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Abstract

We give a self-contained and streamlined version of the classification
of the provably computable functions of PA. The emphasis is put on illu-
minating as good as seems possible the intrinsic computational character
of the standard cut elimination process. The article is intended to be
suitable for teaching purposes and just requires basic familiarity with PA
and the ordinals below ε0. (Familiarity with a cut elimination theorem
for a Gentzen or Tait calculus is helpful but not presupposed).

1 Introduction

In this article we reprove a classical result on the classification of the provably
recursive functions of first order Peano arithmetic. Our main goal is to provide
a proof which explains as good as seems possible the computational complex-
ity behind standard cut elimination procedures. The presentation is intended
to prove useful for teaching purposes. In particular it offers a quick and self
contained way to various combinatorial independence results.

The classification result for the provably recursive functions of Peano arith-
metic goes back to Kreisel (1952) [14] (with roots going back to Ackermann
(1940) [1]): Roughly speaking the result is that the class of provably recur-
sive functions of Peano arithmetic is exactly the class of functions (which are
primitive recursive in functions) which can be defined by recursion along initial
segments of ε0.

Folklore (proof-theoretic) proofs for this result [cf., for example, Schwichtenberg
(1977) [19], Takeuti (1987) [21], Buchholz (1991) [4] or Friedman and Sheard
(1995) [11] for such proofs] rely on non trivial metamathematical evaluations of
the Gentzen- or Schütte-style proof-theoretic analyses of Peano arithmetic. A
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proof of the classification result that does not rely on metamathematical con-
siderations – like primitive recursive stipulations of codes of infinite proof-trees
– has been given in [Buchholz and Wainer (1987) [7] and Fairtlough and Wainer
(1998) [10]]. Other proofs for the classification result which are based on non
standard models can be found, for example, in [Hájek and Pudlák (1993) [13] or
Avigad and Sommer (1997) [2]]. This paper aims at a solution to the following
problem:

Give a proof for the classification result which is conceptually and technically
as smooth as seems possible!

This has been solved in our opinion to some extent already in [3] where
certain operators (which we call Skolem operators) have been introduced for
controlling witness information in derivations. In this paper we generalize the
approach from [3] to rather general Skolem operators which are only required
to be weakly increasing (i.e. x ≤ y ⇒ F (x) ≤ F (y)) and inflationary (i.e.
x ≤ F (x) for every x ∈ N.) In contrast to [3] this paper does not depend on the
approach to hierarchies found in [8].

We include a result on majorizing operators by standard Hardy functions.
This rounds off the result since the Hardy functions of level below a fixed α < ε0

are easily shown to be computable within PA. The short presentation makes it
possible to teach the whole classification result within two double hours in an in-
troductory course in logic (after having treated provable instances of transfinite
induction in PA). This might be a good starting point to study combinatorial
independence results in more detail starting with

PA 0 ∀x∃yHε0(x) = y

as a basis for the unprovability result for hydra games or Goodstein sequences1.
It is particular illuminating to study the transition of the Skolem operators

during the cut elimination process. We introduce basically two operations on
operators. The R operator used in the cut reduction lemma is more or less the
composition functional. For carrying out the cut reduction theorem we define
a suitable transfinite iteration functional Rα which gives the α-th iterate of R
when applied to F . Then the α-th iterated application of the reduction lemma
in the proof of the reduction theorem for a derivation of height bounded by α
is reflected on the side of operators by an application of Rα.

This paper is essentially self contained. Missing details on ordinals below
ε0 = min{ξ : ξ = ωξ} can be taken, for example, from Schütte’s textbook [18]
or, for example, from the masterpieces provided by Buchholz on his home-page.

This paper profits from previous work of Buchholz in at least three ways.
Firstly, on the technical side we modeled our infinitary system along the lines
devised in one of Buchholz lecture notes. (Other choices would have been conve-
nient here as well.) Secondly we profited from Buchholz’s for reaching method
of operator controlled derivations which is to our best knowledge today’s most

1Indeed, this paper emerged from a lecture given by the author on recursion and proof
theory at Utrecht University. The author is grateful for Ieke Moerdijk for the corresponding
arrangements.
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powerful framework for the proof theory of strong systems. In this paper we
show how to miniaturize the operator method for studying provably recursive
functions in an illuminating and smooth way. Thirdly we have employed in the
proof of Theorem 4 methods which are implicit in a joint paper with Buchholz
and Cichon [8].

