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Introduction
We shall survey surprising advances in classifying the phase
transition thresholds from provability to unprovability (in-
dependence) for natural mathematical assertions.

Phase transitions
Phase transition is a type of behaviour wherein small
changes of a parameter of a system cause dramatic shifts
in some globally observed behaviour of the system, such
shifts being usually marked by a sharp ‘threshold point’.
(An everyday life example of such thresholds are ice melt-
ing and water boiling temperatures.) This kind of phenom-
ena nowadays occurs throughout many mathematical and
computational disciplines: statistical physics, evolutionary
graph theory, percolation theory, Markov chains, computa-
tional complexity, artificial intelligence etc.
The last few years have seen an unexpected series of results
that bring together independence results in logic, analytic
combinatorics and Ramsey Theory. These results can be
described intuitively as phase transitions from provability
to unprovability of an assertion by varying a threshold pa-
rameter.
In the poster we shall survey recent advances on phase
transition phenomena which are related to Gödel’s incom-
pleteness theorems. We treat two spectacular results on the
mathematical relevance of the Gödel incompleteness the-
orems. We will indicate that our advances are based on
cross-fertilization between Ramsey theory, analytic combi-
natorics (which finds its main applications in the average
case analysis of computer algorithms) and mathematical
logic.

Gödel’s results
The Peano axioms have been designed to provide a com-
plete axiomatization of the properties of the natural num-
bers. However, G̈odel showed that there are statements
about the natural numbers which do neither follow nor can
be refuted from the Peano axioms. Moreover he showed
that the consistency assertion for the Peano axioms is one
such statement.
For a long time it has then been open whether Gödel’s re-
sult applies to assertions which are mathematically relevant
or mathematically ‘interesting’. It would have indeed been
possible that G̈odel’s theorem only applies to somewhat ar-
tificial statements. A first breakthrough in showing that
Gödel’s theorem matters to mathematics has been obtained
around 1977 by Jeff Paris (and Leo Harrington) [1] and a
second around 1980 by Harvey Friedman [2].

Ramsey’s Theorem
The Paris Harrington theorem is about Ramsey theory
which is a branch of mathematics dedicated to the propo-
sition that complete disorder is impossible. Ramsey’s theo-
rem in its finite version says that given positive integersk, p
andn you can always find a numberr =: R(k, p, n) such
that for any finite setS of cardinality not belowr and for
any mappingP from thek-element subsets ofS into a set
with p colours you will always find a subsetS ′ of S con-
taining at leastn elements such that everyk-element subset
of S ′ gets the same value underP . This theorem is clearly
about finite objects and it is no big surprise that it follows
easily from the Peano axioms. Indeed, Erdös and Rado pro-
vided 1952 an explicit bound in terms of iterated exponen-
tial functions of the size ofS to guarantee the conclusion of
Ramsey’s theorem.

The Paris Harrington Theorem
Let us now consider a slight modification of Ramsey’s the-
orem. Given a functionf : N → N let us call a setS of
natural numbersf -large if the number of elements inS is
not belowf (min(S)).
Following Paris and Harrington letPHf be the assertion that
given numbersp, k andn you can find a find a natural num-
berr so large that for any mappingP of thek-element sub-
sets of{1, . . . , r} with range contained in{1, . . . , p} you

will always find anf -large subsetH of {1, . . . , r} contain-
ing at leastn elements, such that such that everyk-element
subset ofH gets the same value underP .
If f is a constant function thenPHf is clearly a consequence
of Ramsey’s theorem.
The infinite version of Ramsey’s theorem (stating that for
anyp-coloring of thek-element subsets of an infinite setS
there exists an infinite monochromatic subsetS ′ of S) yields
that PHf is true for anyf . The famous Paris Harrington
theorem is thatPHid is not provable from the Peano axioms
whereid denotes the identity function. Thus in-between
constant functions and the identity function there must be a
phase transition threshold for the Paris Harrington assertion
PH.

