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Abstract

A major theme in proof theory consists in classifying the proof strength
of mathematical frameworks for reasoning about mathematics. The re-
sulting phase transitions from provability to unprovability are interesting
from the foundational as well as from the mathematical point of view. It
is very surprising that during these investigations methods from analytic
number theory, combinatorial probability theory, complex analysis and
Ramsey theory enter the scene.

In this abstract we present the underlying research program. We try
to explain our intuition about the nature of phase transition results under
discussion. It is our objective to show that there are intriguing interrela-
tions between “usual” mathematics and proof theory.

The abstract is intended to be accessible to a general mathematical
audience. We therefore concentrate on basic examples and ideas without
giving proofs.

1 Phase transitions and Gödel incompleteness

The phase transition phenomenon is familiar from statistical physics, [8], but
also from percolation [17], random graphs [3, 19] and computational complexity
[9]. Surprising interrelations between these fields have recently been discussed
in [25].

In this abstract we treat phase transitions in the context of the Gödel in-
completeness theorems [15] and resulting implications on the classical Ramsey
function [16].

In simplified form Gödels incompleteness theorem states that for any reason-
able system which extends the Peano axioms there exists an assertion A about
non negative integers such that A is true but not provable in the system under
consideration.
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Gödels example for such an assertion A is given by an assertion stating
(after an appropriate arithmetization) its own unprovability in the system under
consideration. This example has a bit of an exotic flavour.

Therefore logicians have been looking for instances of Gödels theorem where
the assertion A is mathematically relevant and interesting. Breakthroughs in
this respect have been achieved by G. Gentzen [13], J. Paris & L. Harrington
[27] und H. Friedman [32]. Some of these have been popularized in G. Ko-
latas contribution ‘Does Gödel’s theorem matter to mathematics’ in the science
magazine [21] and we will take a new look at them from the phase transition
perspective.

To fix the context let us explain briefly the axioms of first order Peano arith-
metic PA. The axioms of PA have been chosen in a way that more or less every
true assertion about the nonnegative integers should follow from these axioms.
The language of PA contains besides the usual logical symbols (including =) a
constant 0 for the number zero a function symbol S for the successor function
and the function symbol +, · for addition and multiplication. In addition we in-
clude a relation symbol P for implicit quantification about arbitrary subsets of
nonnegative integers. (The relation symbol P plays no role in the beginning and
is only used to formulate the scheme of transfinite induction in section 3.) The
mathematical axioms of PA describe elementary properties of 0, S, +, ·. Most im-
portant is that PA contains the scheme of complete induction, i.e. for every for-
mula ϕ in the language of PA an axiom ϕ(0)&(∀x)[ϕ(x) → ϕ(x+1)] → (∀x)ϕ(x).

We say that an assertion A follows from PA, or that PA proves A, if A holds
in all models of PA. (This is completely analogous to usual mathematics. An
assertion A follows from the axioms of group theory if A holds in all groups.)
It is worth to note that a typical countable model of PA has the following
form. There is an initial segment of individuals which is order isomorphic with
the nonnegative integers. If there exists one nonstandard individual in the
model then the end interval (formed solely from non standard individuals) of
the model is order-isomorphic to QZ (ordered under the lexicographic product
of the natural orderings involved).

The axiom system PA is relatively strong and it has been shown that large
parts of countable mathematics can be developed in PA [33] (more precisely in
its second order pendant).

To introduce the phase transition for instances of Gödel’s theorem for PA let
us assume for a moment that we have given an assertion A in the language of
PA which depends on a parameter r ∈ Q (to which we can refer in PA without
problems via coding) such that PA proves A(r) for small r and such that PA
does not prove A(r) for large r. Further assume that A monotone with respect
to these properties, i.e if s < r and PA proves A(r) then PA proves A(s) as well.
Analogously, if s < r and PA does not prove A(s) then PA does not prove A(r).
Classifying the phase transition then consists in computing the infimum of the
set of all r ∈ Q such that PA proves A(r). If this is not possible one tries to
find numbers a, b such that A(r) is provable for r < a and unprovable for r > b
and such that the distance between a, b is as short as possible. We may then
call ]a, b[ the transition interval.
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Later we give an example in which the phase transition can be classified
exactly. Without going into details we would like to remark, that it is possible
to find assertions A for which a classification of the transition interval depends on
number-theoretic hypotheses like the abc-conjecture or the Riemann hypothesis.
In this case there exists real numbers a < a′ < b′ < b, such that ]a, b[ is
the transition interval für A without assuming the number-theoretic hypothesis
and such that, for example, under the Riemann hypothesis we can shorten
the transition interval for A in a non trivial way to to ]a′, b′[. Examples for
such assertions A can be can be constructed from independent assertions over
combinatorial properties of 0 − 1 sequences. These sequences can be coded
via square free numbers and prime numbers for which their densities in short
intervals depend non trivially on corresponding hypotheses.