2 The computational complexity of cut elimina-
tion in the infinitary calculus Z∞

We work with an infinitary Gentzen style calculus Z∞. Its first characteristic
feature is the so called ω rule, which allows to deduce ∀xA(x) from infinitely
many premises A(n) (n ∈ N). Using this inference rule one can derive all
instances of the induction schema so that PA derivations can be turned into Z∞

derivations. Since Z∞ has no axioms for induction the cut elimination technique
for predicate calculus can be extended without problems to it yielding cut free
Z∞ derivations.

It is well known that Herbrand’s theorem on ∃-inversion follows as a corollary
from Gentzen’s cut elimination theorem. Unfortunately this approach does not
extend immediately to Z∞. The second characteristic feature of our calculus Z∞

is the use of a special bookkeeping formalism (which we call Skolem operators)
on existential witnesses so that we can mimic the proof of Herbrand’s theorem
for cut free derivations. For getting the desired classification result we only
have to guarantee that the bookkeeping behaves well during the cut elimination
process. This is particularly illuminating since we can learn how cut elimination
successively leads to stronger and stronger operators.

To fix the context let us agree to work with logical symbols ∀,→ and ⊥ from
which all other logical symbols are defined as usual. There is only one relation
symbol, =, for equality, and there are function symbols for each primitive re-
cursive function. These function symbols include in particular a constant 0 for
zero and a unary function symbol S for the successor function. The resulting
language is denoted by LZ . In the sequel it will prove useful having extended the
language of PA to the language of such a conservative extension Z containing
the function symbols and defining equations for the primitive recursive func-
tions. The advantage is that Kleene’s T predicate can be handled via an atomic
formula of lowest possible logical complexity. Otherwise we would have to deal
with bounded quantifiers in the collapsing theorem, which although possible,
would create extra complications.

In the context of Z∞ Greek capital letters like Γ,∆ stand for finite sets of
closed LZ formulas (i.e. formulas having no free variables). We write Γ ⊃ C for
the sequent with antecedent formulas from Γ and succedent C. The intended
meaning of a sequent Γ ⊃ C is that the conjunction over all members of the
set of antecedent formulas implies the succedent formula C. For each closed
term t in LZ we have a standard interpretation val(t) called the value of t. In
particular we have for each non negative integer a standard numeral n such that
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val(n) = n.
For each formula C in the language LZ we define its rank rk(C) measuring

its logical complexity as follows:

1. rk(C) = 0 if C is atomic.

2. rk(A → B) = max {rk(A), rk(B)}+ 1

3. rk(∀xA) = rk(A) + 1.

We are going to introduce a notion F `α
m Γ ⊃ C where the function F :

N → N controls the computational content of the derivation of Γ ⊃ C, where
α is a bound for the depth of the derivation and m is a bound for the ranks
of cut formulas. The calculus is designed after the truth definition for the
standard model for the Peano axioms. Thus if Γ ⊃ C has been derived, then
N |=

∧
D∈Γ D → C or equivalently

N |=
( ∨

D∈Γ

¬D
)
∨ C. (1)

The new ingredient in the derivations is the operator control via functions
F : N → N. The underlying idea for their use is quite simple. In case of an
existential introduction A(k) ` ∃xA(x) one keeps track on the witness k by
demanding k ≤ F (0). This has the effect that a cut free derivation F ` ∃xA(x)
yields that there is a k ≤ F (0) such that N |= A[k]. The relation F ` is then set
up so that this crucial information on witnesses is conserved during derivations.
For controlling applications of the ω-rule we demand that F ` ∀xA(x) follows
from F [n] ` A(n) where F [n] is the operator resulting from F by feeding in
information on n. (F [n] will be defined precisely soon.) It will be easy to
embed the formal system PA into the infinitary system Z∞.