Phase transition threshold forPH
The immediate question is to motivate the largeness condi-
tion in the assertionPH and there has been some discussion
in the FOM newsgroup on this topic. The (as we would
like to argue) intrinsic motivation provided by the Erdös
Rado result is as follows. Letlog∗ denote the inverse func-
tion of the super-exponential function. Then, essentially
log∗(R(n, n, n)) is as big asn. A small calculation there-
fore yields thatPHlog∗ is provable from the Peano axioms.
Let logk denote thek-th iteration of the binary logarithm
function. [In practice for largek the functionslogk andlog∗

are very similar to constant functions (at least as calcula-
tions on a computer are concerned).] Then the Erdös Rado
bound is no longer applicable to provePHlogk. Moreover the
jump is now a surprisingly big one since as proved in [4] the
assertionPHlogk does not follow from the Peano axioms.
In fact the threshold from the provable versions ofPHf

to the unprovable versions ofPHf has been classified in-
betweenlog∗ and alllogk in greater detail (by lettingk de-
pending on the input argument) but a complete explanation
would take as too far into technicalities [4].

Phase transition principle 1:
How to obtain an unprovable version of Ramsey’s the-
orem? Just escape by an extra condition the bounds
dictated by finite combinatorics (here the Erdös Rado
result)! In analogy with physics this phase transition might
be considered as continuous or being of second order.
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Friedman’s Finite Form of Kruskal’s Theorem
Our second example for a phase transition concerns Fried-
man’s finite form of Kruskal’s tree theorem. To fix termi-
nology we agree that a finite tree is a finite partial order such
that for every element in the tree the set of predecessors is
linearly ordered. Moreover we require trees to have exactly
one minimal element (the root). We say that one tree is em-
beddable into another tree if there exists an inf preserving
one to one mapping of the first tree into the second.
The story of Friedman’s finite form of Kruskal’s theorem
runs now as follows. We say that the vertex-growth of a se-
quenceT0, . . . , TN of finite trees is controlled byk ∈ N and
f : N → N if for all i ≤ N the number of nodes inTi does
not exceedk + f (i). Let FFFf (Friedman’s finite form of
Kruskal’s theorem) be the assertion that for everyk there is
a finite numberN which is so large that for every sequence
T0, . . . , TN of finite trees whose vertex-growth is controlled
by k andf there will always be two numbersi andj below
N so thati < j andTi is embeddable intoTj. Friedman
proved that neitherFFFid nor its negation follow from the
Peano axioms (and not even from predicative analysis).

Phase transition threshold forFFF
Matousek and Loebl showed subsequently the following re-
finement of Friedman’s result. Letlog be the binary loga-
rithm. ThenFFF1

2·log follows from the Peano axioms but
FFF4·log does not.
Again it is an obvious question whether it is possible to lo-
cate the phase transition threshold in the interval from0.5 to
4. In particular it seems of interest to see whether there is a
continuous phase transition from provability to unprovabil-
ity or whether there is a sharp threshold (somewhat similar
to results in random graph theory). Using classical results
from analytic combinatorics we have shown in [3] that there
is indeed an extremely sharp threshold. For a certain real
numberρ ≈ 0.63957769 . . . the following dichotomy holds:
If r ≤ ρ thenFFFr·log does follow elementarily from Otter’s
exponential bounds on the number of trees, hence from the
Peano axioms. Ifr > ρ thenFFFr·log is unprovable from
the Peano axioms [3].

Phase transition principle 2:
How to obtain an unprovable version of Friedman’s finite
form of Kruskal’s theorem? Just escape by an extra con-
dition the bounds dictated by finitary combinatorics (here
Otter’s tree enumeration result)!In analogy with physics
this phase transition might be considered as discontinuous
or being of first order.
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Manifesto
1.For all existing independence results, find the sharp ver-

sions (establish exact unprovability thresholds).

2.Seek new unprovable statements following a new
methodology: given a known mathematical theorem with
a bound, introduce a parameter (maybe functional) and
try to supersede the existing bounds.

3.Cross-fertilize G̈odel incompleteness with proof theory,
recursion theory, non standard models, logical limit laws,
Ramsey theory, analytic combinatorics, number theory,
ergodic theory, dynamical systems and statistical physics.

Partial funding by DFG and NWO is hereby gratefully ac-
knowledged.

Further results
Using logic, combinatorics and analytic number theory we
have obtained sharp phase transition thresholds for hydra
battles, the Goodstein sequences, subrecursive hierarchies,
the Kanamori McAloon result, the combinatorial well-
foundedness ofε0 in an additive setting and a multiplicative
setting, and for various other statements in Ramsey theory,
WQO-theory, and the theory of well-orders. Similar to sta-
tistical physics resulting phase transitions share features of
renormalization and universality.

Some project coauthors:
A. Bovykin and L. Carlucci (both have been finalists in the
young scholars competition), G. Lee, E. Omri, M. Kojman,
H. Kotlarski, B. Piekart, A. den Boer, G. Moser.
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