4.4.3. Putting things together. Now we have all ingredients needed for the sharp
unprovability result. Figure 1 below is a scheme of how we will put them together
to get the desired result. It illustrates, besides the general structure of the argument,
how the need for Kanamori-McAloon principle for hypergraphs of dimension d + 1
arises when dealing with the ωd-level of the fast-growing hierarchy (in other words,
with IΣd).

Given f let f̄k be defined as follows: f̄0(x) := f(x), f̄k+1(x) := 2 log(f̄k(x)) + 1.
Thus,

f̄k(x) := 2 log(2 log(. . . (2 log(f(x)) + 1) . . . ) + 1) + 1,

with k iterations of 2 log(·) + 1 applied to f .
Let f(x) = ⌊ c

√
logd−1 ⌋ and f ′(x) = 2ℓ(1/3 · f(x)), ℓ = d− 2. Observe then that

f̄ ′
ℓ is eventually dominated by f , so that an f̄ ′

ℓ-regressive function is also f -regressive
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τ1 : [N]2 → N

2d−2(1/3 2c
√

logd−1)-reg

?

σ1 : [N]3 → N

2d−2(1/3 2c
√

logd−1)-reg

?

σ∗
1 : [N]d+1 → N

eventually 2c
√

logd−1-reg

Proposition 4.21

Proposition 4.25

Lemma 4.23

P2c,d : [N]d+1 → N

2c
√

logd−1-reg

(P2c,d ⊗ ρ1) : [N]d+1 → N

c
√

logd−1-reg

?j

(d − 2 times)

Lemma 4.22

?

ρ1 : [N]d+1 → N

2c
√

logd−1-reg

Proposition 4.24

Sparseness Lemma 4.15

Figure 1. Scheme of the unprovability proof

if the arguments are large enough. Let m be such that ⌊ c
√

logd−1(x) ⌋ ≥ f̄ ′
ℓ(x) for

all x ≥ m. We have

R(µ)d+1
f (x + m) ≥ R(µ)d+1

f̄ ′
ℓ

(x).

Thus (KM)d+1
f implies (KM)d+1

f̄ ′
ℓ

. This will be used in the following. We summarize

the above argument in the following Lemma.

Lemma 4.26. If h eventually dominates g then

R(µ)d
h(x + m) ≥ R(µ)d

g(x)

where m is such that h(x) ≥ g(x) for all x ≥ m.
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Proof Sketch. If G is g-regressive then define G′ on the same interval by letting
G′(i) = 0 if i ≤ m and G′(i) = G(i) otherwise. Then G′ is h-regressive. If H ′ is min-
homogeneous for G′ and card(H ′) ≥ x+m then H = H ′−{first m elements of H ′}
is min-homogeneous for G and of cardinality ≥ x. �

The next Theorem shows that R(µ)d+1
f , with f(x) = ⌊ c

√
logd−1(x) ⌋, has even-

tually the same growth rate of Bǫ,c,d−1,ωc
d−1

(x). As a consequence we will obtain

the desired unprovability result.

Theorem 4.27 (in IΣ1). Given c, d ≥ 2 let f(x) = ⌊ c
√

logd−1(x) ⌋. Then for all x

R(µ)d+1
f (12x + K(c, d)) > Bǫ,2c,d−1,ω2c

d−1
(x),

where ǫ = 12c
√

1/3 and K : N
2 → N is a primitive recursive function.

Proof. Let f̂(x) := ⌊ 2c
√

logd−1(x) ⌋ and q(x) := 2d−2(
1
3 f̂(x)). Then q̄d−2 is even-

tually dominated by f̂ , so there is a number r such that for all x ≥ r we have

q̄d−2(x) ≤ f̂(x). Let D(c, d) be the least such r. Notice that D : N
2 → N is

primitive recursive.
Let h(x) := ⌊ 12c

√

1/3 · 24c2
√

logd−1(x) ⌋. Now we are going to show that for all x

R(µ)d+1
f (3ℓ′ − 1) > Bǫ,2c,d−1,ω2c

d−1
(x),

where ℓ′ = ℓ + 4x + 4d + 4D(c, d) + 7, ℓ = 2d−1((n · (n + 1) + 1)2c), n = 2d−1 · m,
where m is the least number such that m ≥ 2(2c)2, and

ℓ ≥ max({f̂−1(7), h−1(2), p(0)} ∪ {q̄−1
k (7) : k ≤ d − 3}),

where p(·) is as in Proposition 4.24. The existence of such an m depends primitive
recursively on c, d. Notice that the Sparseness Lemma 4.15 functions for any such m

with respect to f̂ . We just remark that one should not wonder about how one comes
to the exact numbers above. They just follows from the following construction of
the proof.