The critical step in the analysis will be the study of the transformation of
the operators during the cut elimination. What is nice about this approach is
(as already said) that the cut reduction lemma produces compositions of the
control functions (reminiscent of the Brouwer Heyting Kolmogorov interpreta-
tion). Moreover the cut elimination theorem gives rise to iterated applications
of the cut reduction lemma and hence to a transfinite iteration of the composi-
tion operator resulting from the cut elimination lemma. We show that this can
be modeled smoothly in terms of pure control operators. In carrying out this
outline it turns out to be necessary in formulating F `α

m that in each step the
number-theoretic content of α is contained in the operator F via a condition
like mc(α) ≤ F (0) where mc(α) is the largest natural number occurring in the
Cantor normal form of α.

Recall that a function F : N → N is called weakly increasing if x ≤ y implies
F (x) ≤ F (y) for all x, y ∈ N and F is called inflationary if x ≤ F (x) for all
x ∈ N. We call a function F Skolem operator if it is weakly increasing and
inflationary function. We write F ≤ G iff F (x) ≤ G(x) for all x ∈ N. We write
F [m] for l 7→ F (max {l,m}). Then F [m] is Skolem operator if F is. Moreover,
if F and G are Skolem operators, then F ◦G and F + G are it, too.
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As a measure for the number-theoretic content of an ordinal α we take the
maximal natural number which shows up in the Cantor normal form of α. Thus
mc(0) := 0 and for α = ωα1 · k1 + · · · + ωαn · kn > 0 with α1 > . . . > αn and
k1, . . . kn > 0 let

mc(α) := max {k1, . . . , kn,mc(α1), . . . ,mc(αn)}.

Then for any α < ε0 and d < ω the number of ξ < α such that mc(ξ) ≤ d is
always finite.

We call a formula A a literal if rk(A) = 0 or A = ¬C and rk(C) = 0.
After these preliminaries let us define

F `α
m Γ⊃C

iff mc(α) ≤ F (0) and one of the following cases holds. (The underlying semantic
of these rules should be clear from (1).)

1. (C is a literal & N |= C) or (∃D ∈ Γ)[D is a literal & N |= ¬D],

2. C = A → B & F `α0
m A,Γ⊃B & α0 < α,

3. C = ∀xA(x) & (∀n)[F [n] `αn
m Γ⊃A(n) & αn < α],

4. A → B ∈ Γ & F `α0
m Γ⊃A & F `α0

m B,Γ⊃C & α0 < α,

5. ∀xA(x) ∈ Γ & F `α0
m A(k),Γ⊃C & k ≤ F (0) & α0 < α,

6. rk(D) < m & F `α0
m Γ⊃D & F `α0

m Γ, D⊃C & α0 < α,

7. C atomic & F `α0
m ¬C,Γ⊃⊥ & α0 < α.

We call an instance of rule 1 (2,3,4,5,6 or 7) an instance of an axiom-rule
(→right-rule, ω-rule, →left-rule, ∀left-rule, cut rule or falsum rule).

Lemma 1. 1. F `α
r Γ⊃C & Γ ⊆ Γ′ & α ≤ β & r ≤ r′ & F ≤

G & mc(β) ≤ G(0) =⇒ G `β
r′ Γ′⊃C.

2. F `α
r A,Γ⊃C & A is a literal & N |= A =⇒ F `α

r Γ⊃C

3. F `α
r Γ⊃A & A is a literal & N |= ¬A =⇒ F `α

r Γ⊃C.

Proof. By induction on α.

Lemma 2 (Inversion). 1. F `α
r Γ⊃A → B =⇒ F `α

r Γ, A⊃B.

2. F `α
r Γ⊃∀xA(x) =⇒ F [m] `α

r Γ⊃A(m) for all m ∈ N.