In principle these results can be used to disprove number-theoretic hypothe-
ses with logical methods. Perhaps it is possible to obtain a line of attack to
the Cramer conjecture on the density of primes. This conjecture, which in con-
trast to the Riemann hypothesis is assumed to be false by some experts, states
lim supn→∞

pn+1−pn

(log(pn)2 = 1.
More generally it is possible to study the phase transition for assertions A

which depend on a function parameter F : N → N (which is definable in PA).
The underlying assumption is that for very slow growing F the assertion A(F ) is
provable and that for faster growing F the assertion A(F ) becomes unprovable.
The classification problem then consists in finding the threshold function for
the provability of A(F ). As before we concentrate on examples where A(F )
is suitably monotone F . (It seems also to be interesting to study parameter
functions F which are oscillating but we have not yet obtained any interesting
results in this direction.)

The phase transitions discussed in this article are far away from the phase
transitions considered in statistical mechanics. Nevertheless statistical mechan-
ics serves as an interesting source of inspiration in our context. Well known
phenomena in physics are universality and renormalization. For reasons which
are not well understood yet it turns out in the examples which we investigated
that the threshold functions for provability (unprovability) stem from a scale
of very few basic functions. Moreover the phase transition results are usually
stable under various forms of rescaling (renormalization). We have no general
explanations for these effects. Maybe it is just the phenomenon that natural
objects should have natural properties.

Another more common line of research in proof theory is ordinal analysis
of systems extending the Peano axioms in a strong way. Here the idea is to
associate a mathematical invariant, the proof-theoretic ordinal, to the theory
in question. This can also be interpreted as a phase transition phenomenon.
Ordinal analysis separates the order types of primitive recursive well-orderings
for which the scheme of transfinite induction is provable from the order types
of unprovable instances. A basic example will be discussed in section 3. We
will not go further in this direction. Major contributions in this area have been
achieved by [31, 5, 34, 18, 30, 1] and a comprehensive survey is, for example,
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provided in [29].
So far we have outlined our research theme on phase transitions for in-

completeness phenomena. An alternative view of proof theory (going back to
Kreisel) with concrete relevance to mathematics is to extract non trivial con-
structive information from given (maybe in-constructive) proofs of mathemat-
ical assertions. Recent success in this line of research has been obtained by
U. Kohlenbach [20]. It might be interesting to investigate interrelation of this
approach with the phase transition enterprise.

2 Phase transitions for Kruskals theorem

In this section we survey a somewhat spectacular phase transition result for the
Peano axioms. To fix the context let us define a finite tree to be finite partial
order 〈B,≤B〉, such that for every b ∈ B the set {b′ ∈ B : b′ ≤B b} is linearly
(i.e. totally) ordered trough ≤B and such that B contains a minimum, the root.
In other words B is a non planar rooted tree. For two given vertices b, b′ ∈ B
there exists an infimum, which we denote by b ∧B b′. (If we go from b and b′ to
the root the infimum is the first vertex where the paths meet.) We say that a
tree B is embeddable into a tree B′ (this situation is denoted by BEB′) if there
exists an one to one mapping h : B → B′ such that h(b ∧B b′) = h(b) ∧B h(b′)
for all b, b′ ∈ B.

