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Abstract

For α less than ε0 let Nα be the number of occurrences of ω in the
Cantor normal form of α. Further let |n| denote the binary length of a
natural number n, let |n|h denote the h-times iterated binary length of n
and let inv(n) be the least h such that |n|h ≤ 2. We show that for any
natural number h first order Peano arithmetic, PA, does not prove the
following sentence: For all K there exists an M which bounds the lengths
n of all strictly descending sequences 〈α0, . . . , αn〉 of ordinals less than
ε0 which satisfy the condition that the Norm Nαi of the i-th term αi is
bounded by K + |i| · |i|h.

As a supplement to this (refined Friedman style) independence result
we further show that e.g. primitive recursive arithmetic, PRA, proves
that for all K there is an M which bounds the length n of any strictly
descending sequence 〈α0, . . . , αn〉 of ordinals less than ε0 which satisfies
the condition that the Norm Nαi of the i-th term αi is bounded by K+|i|·
inv(i). The proofs are based on results from proof theory and techniques
from asymptotic analysis of Polya-style enumerations.

Using results from Otter and from Matoušek and Loebl we obtain
similar characterizations for finite bad sequences of finite trees in terms
of Otter’s tree constant 2.9557652856 . . ..
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1 Introduction and Motivation

A fascinating result of ordinal analysis is the classification of the provably recur-
sive functions of first order Peano arithmetic PA in terms of the Hardy–Wainer
hierarchy (Hα)α<ε0 . If PA proves ∀x∃yT (e, x, y) for some natural number e,
then there exists some α < ε0 such that {e} is elementary recursive in Hα.
Moreover, if {e0} = Hε0 then PA does not prove ∀x∃yT (e0, x, y). These clas-
sical results can be reformulated neatly in terms of purely combinatorial inde-
pendence results as follows. For a binary number-theoretic function f let A(f)
be the assertion ∀K∃M∀n∀α0, . . . , αn < ε0

[
α0 > . . . > αn & ∀i ≤ n[Nαi ≤

f(K, i)] =⇒ n ≤ M
]

where Nα denotes the number of occurrences of ω
in the Cantor normal form of α. Then, by the preceding, PA 0 A(f) where
f(k, i) := k · i!. From the mathematical point of view it seems quite natural to
investigate whether this result can be sharpened by using functions f which grow
slower than k, i 7→ k · i!. According to Simpson [12] (or Smith [13]) Friedman
already showed PA 0 A(f) where f(k, i) := k ·(i+1) (or even f(k, i) := k+i). In
this paper we characterize the class of functions f with PA 0 A(f) in a nearly
optimal way. The proof combines methods from proof theory with methods
from pure mathematics1. To the author it has been a surprise that analytical
methods from infinitesimal calculus can be applied to metamathematical issues
like unprovability assertions.

Our investigation is inspired by [6] where a related problem in the context
of finite trees has been solved. The main result of [6] is strengthened in Section
4.

2 A proof of the unprovability result

Conventions. Throughout this paper small Greek letters range over ordinals less
than ε0 and small Latin letters range over non negative integers. By log (ln, log3)
we denote the logarithm with respect to base 2 (e, 3), where e denotes the Euler
number 2.71828 . . . =

∑∞
n=0

1
n! . The least natural number greater than or equal

to a given non negative real number x is denoted by dxe. The greatest natural
number smaller than or equal to a given real number x is denoted by bxc. The
binary length |n| of a natural number n is defined by |n| := dlog(n + 1)e. The
h-times iterated length function |·|h is defined recursively as follows |x|0 := x
and |x|h+1 := ||x|h|. Further let inv(n) be the least natural number h such that
|n|h ≤ 2. As usual we assume that the ordinals less than ε0 are available in PA
via a standard coding.

In this section we prove the following result.

Theorem 1. For all natural numbers h, PA 0 ∀K∃M∀n∀α0, . . . , αn < ε0

[
α0 >

. . . > αn & ∀i ≤ n[Nαi ≤ K + |i| · |i|h] =⇒ n ≤ M
]
.

1For carrying out the calculations we have profited from the asymptotic analysis of integer
partitions and the hints on asymptotic properties of trees of height less than or equal to 3
given in [7].
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For this purpose it is convenient for us to recall an independence result from
[15].

Definition 1. For x < ω and α < ε0 let

Aα(x) := max{Aβ(x) + 1 : β < α & Nβ ≤ Nα + x}.

As usual put ω0(α) := α and ωn+1(α) := ωωn(α). Further let ωm := ωm(1).