Proof. By induction on α.
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With α#β we denote the commutative natural (or Hessenberg) sum of α
and β. Thus α#0 = 0#α = α and if α = ωα1 + · · · + ωαm ≥ α1 . . . ≥ αm

and β = ωαm+1 + · · · + ωαm+n ≥ αm+1 ≥ . . . ≥ αm+n then α#β = ωαπ(1) +
· · ·+ωαpi(m+n) where π : {1, . . . ,m+n} → {1, . . . ,m+n} is a permutation such
that απ(1) ≥ . . . ≥ απ(m+n). For given operators F,G let R(F,G) be defined by
R(F,G) := F ◦G+G+F where operations are defined pointwise and ◦ denotes
composition. (What is nice with this approach is that it can be adapted easily
to other formulations of Z∞ as well. A very general definition of R would be its
symmetric version R(F,G) := G ◦F + F + F ◦G + G which will be appropriate
for most other choices of cut elimination procedures. This paper’s approach is
not affected by such small modifications.)

Lemma 3. If F `α
m Γ⊃D and G `β

m Γ, D⊃C and rk(D) ≤ m then

R(F,G) `α#β#β
m Γ⊃C.

Proof. By induction on β. (We follow the lecture notes ‘Logic II’ of Wilfried
Buchholz. In addition we assign appropriate control operators to the deriva-
tions.) Assume first that the last inference was (→ l) with A → B ∈ D,Γ and
premises

G `β0
m D,Γ⊃A

and
G `β0

m Γ, B,D⊃C

where β0 < β. The induction hypothesis yields

R(F,G) `α#β0#β0
m Γ⊃A (2)

and
R(F,G) `α#β0#β0

m Γ, B⊃C. (3)

If A → B ∈ Γ, then the assertion follows from (2) and (3) by (→ l). Assume
now that D = A → B. The inversion lemma yields

F `α
m Γ, A⊃B (4)

By (2), (4) and assertion 1 of Lemma 1 we obtain

R(F,G) `α#β#β0
m Γ⊃B (5)

by an application of the cut rule since rk(A) < rk(D) and

mc(α#β0#β)
≤ F (0) + G(0) + G(0)
≤ R(F,G)(0).

With (3) and (5) we obtain

R(F,G) `α#β#β
m Γ⊃C
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by another application of the cut rule since rk(B) < rk(D) and mc(α#β#β) ≤
R(F,G)(0).

Assume in the critical case that the last inference is an instance of an ∀left-
rule with ∀xA(x) ∈ D,Γ and

G `β0
m A(k), D,Γ⊃C (6)

with
k ≤ G(0). (7)

for some β0 < β. The induction hypothesis yields

R(F,G) `α#β0#β0
m A(k),Γ⊃C (8)

If ∀xA(x) ∈ Γ, then the assertion follows from (8) by (∀l). If ∀xA(x) = D, then
assertion 2 of Lemma 1 yields

F [k] `β0
m Γ⊃A(k). (9)

A cut with A(k) yields the assertion provided that F [k] ≤ R(F,G). Here the
composition with G and (7) come to rescue. Indeed by using the weak mono-
tonicity and the inflationarity of the operators we obtain

F [k](l) = F (max {k, l}) ≤ F (max {G(0), l}) ≤ R(F,G)(l).

Finally notice that mc(α#β#β) ≤ R(F,G)(0).

For a given F let the α-th iterate of R applied to F , Rα(F ), be defined via
R0(F )(l) := F (l) and for α > 0

Rα(F )(l) := max {R(Rγ(F ), (Rγ(F ))(l) : γ < α & mc(γ) ≤ F (l)}.

If F is a Skolem operator then (via induction on α) Rα(F ) is it, too.

Lemma 4. If l ≥ n, then Rα(F [n])(l) ≤ Rα(F )(l).

Proof. R0(F [n])(l) = F [n](l) = F (l) = R0(F )(l). Moreover for α > 0 we have

Rα(F [n])(l) = R(Rγ(F [n]), Rγ(F [n]))(l))

for some γ < α with mc(γ) ≤ F [n](l) = F (l). Since Rγ(F )(l) ≥ l ≥ n the
induction hypothesis yields

R(Rγ(F [n]), Rγ(F [n]))(l)
= Rγ(F [n])(Rγ(F [n])(l)) + Rγ(F [n])(l) · 2
≤ Rγ(F )(Rγ(F )(l)) + Rγ(F )(l) · 2
= R(Rγ(F ), (Rγ(F ))(l)
≤ Rα(F )(l).
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Theorem 1. If F `α
m+1 Γ⊃C, then Rα(F )) `ωα

m Γ⊃C.