Kruskals tree theorem [23] states that for every infinite sequence (Bi)∞i=0 of
finite trees there exist nonnegative integers i, j such that i < j and Bi E Bj .
It turns out that Kruskals theorem has first order consequences which are not
provable in PA. Let us denote the cardinality of a finite tree, i.e. the number
of its nodes, with |B|. For a given function F : N → N let FKT(F ) be the
assertion: For every K ∈ N exists an M ∈ N, such that for every finite sequence
(Bi)M

i=0 of finite trees satisfying (∀i ≤ M)[|Bi| ≤ K + F (i)] there exist indices
i, j ∈ N with i < j and Bi E Bj . Using a compactness argument (the same as
used in the proof of the Bolzano Weierstraß theorem) one can prove FKT(F )
for any function F .

H. Friedman proved that PA does not prove FKT(id). (Here id denotes the
identity function.) An elementary counting argument yields that for constant
functions with value c the assertion FKT(F ) follows from PA. For the threshold
function F for FKT it therefore holds that c ≤ F (i) ≤ i for all but finitely many
i ∈ N. (Here again we tacitly assume that F is weakly increasing.)

A significant improvement on the threshold has been obtained by J. Ma-
toušek and M. Loebl. Let |i| denote the binary lengths of i and put Fα(i) := α·|i|.
J. Matoušek and M. Loebl showed, that for α ≤ 1

2 the assertion FKT(Fα) fol-
lows from PA but that for α ≥ 4 the assertion FKT(Fα) does not follow from
PA.

It is an immediate question to ask for the threshold function resp the thresh-
old value for α. The surprising answer runs as follows [35]. Let T (z) :=∑∞

n=0 tn · zn be a power series such that T (z) = z · exp(
∑∞

i=1
T (zi)

i ). Let ρ
be the radius of convergence of T . Then we first have that 1 > ρ > 0. The
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desired threshold value can be defined as follows: c := − 1
log2(ρ) . Indeed, if α ≤ c

then PA does prove FKT(Fα) and if α > c then PA proves FKT(Fα).

3 Phase transitions for ε0

In naive set theory ordinals are used to count into the transfinite. Ordinals begin
with 0, 1, 2, 3, . . .. After infinitely many steps we reach the first limit point ω
and we can continue the counting with ω + 1, ω + 2, ω + 3, . . .. In this way
we obtain ω2, ω3, ω4, . . . and hence ωω. With more and more efforts we reach
ωωω

, ωωωω

, . . . . Finally we obtain ε0 as Limit of the sequence ω, ωω, ωωω

. . ..
This description is fine if one already has seen a thorough introduction into

the theory of ordinals. Otherwise the counting process becomes more and more
obscure the larger the ordinals in question become. Therefore it seems justified
to provide an alternative description of the ordinals below ε0 without referring
to set theory. The desired description is possible by an appeal to Hardys order
of infinity. The description is simple and accessible even to high school students.

Let E be the least set of functions f : N → N, such that

1. x 7→ 0 ∈ E ,

2. With f, g ∈ E the function x 7→ xf(x) + g(x) is in E too.

For f, g ∈ E we define f ≺ g if there exists a K ∈ N such that f(m) < g(m) for
all m ≥ K, i.e. if g eventually dominates f .

Let kn be the constant function x 7→ n and let ω be the identity function
x 7→ x. Further define +, · on E via pointwise operation. We observe: k0 ≺
k1 ≺ k2 ≺ . . . ≺ ω ≺ ω + k1 ≺ ω + k2 ≺ . . . ≺ ω + ω ≺ . . . ≺ ω + ω + ω ≺
. . . ≺ ωk2 ≺ . . . ≺ ωk3 ≺ . . . ≺ ωω ≺ . . . ≺ ωωω ≺ . . . and one can verify that
the order type of E with respect ≺ is precisely ε0. Therefore we can identify
ε0, hence the segment of ordinals below ε0 ordered in the natural way, with the
order 〈E ,≺〉.

Without problems one verifies that 〈E ,≺〉 is a linear order. Moreover for
a given f ∈ E with f 6= k0 there exist uniquely determined f1, . . . , fn with
f = ωf1+. . .+ωfn and fn � . . . � f1. In this case we write f =NF ωf1+. . .+ωfn

and call this representation the normal form of f . Using this normal form
representation theorem one can thus identify elements from E with their term
representations.

The order 〈E ,≺〉 is a well-order i.e. for every non empty set X ⊆ E there
exists f ∈ X such that ¬g ≺ f for all g ∈ X; equivalently we may state: For
every function F : N → E there exists an i ∈ N such that F (i) � F (i + 1).