Lemma 1. 1. Aα(x) = max{n : (∃α0, . . . , αn < ε0)[α = α0 > . . . >
αn & [(∀i < n)Nαi+1 ≤ Nαi + x]]}.

2. PA 0 ∀K∃nAωK
(1) = n. Moreover K 7→ AωK

(1) eventually dominates
every provably recursive function of PA.

Proof. See, for example, [15].

Definition 2. For natural numbers k and h define

Sh
k := {α < ωh : Nα = k}

and let sh
k be the number of elements in Sh

k . Moreover let

Sh
≤k := {α < ωh : Nα ≤ k}

and let sh
≤k be the number of elements in Sh

≤k.

Then sh
≤k =

∑
l≤k sh

l and we have sh
k ≤ sh

l for k ≤ l and h > 0 since if
Nα = k then N(α + l − k) = l for l ≥ k. The following lemma (which is
provable in RCA0) yields a partial asymptotic analysis of Sh

k .

Lemma 2 (RCA0). For any h ≥ 3 there exist a constant Ch > 0 and a natural

number Kh such that sh
k ≥ 2

Ch· k
|k|h−2 for k ≥ Kh.

Using Lemma 1 and Lemma 2 we can show Theorem 1 as follows.

Proof of Theorem 1. The idea of the proof is to construct a slowed down long
sequence (αi) from a given long sequence (α′i) which witnesses the definedness
of Aωm(1) for an appropriate m. The details are as follows.

Let h be given. Let h′ := h + 3. Since h′ ≥ 3 we may pick Kh′ and Ch′

according to Lemma 2. Let D be a constant such that

|i|h′−2 ≥
1

Ch′
· ||i| · |i|h′−2|h′−2 (1a)

|i| · |i|h′−2 ≥ Kh′ (1b)

and
|i|h′−2 + 1 ≤ |i|h′−3 (1c)

hold for i ≥ D.

3



Let an arbitrary number K be given. Without loss of generality we may
assume that m := m(K) := bK−D

2 c − 1 ≥ h′.
Assume that ωm = α′0 > . . . > α′M is a sequence with M = Aωm

(1), Nα′0 =
m + 1 and Nα′i+1 ≤ Nα′i + 1 for 0 ≤ i < M. Consider

Mi := Sm
≤|i|·|i|h′−2

for i ≥ D. Assume that enumi is the enumeration function for Mi, i.e. enumi(l)
is the l-th (with respect to ≤) member of Mi. Let αi := ωm(α′|i|)+enumi(2|i|−i)
for M ≥ i > D and αi := ωm+m+D−i for i ≤ D. Then (αi)i≤M is well-defined.
Indeed, by (1a), (1b) and Lemma 2 there are at least

2
Ch′

|i|·|i|
h′−2

||i|·|i|
h′−2|h′−2 ≥ 2|i| ≥ i

elements in Sh′

|i|·|i|h′−2
hence in Mi for i ≥ D. Moreover, we have Nα′|i| ≤

Nα′0 + |i| = m + 1 + |i| for 1 ≤ i ≤ M . Now (1c) and the definition of m yield
Nαi ≤ K + |i| · (|i|h′−2 + 1) ≤ K + |i| · |i|h′−3 = K + |i| · |i|h for D < i ≤ M .
The definition of m further yields Nαi ≤ K + |i| · |i|h for 1 ≤ i ≤ D. Thus
Nαi ≤ K + |i| · |i|h for 1 ≤ i ≤ M . Further we have αi < αj for i > j. For
if |i| > |j| then this holds due to α′|j| > α′|i| and if |i| = |j| then Mi = Mj and
2|i| − i < 2|i| − j. Finally, since K 7→ Aωm(K)(1) eventually dominates every
provably recursive function of PA, the lengths M of the sequences (αi)i≤M as
a function of K cannot be proved to exist in PA either.

We are left with proving Lemma 2. This will be done in a sequel of sublem-
mas.

Lemma 3 (RCA0). There is a natural number K2 such that s2
k ≥ e2

√
k for

k ≥ K2.

Proof. Let pk be the number of integer partitions of k, i.e. the number of ordered
tuples (i1, . . . , im) such that i1 ≥ . . . ≥ im ≥ 1 and

∑m
n=1 in = k. Then

pk = s2
k. Indeed, each integer partition (i1, . . . , im) of k corresponds to an

element ωi1−1 + · · ·+ ωim−1 ∈ S2
k and vice versa. Now use the partion theorem

lim
k→∞

pk · 4
√

3k

eπ
√

2
3 k

= 1.