Proof. (Again we follow the lecture notes ‘Logic II’ of Wilfried Buchholz. In
addition we assign appropriate control operators to the derivations.) There are
two critical cases: (cut) and (∀r). Assume that the last inference was a cut with
cut formula D. Then we have the premises

F `α0
m+1 Γ⊃D

and
F `α0

m+1 Γ, D⊃C,

where
mc(α0) ≤ F (0). (10)

The induction hypothesis yields

Rα0(F ) `ωα0

m Γ⊃D

and
Rα0(F ) `ωα0

m Γ, D⊃C.

The reduction lemma yields

R(Rα0(F ), Rα0(F )) `ωα0#ωα0#ωα0

m Γ⊃C.

The claim follows if R(Rα0(F ), Rα0(F )(l) ≤ Rα(F )(l) holds for all l. But this
follows immediately from (10) and the definition of Rα.

The remaining critical case is an instance of the ∀right rule and we encounter
some intrinsic difficulty, which luckily can be resolved by Lemma 4. Assume that
F `α

m+1 Γ⊃∀xA(x) has been inferred from F [n] `αn
m+1 Γ⊃A(n) where

mc(αn) ≤ F [n](0) = F (n). (11)

The induction hypothesis yields

Rαn(F [n]) `ωαn

m Γ⊃A(n).

Then
(Rα(F ))[n] `ωαn

m Γ⊃A(n)

and
Rα(F ) `ωα

m Γ⊃∀xA(x),

provided that Rαn(F [n])(l) ≤ (Rα(F ))[n](l) holds for all l. If l ≥ n, then
Lemma 4 yields

Rαn(F [n])(l) ≤ Rαn(F )(l) ≤ Rα(F )(l)

since mc(αn) ≤ F (n) ≤ F (l) by (11). If l < n, then the Lemma 4 yields

Rαn(F [n])(l) ≤ Rαn(F [n])(n) ≤ Rαn(F )(n) ≤ Rα(F )(n) ≤ (Rα(F ))[n](l)

again by (11).
All other non-critical inferences are taken care of straightforwardly by the

induction hypothesis.
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Lemma 5. Assume that A is a negated equation. If F `α
0 ∀xA(x)⊃⊥ then

there is a m ≤ F (0) such that N |= ¬A[m]

Proof. By induction on α. Since the derivation is cut free the last rule was an
instance of the ∀left rule or the falsum rule. Assume first that the last inference
rule was an instance of the ∀left rule. Then there is an α0 < α and a k ≤ F (0)
such that F `α0

0 A(k),∀xA(x)⊃⊥. If N |= ¬A[k], then we are done. Otherwise
N |= A[k] and by assertion 2 of Lemma 1 we obtain F `α0

0 ∀xA(x)⊃⊥. Now the
induction hypothesis yields that there is an m ≤ F (0) such that N |= ¬A[m].

Finally assume that the last inference rule was the falsum rule. Then there
is an α0 < α such that F `α0

0 ¬⊥,∀xA⊃⊥. Then assertion 2 of Lemma 1 yields
F `α0

0 ∀xA⊃⊥ and the claim follows from the induction hypothesis.

Theorem 2 (Collapsing Theorem). Assume that A is an equation. Assume
that F `α

0 ⊃(∀x)(∃y)A(x, y). Then for all m there exists an n ≤ F (m) such
that N |= A[m,n].

Proof. F `α
0 ⊃(∀x)(∃y)A(x, y) yields F [m] `α

0 ⊃(∃y)A(m, y). Thus F [m] `α
0

(∀y)¬A(m, y)⊃⊥. Hence by Lemma 5 there is an n ≤ F [m](0) = F (m) such
that N |= A[m,n].