Let τ1, τ2, τ3 be the functions defined in Proposition 4.21 with respect to f̂ .

Observe that τ1 is 2d−2(
1
3 f̂)-regressive and τ2 is f̂ -regressive.

Let σ1, σ2 be the functions obtained by Proposition 4.25 applied to τ1. Observe

that σ1 is 2d−2(
1
3 f̂)-regressive, i.e. q-regressive.

Let σ∗
1 : [N]d+1 → N be the function obtained by applying Proposition 4.23 to

σ1 d − 2 times. Observe that σ∗
1 is eventually f̂ -regressive by the same argument

as above.
Define σ̂∗

1 : [N]d+1 → N as follows:

σ̂∗
1 :=

{

0 if x < D(c, d),

σ∗
1(x) otherwise.

Then σ̂∗
1 is f̂ -regressive such that if H is min-homogeneous for σ̂∗

1 then

H \ {first D(c, d) elements of H}
is min-homogeneous for σ∗

1 .
Let ρ1 and ρ2 be the functions obtained by applying Proposition 4.24 to the

f̂ -regressive functions σ̂∗
1 and τ2 (the latter trivially lifted to dimension d). Observe

that ρ1 is f̂ -regressive.
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Now let (P2c,d ⊗ ρ1) be obtained, as in Lemma 4.22, from ρ1 and the partition

P2c,d : [N]d+1 −→ N from the Sparseness Lemma 4.15 with respect to f̂ . Observe

that, by Lemma 4.22, we have that (P2c,d ⊗ ρ1) is c
√

logd−1-regressive, i.e. f -
regressive.

Now x be given. Let H ⊆R(µ)d+1
f (3ℓ′ − 1) be such that

card(H) > 3ℓ′ − 1

and H is min-homogeneous for (P2c,d ⊗ ρ1) and homogeneous for ρ2, for σ2 and for
τ3. This is possible since the Finite Ramsey Theorem is provable in IΣ1. Notice
that H is then min-homogeneous for P2c,d and for ρ1.

Now we follow the process just above in the reverse order to get a set which
satisfies the conditions of the Capturing Proposition 4.21.

Define first H0 and H1 by:

H0 := H \ ({first ℓ elements of H} ∪ {last ℓ − 2 elements of H}),
H1 := H0/4

Then for all a, b ∈ H1 such that a < b we have 2
(logd−1(a))2c

d−1 ≤ b by Lemma 4.15.
Notice that

card(H0) ≥ ℓ′ + 1,

card(H1) ≥ ⌊(ℓ′ + 1)/4 ⌋+1.

Since H1 is also min-homogeneous for ρ1 (and ρ2) we have by Proposition 4.24
that H2 defined by

H2 := H1 \ (max{f̂−1(7), p(0)} ∪ {max(H1)}) = H1 \ {max(H1)}
is min-homogeneous for σ̂∗

1 and for τ2, and

card(H2) ≥ ⌊(ℓ′ + 1)/4 ⌋ .

Let
H3 := H2 \ { first D(c, d) elements of H2}.

Then H3 is also min-homogeneous for σ∗
1 (and obviously still min-homogeneous for

τ2, homogeneous for ρ2, for σ2 and for τ3). Also, we have

card(H3) ≥ ⌊(ℓ′ + 1)/4 ⌋−D(c, d).

By Lemma 4.23 we have that H4 defined by

H4 := H3 \ (max{q̄−1
k (7) : k ≤ d − 3} ∪ {last d − 2 elements of H3})

= H3 \ {last d − 2 elements of H3}
is min-homogeneous for σ1 (and σ2), and

card(H4) ≥ ⌊(ℓ′ + 1)/4 ⌋−D(c, d) − d + 2.