(See, for example, [4] or section 2 of [8] for a proof).

For h ≥ 3 and natural numbers p, q let Rh(p, q) be the set of ordinals α < ωh

which have a Cantor normal form α = ωα1 +· · ·+ωαp of length p where Nαi = q
for 1 ≤ i ≤ p. Further let rh(p, q) be the number of elements in Rh(p, q). Then
rh(p, q) ≤ sh

p·(q+1).

Lemma 4 (RCA0). There exists a natural number K3 such that s3
k ≥ 2

k
|k| for

all k ≥ K3.
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Proof. 2 For any choice of p and q with p · (q + 1) ≤ k we have r3(p, q) ≤ s3
k.

Thus it suffices to find a lower bound for r3(p, q) for appropriate p and q.
Let p := p(k) := b k

|k|2 c and q := q(k) := |k|2 − 1. Then, of course, p·(q+1) ≤
k and s3

k ≥ s3
p·(q+1) ≥ r3(p, q). There exists a natural number K3 such that for

k ≥ K3 the following holds

√
q · p ≥ 1

log e
· k

|k|
(3a)

since limk→∞
√

q·p
k
|k|

= 1,

(log(e)− 1) · √q · p ≥ |p| (3b)

since limk→∞ p(k) = +∞ √
q · p ≥ p · |p| (3c)

and
s2

q ≥ e2
√

q (3d)

by Lemma 3.

We have r3(p, q) ≥ (s2
q)p

p! since for fixed p there are at least (s2
q)

p sequences
of length p with entries in S2

k. Since we have to consider only ordered sequences
we have to divide this number by p!.

Since p! ≤ (p
e )p · p · e we obtain by (3) that r3(p, q) ≥ (e2

√
q)p

p! ≥ e2·
√

q·p·ep−1

pp+1 ≥
22
√

q·p·log(e)−(p+1)·log(p) ≥ 2log e·√q·p ≥ 2
k
|k| .

Proof of Lemma 2. By induction on h ≥ 3. The case h = 3 is done in Lemma
4. Assume now that the assertion holds for h − 1 ≥ 3. For any choice of p
and q with p · (q + 1) ≤ k we have rh(p, q) ≤ sh

k . Thus it suffices to find a
lower bound for rh(p, q) for appropriate p and q. Let p := p(k) := b k

|k|2 c and

q := q(k) := |k|2 − 1. Then, of course, p · (q + 1) ≤ k. Let r := rh(p, q). There
exists a natural number Kh such that for k ≥ Kh the following holds

p · q

|q|h−3
≥ 3

4
k

|k|h−2
, (4a)

Ch−1 ·
1
8
· q

|q|h−3
· p ≥ |p|, (4b)

Ch−1 ·
1
8
· q

|q|h−3
≥ |p| (4c)

since limk→∞
|k|

||k|2−1|+1
= +∞ and

sh−1
q ≥ 2

Ch−1· q
|q|h−3 (4d)

2In this proof we follow a hint to exercise 10.7.6 (e) on p.397 in [7] where a bound on the
number of trees of height less than or equal to three which have k leaves is obtained.
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due to the induction hypothesis since limk→∞ q = +∞.
The proof has now a similar structure as the proof of the previous lemma.

First we have r ≥ (sh−1
q )p

p! by a similar reasoning as in the previous proof. Since

p! ≤ (p
e )p · p · e we obtain by (4) that r ≥ (2

Ch−1
q

|q|h−3 )p

p! ≥ 2
Ch−1· p·q

|q|h−3 · ep−1

pp+1 ≥

2
Ch−1

p·q
|q|h−3

−(p+1) log p ≥ 2
Ch−1· 34 ·

p·q
|q|h−3 ≥ 2

Ch−1· 34
3
4 ·

k
|k|h−2 ≥ 2

Ch· k
|k|h−2 where

Ch := Ch−1
2 .

The proof shows that we may put Ch := ( 1
2 )h−3.

3 Proof of the provability assertion

In this section we show the following theorem. (Recall that inv(i) is the least h
such that |i|h ≤ 2.)

Theorem 2. PRA ` ∀K∃M∀n∀α0, . . . , αn < ε0

[
α0 > . . . > αn & ∀i ≤

n[Nαi ≤ K + |i| · inv(i)] =⇒ n ≤ M
]
.