The ordinal ε0 resp. the structure 〈E ,≺〉, is the so called proof-theoretic
ordinal (for further background information the reader may, for example, consult
[31, 34, 29]) of the Peano axioms which has been determined by G. Gentzen [13].
Due to its fundamental importance of this result in proof theory we provide some
more details.

5



Let
TI(≺, P ) := (∀f(∀g ≺ fP (g)) → P (f)) → ∀fP (f).

After a suitable coding of the function terms for elements of E via nonnegative
integers this assertion is a statement in the language of PA. G. Gentzen showed:
The assertion TI(≺, P ) is true but unprovable in PA. More precisely we define
an arithmetization of E in the following way: Let pi be the i-th prime for
i ≥ 1. Let N+ := N \ {0} and let dk0e := 1 und dfe := pdf1e · . . . · pdfne, if
f =NF ωf1 + . . . + ωfn . Then the mapping d·e is a bijection between E and
N+ and we may induce an ordering (which we again denote with ≺) on N+ . It
can easily be seen that the induced ordering can be defined by a formula in the
language of PA.

The scheme TI(≺, P ) can be written as follows:

TI(≺, P ) := (∀n ∈ N+)[(∀m ≺ nP (m)) → P (n))] → ∀n ∈ N+P (n).

The ordinal ε0 is characteristic for an ordinal-theoretic phase transition for PA
in so far as PA proves the transfinite induction for every initial segment of ε0.
More explicitly, PA proves for every k ∈ N+ the assertion
∀m ≺ k[(∀n ≺ mP (n)) → P (m)] → ∀m ≺ kP (m).

Via a compactness argument TI(≺, P ) yields for every function F : N → N
the truth of the following assertion FWO(F ):
(∀K)(∃M)(∀m1, . . . ,mn ∈ N+)

[
(∀i ≤ M)dmie ≤ K + F (i) → (∃i < M)mi ≺

mi+1

]
. A deep result which essentially goes back to H. Friedman [32, 12] states

that for F (i) = 2i the assertion FWO(F ) is unprovable in PA.
Again it is very natural to ask for a classification of the resulting phase

transition for FWO(F ). During working on the solution it became apparent
that one is more or less forced to deal with problems from analytic number
theory.

Especially it seems to be necessary to obtain bounds on the following count
function

Cm(n) := #{l ≺ m : dle ≤ n}.
Let o1 := 3 = dωe and ok+1 := pok

so that the order-type of ok is given by an
exponential tower of ωs of hight k. In particular we have 5 = dωωe. Using ana-
lytic combinatorics for Dirichlet generating series (which reflect the multiplica-
tive nature of the counting) one can obtain the following rough estimates. (Fur-
ther background material can be found, for example, in in [11, 22, 26, 28, 36, 38].)

1. ln(C5(n)) ∼ π
√

2 ln(n)
3 ln(2)

2. ln(Cok+2(n) = Θ( ln(n)

ln(. . . (ln︸ ︷︷ ︸
k-times

(ln(n)))...)
) falls k ≥ 1.

As a problem of interest in its own right one might be interested in the
asymptotic of n 7→ ln(Cok+2(n)). There are indications for the following esti-
mate: ln(Cok+2(n)) ∼ π2

6 ln(2)
n

ln(. . . (ln︸ ︷︷ ︸
k times

(n))...)
, where k ≥ 1.
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Let |i| denote as before the binary length of i. Let |i|1 := |i| and |i|k+1 :=
||i|d| and finally log∗(i) := min{d : |i|d ≤ 2}. A combination of logical methods
with the number-theoretic estimates yields the following result over the phase
transition for FWO. If F (i) = 2|i|·|i|d then the assertion FWO(F ) is unprovable
in PA. If F (i) = 2|i|·log

∗(i) then PA proves the assertion FWO(F ).
From the viewpoint of analytic number theory the last phase transition result

refers to a multiplicative norm on ordinals. It is a natural question to investigate
phase transitions in the additive setting. To this end we define a norm N : ε0 →
N as follows. N(k0) := 0 and Nf := n+Nf1+. . .+Nfn, if f =NF ωf1+. . .+ωfn .
Via the natural isomorphis between ε0 and N+ the norm can be extended to
N+.