Now define H∗ as follows:

H∗ := H4 \ {maxH4}
Notice that card(H4) > 3. Then by Proposition 4.25 H∗ is min-homogeneous for
τ1 which is weakly monotonic on first arguments on [H∗]2, and

card(H∗) ≥ ⌊(ℓ′ + 1)/4 ⌋−D(c, d) − d + 1 > x + 1.

The second inequality follows from the definition of ℓ′. Notice now that H∗ satisfies

all the conditions of the Capturing Proposition 4.21 with respect to f̂ .
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Let H∗ = {h0, . . . , hk} (k ≥ x+1, so that hk−1 ≥ x). Then, by Proposition 4.21,
for all a, b ∈ H∗ such that a < b we have Bωc

d−1
(a) ≤ b.

R(µ)d+1
f (3ℓ′ − 1) > hk ≥ Bǫ,2c,d−1,ω2c

d−1
(hk−1) ≥ Bǫ,2c,d−1,ω2c

d−1
(x),

where ǫ = 12c
√

1/3. The first inequality holds since we chose H∗⊆R(µ)d+1
f (ℓ′ − 1).

The second holds by Proposition 4.21. The third holds because hk−1 ≥ x. �

Let us restate Theorem 4.27 in a somewhat simplified form. Given c, d ≥ 2 set,
from now on,

ĝc(x) := c

√

logd−1(x)

Theorem 4.28. There are primitive recursive functions h : N → N and K : N
2 → N

such that for all x and all c, d ≥ 2

R(µ)d+1
ĝc

(h(x) + K(c, d)) ≥ Bǫ,c,d−1,ωc
d−1

(x),

where ǫ = 6c
√

1/3.

Proof. By inspection of the proof of Theorem 4.27, and by the fact that, as proved
in Theorem 4.7, Bc,d,α and B2c,d,α have the same growth rate. �

Remember the fast-growing hierarchy Fα defined in Section 2.

Theorem 4.29. Given d ≥ 2 let f(x) = F−1
ωd

(x)
√

logd−1(x). Then there is a prim-

itive recursive function k such that the function x 7→ R(µ)d+1
f (k(x)) eventually

dominates every IΣd-provably total function.

Proof. First remember that, by Lemma 4.6, there is a primitive recursive function
r : N

2 → N such that
Bωc

d−1
(r(c, x)) ≥ Fωc

d−1
(x).

On the other hand by Theorem 4.28, we have that for all x

R(µ)d+1
ĝc

(h(x) + K(c, d)) > Bωc
d−1

(x)

for some primitive recursive functions h and K. Hence

R(µ)d+1
ĝc

(h(r(c, x)) + K(c, d)) > Bωc
d−1

(r(c, x)) > Fωc
d−1

(x).

We claim that

R(µ)d+1
f (h(r(x, x)) + K(x, d)) > Fωd

(x)

for all x.
Assume it is false for some x and let

N(x) := R(µ)d+1
f (h(r(x, x)) + K(x, d)).

Then for all i ≤ N(x) we have F−1
ωd

(i) ≤ x and so

f(i) = F−1
ωd

(i)

√

logd−1(i) ≥ x

√

logd−1(i) = ĝx(i).

This implies that

R(µ)d+1
f (h(r(x, x)) + K(x, d)) ≥ R(µ)d+1

ĝx
(h(r(x, x)) + K(x, d))

> Fωx
d−1

(x)

= Fωd
(x).

Contradiction! �
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5. Conclusion

Putting together the results from Sections 3 and 4 we can state the main Theo-
rem.

Theorem 5.1. Given d ≥ 1 and α ≤ ε0 let fd
α(i) = ⌊F−1

α (i)
√

logd(i) ⌋.

IΣd ⊢ (KM)d+1

fd−1
α

⇔ α < ωd.

Proof. The provability follows from the Theorem 3.7, and the unprovability parts
are established by Theorems 4.4, 4.28 and 4.29. �

Observe that Theorem 5.1 also closes the gap between d − 2 and d in Theorem
2.3, showing

IΣd ⊢ (KM)d+1
⌊ logn ⌋ ⇔ n ≥ d.

The truth of Conjecture 2.4 is implied as well: for all n ≥ 1 for all d ≥ 1, we have
that IΣd 0 (KM)d+1

⌊ n
√

logd ⌋
.
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