Corollary 1. PRA ` ∀K∃M∀n∀α0, . . . , αn < ε0

[
α0 > . . . > αn & ∀i ≤

n[Nαi ≤ K + |i| ·K] =⇒ n ≤ M
]
.

Theorem 2 follows from the following Lemma. (Recall that sh
≤k is the number

of elements in Sh
≤k. Moreover let logn+1

3 (k) = log3(logn
3 (k)) where log1

3(k) =
log3(k)) and similarly let lnn+1(k) = ln(lnn(k)) where ln1(k) = ln(k)).

Lemma 5. Let h ≥ 3. There exists a constant Ch > 0 such that for all k with

logh−2
3 (k) ≥ 1 we have sh

≤k ≤ 2
Ch· k

logh−2
3 (k) .

Proof of Theorem 2. We argue informally in PRA while assuming that the proof
of Lemma 5 can be formalized in RCA0 so that the assertion of Lemma 5 holds
in PRA. Let 30(k) := k and 3m+1(k) := 33m(k). Assume that K is given.
Choose CK according to Lemma 5. Let N := 3K(K + CK). Assume that we
have given a sequence α0 > . . . > αn with Nαi ≤ K + |i| · inv(i) for i ≤ n. We
claim that n ≤ N . Otherwise ωK−1 > α1 > . . . > αN+1 would be a sequence
with Nαi ≤ K + |N + 1| · inv(N + 1) for 1 ≤ i ≤ N + 1. By Lemma 5 N + 1 is
bounded by

2
CK · K+|N+1|·inv(N+1)

logK−2
3 (K+|N+1|·inv(N+1)) ≤ 2CK ·

K+(3K−1(K+CK )+1)·2·(K+CK )

3K+CK < N.

Contradiction.

Proof of Lemma 5. Let thk (th≤k) be the number of finite rooted trees which have
height bounded by h and which have k (at most k) nodes. It is easily seen that
the number of elements in Sh

≤k is bounded by th≤k+1. Indeed, to any α in this set
we define inductively a tree as follows. If α = 0 then T (α) consist of a singleton
tree. Assume that α has the Cantor normal form ωα1 + · · ·+ωαn . Assume that
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we assigned inductively trees T (α1), . . . , T (αn) to α1, . . . , αn. Then we assign
to α the rooted tree with immediate subtrees T (α1), . . . , T (αn). For different
ordinals we obtain different non isomorphic trees. If α < ωK then the height of
T (α) is bounded by K and if Nα ≤ k then T (α) has at most k + 1 nodes.

Now we want to obtain non trivial bounds on th≤k. For this we first compute
bounds on thk .3 Let Th be the generating function for the sequence (thk)∞k=0.
Thus Th(x) =

∑∞
k=0 thk · xk =

∑∞
n=1 thk · xk since th0 = 0. Let pj denote the

number of integer partitions of j, i.e. the number of sequences (i1, . . . , ik) with
i1 ≥ . . . ≥ ik ≥ 1 and i1 + · · · + ik = j. Then, T 2(x) = x ·

∑∞
j=1 pj · xj + x

1−x
since trees of height 2 correspond to integer partitions in a unique fashion and
trees of height 1 correspond uniquely to natural numbers.

According to [10] we have

Th+1(x) =
∞∑

n=1

th+1
n · xn = x · e

∑∞
j=1

T h(xj)
j = x ·

∞∏
j=1

1

(1− xj)th
j

. (5)

for all x ∈]0, 1[.
Let e0(k) := k and em+1(k) := eem(k). We prove by induction on h that for

any h ≥ 2 there is a constant Dh such that for every x ∈]0, 1[

ln(
Th(x)

x
) ≤ eh−2(

Dh

1− x
) (6)

and extract bounds on thk from this afterwards. The assertion holds for h = 2
since as shown in [7] we have ln(

∑∞
j=1 pj ·xj) ≤ π2

6 · x
1−x . Hence ln(T2(x)

x ) ≤ 3
1−x

and we may put D2 := 3.
By induction hypothesis assume that ln(Th(x)

x ) ≤ eh−2(Dh · 1
1−x ). Then

Th(x) ≤ x · eh−1(Dh · 1
1−x ), hence by taking logarithms and expanding − ln(1−

3In what follows we utilize formulas from [10] and some hints provided on p.328 and p.396
in [7].
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xj) into its power series we obtain by (5) for x ∈]0, 1[

ln(
Th+1(x)

x
) =

∞∑
j=1

thj (− ln(1− xj))

=
∞∑

j=1

thj

∞∑
n=1

xjn

n

=
∞∑

n=1

1
n

∞∑
j=1

thj xnj

=
∞∑

n=1

1
n

Th(xn)

≤
∞∑

n=1

1
n

xneh−1(
Dh

1− xn
)

≤
∞∑

n=1

1
n

xneh−1(
Dh

1− x
)

≤ 1
1− x

eh−1(
Dh

1− x
)

≤ eh−1(
Dh + 1
1− x

).