As before a compactness argument applied to TI(≺, P ) yields for every func-
tion F : N → N the truth of the following assertion FWON(F ):
(∀K)(∃M)(∀m1, . . . ,mn ∈ N+)

[
(∀i ≤ M)Nmi ≤ K + F (i) → (∃i < M)mi ≺

mi+1

]
. H. Friedman [32, 12] showed that for F (i) = i the assertion FWON(F )

is unprovable in PA.
Again it is very natural to ask for a classification of the resulting phase

transition for FWON(F ). Additive analytic number theory can then be applied
to the following count function

cm(n) := #{l ≺ m : Nl ≤ n}.

Using the generating function technology one obtains the following estimates.
(Further background material can be found, for example, in auf [11, 22, 28].)

1. ln(c5(n)) ∼ π
√

2 ln(n)
3

2. ln(cok+2(n) ∼ π2

6 ( n

ln(. . . (ln︸ ︷︷ ︸
k times

(n))...)
) if k ≥ 1.

A combination of logical methods with the number-theoretic estimates yields
the following result over the phase transition for FWO. If F (i) = |i| · |i|d then
the assertion FWON(F ) is unprovable in PA. If F (i) = |i| · log∗(i) then PA
proves the assertion FWON(F ).

The optimal phase transition in this case has been obtained by Arai[2].
At the end of this section we would like to mention the following problem

which appears from our investigations and which we expect to have an inter-
esting solution. It is known that the contour process for planar trees leads to
a Brownian excursion [14]. We would like to know what process is related to
the contour process for E . Due to the normal form condition for term repre-
sentations which says that the exponents are weakly decreasing it seems clear
that the process does not have the Markov property. Thus it seems to be very
complex. Another problem in this context would be the investigation of limit
shapes for typical elements in E .
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4 Intermezzo

At this point we can not resist including some supplementary results which arose
from studying the count functions for elements of ε0. We just include them for
their beauty.

By inspection of Burris’s book [6] it becomes apparent that ε0 shows all basic
features of an additive number system. Therefore it seemed highly plausible that
ε0 comes equipped with logical limit laws and in joint work with Alan Woods
it was possible to show that the ordinals in [ωω, ε0[ are characterized by a zero
one law.

Let ϕ be a sentence in the language of linear oders. Given m ∈ N+ we
write m |= ϕ if ϕ becomes true when the quantifiers occuring in ϕ range over
{l : l ≺ m} and the order relation symbol is interpreted as ≺. Similarly we
write N+ |= ϕ if ϕ becomes true when the quantifiers occuring in ϕ range over
N+. Given m ∈ N+ such that 5 � m it is natural to investigate the probability
that m |= ϕ. It will be either zero or one (for natural choices of the model)!
More precisely we have the following results where probability is measured via
associated asymptotic densities.

1. limn→∞
#{l≺n:l|=ϕ&dle≤n}

#{l≺n:dle≤n} ∈ {0, 1}.

2. limn→∞
#{l≺n:l|=ϕ&Nl≤n}

#{l≺n:Nl=n} ∈ {0, 1}.

This zero one law does not hold if we reach ε0. The limits limn→∞
#{l∈N+n:l|=ϕ&dle≤n}

#{l≺n:dle≤n}

and limn→∞
#{l∈N+:l|=ϕ&Nl≤n}

#{l≺n:Nl≤n} still exist but for certain choices of ϕ are ele-
ments of ]0, 1[.

5 Phase transitions in Ramsey theory

To discuss Ramsey theory we use the following standard terminology [16]. For
m ∈ N let [m] := {1, . . . ,m} and four a set Y let [Y ]d be the set of d-element
subsets of Y . In addition we write [m]d for [[m]]d. The infinitary Ramsey
theorem states that for all d, c ∈ N and for every partition P : Nd → [c] there
exists an infinite set Y ⊆ N such that P � [Y ]d is constant.