We write A ∼ A′ if there are a LZ-formula B(x1, . . . , xn) with pairwise dis-
tinct variables x1, ..., xn and closed LZ-terms t1, s1, . . . , tn, sn such that val(ti) =
val(si) for i = 1, ..., n and A = B(t1, ..., tn), A′ = B(s1, ..., sn).

Lemma 6 (Tautology Lemma). If C ∼ C ′ then λx.(2 · rk(C) + x) `2·rk(C)
0

C⊃C ′

Proof. By induction on rk(C).

Lemma 7. If Z ` C and FV (C) ⊆ {x1, . . . , xn}, then there exists a primitive
recursive operator F and k, r such that F [m1, . . . ,mn] `ω+k

r ⊃C[m1, . . . ,mn].

Proof. By induction on Z ` C. We only treat the induction scheme. Assume
that C has the form F (0) & (∀x)[F (x) → F (S(x))] → ∀xF (x) and assume for
simplicity that C is closed. We prove

λx(2 · rk(F ) + 2 · x)[n] `2·rk(F )+2·n
0 F (0),∀x(F (x) → F (S(x)))⊃F (n)

by induction on n. If n = 0 then the assertion follows from the Tautology
Lemma 6. Let H(x) = 2 · rk(F ) + 2 · x. Assume that

H[n] `2·rk(F )+2·n
0 F (0),∀x(F (x) → F (S(x)))⊃F (n).

Let G(x) = 2 · rk(C) + x. The Tautology Lemma 6 yields

G `2·rk(F )
0 F (S(n))⊃F (S(n)).
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Therefore

H[n + 1] `2·rk(F )+2·n+1
0 F (0), F (n) → F (S(n)),∀x(F (x) → F (S(x)))⊃F (S(n)).

An application of the ∀left rule yields the assertion.

As a useful abbreviation we define ωk(α) recursively as follows. ω0(α) := α
and ωk+1(α) := ωωk(α).

Let us assume that T is a standard primitive recursive Kleene predicate for
the unary partial recursive functions. Moreover if N |= (∀x)(∃y)T (e, x, y), then
ϕe denotes the function m 7→ U(µn : N |= T [e,m, n]).

Corollary 1. Assume that PA ` (∀x)(∃y)T (e, x, y). Then there is an α < ε0

such that ϕe is α-recursive.

Proof. Assume PA ` (∀x)(∃y)T (e, x, y). Then Z ` (∀x)(∃y)T (e, x, y). Hence
there exists a primitive recursive operator F and k, r such that

F `ω+k
r ⊃(∀x)(∃y)T (e, x, y).

By applying the reduction theorem we obtain an operator G defined by ωr(ω+k)
recursion from F such that

G `ωr(ω+k)
0 ⊃(∀x)(∃y)T (e, x, y).

But then ϕe is primitive recursive in G by the collapsing theorem.

To obtain a complete classification of the provably recursive functions, we
relate the operators with the classical Hardy hierarchy. This hierarchy is defined
with respect to a system of standard fundamental sequences. This system is
defined as follows. If α = ωα1 + · · ·+ ωαn+1 in normal form, then

α[x] := ωα1 + · · ·+ ωαn · (x + 1).

If α = ωα1 + · · ·+ ωαn in normal form with αn ∈ Lim, then

α[x] := ωα1 + · · ·+ ωαn[x].

If α = β + 1, then α[x] := β and 0[x] := 0. Finally put ε0[x] := ωx(1). Define
the Hardy hierarchy (Hα)α≤ε0) as follows:

1. H0(x) = x,

2. Hα(x) = Hα[x](x + 1) for α > 0.

Our goal is to show that every provably recursive function of PA is primitive
recursive in Hα for some α < ε0. Moreover each Hα is provably recursive in PA.