By positivity of the summands involved all calculations are legitimate a poste-
riori. We then may put Dh+1 := Dh + 1 and the induction is finished. (Note
that the radius of convergence of Th(x) is not less than 1.)

Now let Ch > Dh+1. Let

x := x(n) := 1− Ch

lnh−2(n)

for large enough n such that x ∈]0, 1[. Since the coefficients of Th+1
n (x) are all

non negative, we obtain by (6)

thn ≤
1
xn

Th(x) ≤ 1
xn−1

eh−1(
Dh

1− x
).

Hence
ln(thn) ≤ (−n + 1) · ln(x) + eh−2(

Dh

1− x
).

Since limx↓0
− ln(1−x)

x = 1 we obtain

(−n + 1) · ln(x) = (−n + 1) · ln(1− Ch

lnh−2(n)
)

=
n− 1

n

− ln(1− Ch

lnh−2(n)
)

Ch

lnh−2(n)

nCh

lnh−2(n)

∼ nCh

lnh−2(n)
(7)
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Moreover
eh−2(

Dh

1− x
) ≤ n

Dh
Ch (8)

for large n. Hence thn ≤ e(Ch+1) n

lnh−2(n) for large n by (7) and (8) since Dh

Ch
< 1.

Let E be a natural number such that lnh−2k ≥ 1 for k ≥ E. From the
calculation above we know that for a suitable constant C which does not depend
on k. thk ≤ eC k

lnh−2(k) for all k ≥ E. Then th≤k ≤ th≤E +
∑k

l=E+1 thl ≤ th≤E + k ·

eC k

lnh−2k ≤ eC′ k

lnh−2(k) for a suitable constant C ′ which does not depend on k.
Since ln(x) ≥ log3(x) we finally obtain the assertion.

By refining the the previous calculations one obtains refined Friedman style
independence results for the fragments IΣn of Peano arithmetic. Using multi-
plicative number theory it is also possible to obtain related results for PA and
IΣn in the style of Friedman and Sheard [3] where the ordinals are represented
via a Schütte style prime number coding [11]. For familiar theories like ATR0,
ID1 Π1

1 − (CA)0 one can obtain corresponding theorems. These results will be
reported elsewhere.

Notes added in proof. 1. Using deep methods from complex analysis the
asymptotic behaviour of thk has been determined in more detail by Yamashita
in [16].
2. After having seen this manuscript T. Arai proved in [1] the following refine-
ment of Theorem 1 and 9. Let aα(K, i) := K + |i| · |i|Hα(i)−1 where Hα(i)−1 :=
min{k : Hα(k) ≥ i}. Then, for α ≤ ε0, PA ` ∀K∃M∀n∀α0, . . . , αn < ε0

[
α0 >

. . . > αn & ∀i ≤ n[Nαi ≤ aα(K, i)] =⇒ n ≤ M
]

if and only if α = ε0.

4 A related unprovability result concerning fi-
nite trees

In this section we show that the methods used in the proof of Theorem 1 together
with results of Otter [14] and Loebl and Matoušek [6] can easily be adapted to
prove a related unprovability result concerning the embeddability relation on the
set of finite trees. Recall that a finite rooted tree T (with outdegree bounded by
a natural number l) is a nonvoid set of nodes such that there is one distinguished
node, root(T ), called the root of T and the remaining nodes are partitioned into
m ≥ 0 (l ≥ m ≥ 0) disjoint sets T1, . . . , Tm, and each of these sets is a finite
rooted tree (with outdegree bounded by l). The trees T1, . . . , Tm are called the
immediate subtrees of T . The cardinality of T is denoted by |T |. We say that
a finite rooted tree T 1 is embeddable into a finite rooted tree T 2, T 1 E T 2, if
either T 1 is embeddable into an immediate subtree of T 2 or if there exist listings
(T 1

i )i≤m, (T 2
j )j≤n of the (distinct) immediate subtrees of T 1 and T 2 and natural

numbers j1 < . . . < jm ≤ n such that T 1
k is embeddable into T 2

jk
for 1 ≤ k ≤ m.