An application of compactness yields the finite Ramsey theorem which states
that for all d, c,m ∈ N there exists a minimal nonnegative integer R =: Rd

c(m)
such that for all partitions P : [R]d → [c] there exists a subset Y ⊆ [R] with
|Y | ≥ m and such that P � [Y ]d is constant. The asymptotic of Rd

c is in many
cases not known. It is known that for R3

3 we have the following lower and upper
bounds

2m2(log(m))2·const ≤ R3
3(m) ≤ 22const·m

. (1)

It is a classical Erdös problem (USD 500 have been offered as far as we know)
whether R3

3 has a double exponential lower bound.
In this context it is quite natural to ask whether it is possible to regain the

strength of the infinitary Ramsey theorem from suitable iterations of the finite
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Ramsey theorem, whether the infinitary Ramsey theorem leads to independence
results and whether these logical investigations might be helpful in the study of
Erdös problems.

To this end we consider the following variant of the finite Ramsey theorem.
Let PH(F ) stand for the following assertion: For all d, c,m exists a nonnegative
integer R =: Rd

c(F )(m) such that for all partitions P : [R]d → [c] there exists
a subset Y ⊆ [R] with P � [Y ]d is constant and |Y | ≥ max{m,F (min(Y )}. An
application of compactness to the infinitary Ramsey theorem yields that PH(F )
is true for all parameter functions F .

J. Paris and L. Harrington [27] proved that PH(id) is unprovable in PA. Us-
ing estimates of Erdös and Rado for Rd

c [10] one easily verifies that for constant
functions F the theory PA proves the assertion PH(F ).

An exact description of the resulting phase transition would exceed the scope
of this abstract and therefore we present a rough approximation.

It has been shown (see, for example, [37]) that for F (i) := log∗(i) the asser-
tion PH(F ) is provable in PA but that for every fixed d ∈ N and the function
F (i) := |i|d the assertion PH(F ) is unprovable in PA. Corresponding assertion
hold also for the fragments of PA in which the induction scheme is suitably
restricted. Then classification of the resulting phase transitions is based on the
probabilistic method [39].

Without going too much into detail we would like to remark that with meth-
ods from non standard models one can show that suitable iterations of the Paris
Harrington principle reach the proof strength of the infinitary Ramsey theorem
as far as provably computable functions are concerned [4].

Analogous properties and phase transitions can be obtained for the canoni-
cal Ramsey theorem, the Ramsey theorem for regressive partitions and further
variants [7].

Finally let us reconsider the phase transition for the function R3
3(F ). It is our

hope to obtain advance in Ramsey theory from investigations on this function.
First one can show that for any ε > 0 and the function F (i) = ε · log2(i)
the induced Ramsey function R3

3(F ) is not bounded by a primitive recursive
function. Thus in this case the growth of R3

3(F ) is gigantic. Second one can
show that there exists a constant C such that for F (i) := 1

C · log2(log2(i)) one
has R3

3(F )(m) ≤ 22C·m
. Thus by varying the function parameter from double

logarithmic to logarithmic there appears an extreme phase transition. Moreover,
if it is possible to pin down this transition precisely that one obtains advance
on the asymptotic of R3

3.
To approximate the phase transition one shows thirdly that for F (i) :=

(log2(i))
1
2+ε there exists a triple exponential lower bound for R3

3(F ). Finally
one verifies for F (i) := (log2(i))

1
3+ε the following implication:

If the estimate R3
3(F )(m) ≥ 2m3

holds for all but finitely many m ∈ N then
also R3

3(m) ≥ 2m3
holds for all but finitely many m ∈ N.

The conclusion would improve the lower bound from (1) and would therefore
give real advance in Ramsey theory. Similar implications from phase transitions
can be obtained for the Ramsey function R2

2.
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6 The underlying principle for unprovability phase
transitions

So far we have seen phase transition results for well quasi orders, well orders and
Ramsey properties. Despite their differences our proofs for all of these classifica-
tions share a common feature. The truth of the assertions in question is proved
from certain infinitary principles using compactness. In proving lower bounds
for the unprovability thresholds one employs bounds from elementary combi-
natorics. But if one exceeds the bounds dictated by finite combinatorics then
one is lead naturally to true but unprovable (in PA) assertions. This principle
(which is formulated in the last sentence) proved to be very useful. It provides
immediate conjectures on provability thresholds. Moreover in classifying result-
ing thresholds we have not encountered a situation in which the principle did
not apply.

It would be interesting to explore whether this principle can be proved in
some abstract framework.
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