Theorem 3. For any α < ε0 PA ` (∀x)(∃z)[Hα(x) = z].
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Proof. The proof follows by formalizing the computation of Hα(x). A convenient
choice for representing ε0 in PA is e.g. as follows. Let (pi)i≥1 be an enumeration
of the prime numbers. Let ind(pi) := i. Let (m,n) denotes the greatest common
divisor of m and n. Put

m ≺ n ⇐⇒ m 6= n & [m = 1 ∨ n = 0 ∨[
(∀p | m

(m,n)
)(∃p′ | n

(m,n)
) ind(p) ≺ ind(p′)]

]
where p, p′ range over primes. Then 0 has order type ε0 whereas 1 has order
type 0. The n-th natural number is coded by 2n, ω is coded by 3 and ωω by
5 etc. It is well known that PA proves for any m 6= 0 the following scheme for
any LPA formula F :

∀x(∀y ≺ xF (y) → F (x)) =⇒ ∀x ≺ mF (x).

We therefore introduce a formula H(a, x, y, z) such that (provably within PA)
H(a, x, y, z) holds iff y is a computation tree for Hα(x) giving z as value of
Hα(x) when a codes α. The idea is to trace the recursive definition of Hα(x)
backwards to H0(z) and then to read off the result z at that moment by looking
at the input value z. Assume that a, x 7→ a[x] is a fixed primitive recursive
assignment of fundamental sequences to the codes. Then H(a, x, y, z) : ⇐⇒
y ∈ Seq & (∀i < lh(y)[lh((y)i) = 3
& i = 0 → (∃v ≤ y)[(y)i = 〈1, v, v〉])])
& i = lh(y)− 1 → (y)i = 〈a, x, z〉
& i + 1 < lh(y) → (∀u, v, w)[(y)i+1 = 〈u, v, w〉 → (y)i = 〈u[v], v + 1, w〉].

Then we obtain within PA the equivalence

H(a[x], x + 1, y, z) ↔ H(a, x, y ? 〈a, x, z〉, z). (12)

By induction up to any fixed α with code a one proves within PA using (12)

b � a & H(b, x, y, z) & H(b, x, y′, z′) → y = y′ & z = z′.

Moreover by induction up to any fixed α with code a one proves within PA
using (12)

b � a → (∀x)(∃y)(∃z)[H(b, x, y, z)].

Indeed, assume b � a and b 6= 1. Assume x is given. Then b[x] ≺ b. By the
induction hypothesis there exist y′ and z′ such that H(b[x], x + 1, y′, z′). Put
y := y′ ? 〈b, x, z′〉 and z := z′.

Thus we may define Hα(x) = z via the formula (∃y)H(a, x, y, z) where a is
the code for α. Then PA proves (∀x)(∃z)Hα(x) = z.

We are left with showing that our recursive operators can be majorized by
appropriate Hardy functions. For this purpose some elementary theory of the
Hardy functions has to be developed. Our presentation follows [8] but is entirely
self-contained and so we hope that this proves again useful for teaching purposes.
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Lemma 8. 1. α ∈ Lim =⇒ α[n] < α[n + 1] & α = sup{α[n] : n < ω}.

2. α[n] < β < α =⇒ α[n] ≤ β[0].

3. Hβ(n) < Hβ(n + 1).

4. α[m] < β < α =⇒ Hα[m](n + 1) ≤ Hβ(n).

5. β < α ∈ Lim & mc(β) ≤ n =⇒ β < α[n].

6. β < α & mc(β) ≤ n =⇒ Hβ(n) < Hα(n).

Proof. Assertion 1 follows by induction on α. Assertion 2 follows by induction
on α. Assertions 3 and 4 follow by simultaneous induction on β. Assertion 5
follows by induction on α. Assume that α = ωα1 + α2 and β = ωβ1 + β2 (in
normal form). If α1 < β1 and β2 > 0, then α < ωβ1 ≤ ωβ1 + β2[n] = β[n]. If
α1 = β1, then α2 < β2 ∈ Lim and the induction hypothesis yields α2 < β2[n]
thus α < β[n]. In the critical case is α1 < β1 and β2 = 0. If β1 ∈ Lim, then the
induction hypothesis yields α1 < β1[n] hence α < ωβ1[n] = β[n]. Thus assume
finally that β1 = β′ + 1. If α < β′, then α < ωβ′ ≤ β[n]. Thus we may assume
that α1 = β′. Write α = ωα1 ·m + α3 with α3 < ωα1 . Then m ≤ mc(α) ≤ n.
Thus α < ωα1 · n + ωα1 = β[n]. Assertion 6 follows by induction on α using
assertion 5.