Then E is transitive and S E T yields |S| ≤ |T |.
Kruskal’s famous tree theorem is as follows.
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Theorem 3 (cf. [5]). For any ω-sequence (T i)i<ω of finite rooted trees there
exist natural numbers i and j such that i < j and T i E T j.

Using König’s Lemma one easily proves the following Lemma.

Lemma 6. Let f be a binary number-theoretic function. For any K there is an
N such that for all sequences (T i)i≤N of finite rooted trees with |T i| ≤ f(K, i)
for 1 ≤ i ≤ N there exist natural numbers i and j such that 1 ≤ i < j ≤ N and
T i E T j.

Assume that the set of finite rooted trees is coded as usual primitive recur-
sively into the set of natural numbers. For a binary function f let B(f) be the
following statement (formula) about finite rooted trees:

∀K∃N∀T 1, . . . , TN
(
(∀i ≤ N)|T i| ≤ f(K, i) =⇒ ∃i, j[i < j & T i E T j ]

)
.

Then Friedman’s celebrated miniaturization result is as follows.

Theorem 4 (cf. [12, 13]). Let f(K, i) := K + i. Then PA 0 B(f). (In fact
we even have ATR0 0 B(f).)

This result has later been sharpended considerably by Loebl and Matoušek
as follows.

Theorem 5 (cf. [6]). Let f(K, i) := K + 4 · log(i). Then PA 0 B(f).

This result is rather sharp since Loebl and Matoušek obtained the following
lower bound.

Theorem 6 (cf. [6]). Let f(K, i) := K + 1
2 · log(i). Then PRA ` B(f).

For a real number r let fr(K, i) := K + r · log(i). Then the rational numbers
r for which PA 0 B(fr) form a Dedekind cut and one might be interested in
the real number c which is represented by this cut. In this section we are going
to show that c = 1

log(α) where α = 2.9557652856 . . . is Otter’s tree constant (cf.
[14]). The real number α is defined as follows. Let t(0) := 0, t(1) := 1 and
t(i + 1) = 1

i ·
∑i

j=1(
∑

d|j d · t(d) · t(i− j + 1). Then t(i) is the number of finite
trees with i nodes. Let ρ be the convergence radius of

∑∞
i=0 t(i) · zi. Then

α := 1
ρ . Similarly let tl(i) be the number of finite trees with i nodes and with

outdegree bounded by l and let ρl be the convergence radius of
∑∞

i=0 tl(i) · zi

and αl := 1
ρl

. Moreover let t(≤ n) (tl(≤ n)) be the number of finite trees (with
outdegree bounded by l) with at most n nodes.

Theorem 7 (cf. [14]). 1. There is a β > 0 such that limn→∞
t(n)

αn·n−
3
2

= β.

2. For any l ≥ 2 there is a βl > 0 such that limn→∞
tl(n)

αn
l ·n

− 3
2

= βl.

In addition to Otter’s result we need the following technical result.

Theorem 8. limN→∞ ρN = ρ.

10



Proof. Obviously we have ρM ≥ ρN for M ≤ N . Thus ρ∞ := limN→∞ ρN

exists and ρ∞ ≥ ρ. Assume for a contradiction that ρ∞ > ρ. Then we obtain∑∞
i=0 t(i) · ρi

∞ = +∞, hence

N∑
i=0

t(i) · ρi
∞ > 1 (9)

for some N .
Otter’s paper [14], more precisely equation (11) on page 592 in that paper,

yields
∞∑

i=0

tN (i) · ρi
N+1 ≤ 1. (10)

Thus
∞∑

i=0

tN (i) · ρi
∞ ≤ 1. (11)

This yields by (9) 1 <
∑N

i=0 t(i) · ρi
∞ =

∑N
i=0 tN (i) · ρi

∞ ≤
∑∞

i=0 tN (i) · ρi
∞ ≤ 1.

Contradiction.

Theorem 9 (cf. [2]). Let U(z) =
∑∞

i=0 uiz
i and V (z) =

∑∞
i=0 viz

i be two
power series such that for some ρ ≥ 0 lim vi−1

vi
= ρ and the radius of convergence

of U(z) is greater than ρ. Let U(z)·V (z) =
∑∞

i=0 wiz
i. Then limi→∞

wi

vi
= U(ρ).

Theorem 10 (RCA0). Let c := 1
log(α) where α is Otter’s tree constant. Let r be

a primitive recursive real number and let fr be defined by fr(K, i) := K+r·log(i).

1. If r > c then PA 0 B(fr).

2. If r ≤ c then PRA ` B(fr).

Adapting ideas from the previous section we give a proof of Theorem 10
which is based on Otter’s result, Theorem 7 and the result of Loebl and Ma-
toušek, Theorem 5.

For a real number r let Fr(K) be the least N such that for all sequences
(T i)1≤i≤N of finite rooted trees with |T i| ≤ K + r · log(i) for 1 ≤ i ≤ N there
exist natural numbers i and j such that 1 ≤ i < j ≤ N and T i E T j and
let FLM := F4. Then the proof of Theorem 5 provided in [6] shows that FLM

eventually dominates every function which is provably recursive in PA.
We now prove Theorem 10.

Proof of Theorem 10. Ad 2: By Cauchy’s formula for the product of two power
series we have

∑∞
n=0 t(≤ n)zn = 1

1−z

∑∞
i=0 t(i)zi. By employing Theorem 7 and

Theorem 9 we find a natural number D so large that

t(≤ n) <
1

1− α−1

αn

n
3
2
· β · 1.1. (12)

11



for n ≥ D. Let K be given. Put

M := 28K+D

.

Assume that (T i)M
i=1 is a sequence of finite trees such that |T i| ≤ K+c·log(i) for

1 ≤ i ≤ M and that the T i are pairwise distinct. Then |T i| ≤ K + c · log(M) =
K + c · 8K+D. Thus by (12) we arrive at the contradiction

M <
1

1− α−1

αK+c·8K+D

(K + c · 8K+D)
3
2
· β · 1.1 < M. (13)

Ad 1: Since r > c and limm→∞ αm = α we may pick an m such that r > 1
log(αm) .

Then we may choose a rational number r′ such that r > r′ > 1
log(αm) .

According to assertion 2 of Theorem 7 we find a natural number E so large
that

tm(n) ≥ αn
m · βm · n− 3

2 · 0.9 (14)

for all n ≥ E. Let D be so large that for i ≥ D the following inequalities hold:

br′ · |i|c ≥ E, (15a)

2br
′·|i|c·log(αm) · βm · 0.9 · (br′ · |i|c)− 3

2 ≥ 2|i| (15b)

and
4 · log(|i|) + r′ · |i| ≤ r · log(i). (15c)

Now assume that K is given. We may assume that k := bK
3 c ≥ D and

k +m+4+D ≤ K. Let S1, . . . , SN−1 be a finite sequence of finite rooted trees
where N = FLM(k) and |Si| ≤ k + 4 · log(i) for 1 ≤ i ≤ N − 1 such that there
are no indices i, j with 1 ≤ i < j ≤ N − 1 and Si E Sj . Let ≤ be a primitive
recursive extension of the partial ordering E on the set of finite rooted trees to
a linear ordering. (E.g. one may employ the ordering which is induced by the
correspondence between finite rooted trees and ordinals less than ε0.) Let Mm

d

be the set of finite trees T such that T has at most d nodes and the outdegree
of T does not exceed m. Let enumm

d (l) be the l-th member of Mm
d with respect

to the linear order ≤ . Define a sequence of finite trees as follows. Let T i be the
finite rooted tree consisting of a root and two immediate subtrees U i and V i.
The tree V i is defined as follows. If i < D let V i be the uniquely defined (linear)
tree with D − i nodes sucht that the outdegree does not exceed 1. If i ≥ D let
V i be the tree enumm

br′·|i|c(2
|i| − i). The tree U i consists by definition of a root

and two immediate subtrees U i
1 and U i

2. U i
1 is S1 for i < D and S|i| for i ≥ D.

The tree U i
2 consists of a root and m + 1 immediate subtrees consisting exactly

of one root. Then T i is well-defined. Indeed, by (14) and (15a) the number of
elements in Mm

br′·|i|c is for i ≥ D at least

αbr
′·|i|c

m · (br′ · |i|c)− 3
2 · βm · 0.9 ≥ 2|i|.