We write NF (α, β) if α = 0 or β = 0 or α = ωα1 + · · · + ωαm in normal
form and β = ωβ1 + · · ·+ ωβn in normal form and αn ≥ β0. Thus α + β will be
a natural sum in this case.

Lemma 9. 1. β > 0 & NF (α, β) =⇒ (α + β)[n] = α + β[n] and
NF (α, β[n]).

2. NF (α, β) =⇒ Hα+β = Hα ◦Hβ.

3. Hωα+1(n) = H
(n+1)
ωα (n + 1) and Hωλ(n) = Hωλ[n](n + 1) if λ ∈ Lim.

4. Hα ≤ Hωα .

5. Hα#β(n) ≥ Hα(n).

6. mc(α[l]) ≤ max {mc(α), l + 1}

7. mc(α) ≤ 1 + mc(α[l])

8. Hα(l) ≥ l + mc(α).

9. Hα(k) + Hβ(l) + m ≤ Hα(k + Hβ(l) + m).

Proof. Assertions 1 and 2 follow by induction on β. Assertion 3 follows from
assertion 2. Assertion 4 follows by induction on α. Assertion 5 follows from
assertion 2. Assertions 6 and 7 follow by induction on α. Assertion 8 follows
by induction on α and 7. Assertion 9 follows from the strict monotonicity of
Hα.
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Theorem 4. Assume that F : N → N is a Skolem operator, i.e F is weakly
increasing and inflationary. Assume that F ≤ Hα for some α < ε0. Then
Rβ(F ) ≤ Hωα#β+1+8.

Proof. We prove that Rβ(F )(l) ≤ Hωα#β+1(l) for all l ≥ 8. If β = 0, then the
claim follows from

F (l) ≤ Hα(l) ≤ Hα+1(l) ≤ Hωα+1(l).

Assume that β > 0 Then Rβ(F )(l) = R(Rγ(F ), Rγ(F ))(l) for some γ < β with
mc(γ) ≤ F (l) ≤ Hα(l). The induction hypothesis yields for l ≥ 8 (with assertion
9 from Lemma 9, assertion 6 from Lemma 8 and assertions 4 and 5 from Lemma
9):

R(Rγ(F ), Rγ(F ))(l) ≤ R(Hωγ#α+1 ,Hωγ#α+1)(l)
≤ Hωγ#α+1(Hωγ#α+1(l)) + Hωγ#α+1(l) · 2
≤ Hωγ#α+1+ωγ#α+1(l) + Hωγ#α+1(l) · 2
≤ Hωγ#α+1·2(l + 2 ·Hωγ#α+1(l))
≤ Hωγ#α+1·2(Hωγ#α+1(Hωγ#α+1(3 · l)))
≤ Hωγ#α+1·4(l · 3)
≤ Hωγ#α+1·4(Hα(l) · 3)
≤ Hωβ#α·4(Hα(l) · 3)
≤ Hωβ#α·7(l)
≤ Hωβ#α+1(l).

Corollary 2. Assume that PA ` (∀x)(∃y)T (e, x, y). Then there is an α < ε0

such that ϕe is primitive recursive in and bounded by Hα.

Corollary 3. PA 0 (∀x)(∃y)[Hε0(x) = y].

Using the usual identification of hydras with ordinals below ε0 we obtain the
following result on the termination of the hydra game.

Corollary 4 (PA-unprovability of the termination of the hydra game).
PA 0 (∀α < ε0)(∃k)

[
α[0][1] . . . [k] = 0

]
.

Using Cichon’s 1983 proof from [9] we can now also quickly obtain the inde-
pendence result for the termination of the Goodstein sequences.

Results of this type may be used to start investigations on phase transitions
for independence results2 (see, for example, [24] for a recent survey) but we quit
at this point.

2This was the topic of a seminar by the author in Utrecht which followed his proof and
recursion theory lecture.
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Standpunkts. Dialectica 12 (1958), 280-287.
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