12



Moreover (15c) yields
|T i| ≤ K + r · log(i)

for 1 ≤ i ≤ N − 1. Indeed for i ≥ D (15c) yields |T i| = 1 + |V i| + |U i| ≤
1 + br′ · |i|c+ 1 + k + 4 · log2(|i|) + m + 2 ≤ K + r · log2(i). For i < D we obtain
|T i| = 1 + |V i|+ |U i| ≤ 1 + D + k + 1 + m + 2 ≤ K. We claim that

T i E T j

does not hold for 1 ≤ i < j ≤ N − 1. Assume for a contradiction that T i E T j

for some i, j with 1 ≤ i < j ≤ N − 1. First we exclude the possibility that T i

is embeddable into an immediate subtree of T j . Indeed T i E V j is impossible
since the outdegree of V j does not exceed m but the outdegree of T i does. Now
assume that T i E U j . Here we have to distinguish again some cases. The case
T i E U j

2 is impossible since |T i| > |U j
2 |. If T i E U j

1 then U i
1 C U i E T i E U j

1 .
Hence U i

1 = U j
1 by the choice of the sequence (Si)N−1

i=1 . But then |T i| > |U j
1 |

contradicting T i E U j
1 . Therefore T i E U j yields that U i is embedabble into an

immediate subtree of U j . U i E U j
2 is excluded for cardinality reasons. U i E U j

1

yields U i
1 C U i E U j

1 hence U i
1 = U j

2 but then |U i| > |U j
1 | in contradiction to

U i E U j
1 . Thus the case T i E U j does not occur and T i is not embeddable into

an immediate subtree of T j .
Therefore T i E T j yields that U i is embeddable into an immediate subtree of

T j . U i E V j is impossible since the outdegree of V j does not exceed m but the
outdegree of U i does. Therefore U i E U j and hence necessarily V i E V j also.
U i E U j

2 is impossible since |U i| > |U j
2 |. If U i E U j

1 then U i
1 E U i E U j

1 hence
U i

1 = U j
1 and |U i| > |U j

1 | in contradiction to U i E U j
1 . Hence U i

1 is embeddable
into an immediate subtree of U j . We claim that U i

1 E U j
1 . Otherwise U i

1 E
U j

2 = U i
2 E U j

1 . Thus U i
1 E U j

1 hence U i
1 = U j

1 by the choice of (Si)N−1
i=1 . If

U i
1 = S1 then U j

1 = S1 and necessarily i < j < D. By construction in this
case |V i| > |V j | in contradiction to V i E V j . If U i

1 6= S1 then necessarily
D ≤ i < j ≤ N − 1. We have U i

1 = S|i| and U j
1 = S|j| hence |i| = |j|. Therefore

2|i| − i > 2|j| − j and V i = enumbr′·|i|c(2|i| − i) > enumbr′·|i|c(2|j| − j) = V j in
contradiction to V i E V j .

The argument shows that Fr(K) majorizes FLM(bK
3 c) for large K. Thus Fr

is not provably recursive in PA since FLM eventually dominates every provably
recursive function of PA. Thus PA 0 B(fr).

In view of [9] we conjecture that the proof above can be adapted to show
that for r > c even ACA0 + (Π1

2 − BI) 0 B(fr) where fr(K, i) = K + r · log(i).
Related independence results can be obtained for binary trees and Fried-

man’s extension of Kruskal’s theorem which is based on the gap condition
Moreover we obtained related refined versions of the Paris Harrington theo-
rem, the hydra battle and the Goodstein process. These results will be reported
elsewhere.

Questions: 1. Is it possible to use the methods of this paper in the context
of bounded arithmetic?
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2. Is it possible to give a purely proof-theoretic treatment of the unprovability
results obtained in this paper?
3. Is it possible to characterize the slow growing hierarchy via a similar bound-
ing function result?
Acknowledgements. The author is grateful to the referee for his detailed com-
ments which led to an improvement of the paper. He would like to thank J.
Matoušek and T. Arai for a discussion and I. Lepper and Gye Sik Lee for their
careful proof reading.

References

[1] Toshiyasu Arai: On the slowly well orderedness of ε0, Mathematical Logic
Quarterly 48 (2002), 125-130.

[2] Stanley N. Burris: Number Theoretic Density and Logical Limit Laws.
Mathematical Surveys and Monographs Volum 86. American Mathemati-
cal Society.

[3] Harvey Friedman and Michael Sheard: Elementary descent recursion and
proof theory. Annals of Pure and Applied Logic 71 (1995), 1-45.

[4] Godfrey H. Hardy and Srinivasa Ramanujan: Asymptotic formulae for the
distribution of integers of various types. Proceedings of the London Mathe-
matical Society 16 (1917), 112–132.

[5] Joseph B. Kruskal: Well-quasi-orderings, the tree theorem, and Vázsonyi’s
conjecture. Transactions of the American Mathematical Society 95 (1960),
210–225.
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