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Abstract

Harvey Friedman introduced natural independence results for the Peano
axioms via certain schemes of combinatorial well-foundedness. We con-
sider here parameterized versions of this scheme and classify exactly the
threshold for the transition from provability to unprovability in PA. For
this purpose we fix a natural bijection between the ordinals below ε0 and
the positive integers and obtain an induced natural well ordering ≺ on
the positive integers. We classify the asymptotic of the associated global
count functions. Using these asymptotics we classify precisely the phase
transition for the parameterized hierarchy of elementary descent recursive
functions and hence for the combinatorial well-foundedness scheme. Let
CWF(g) be the assertion

(∀K)(∃M)(∀m0, . . . , mM )[∀i ≤ M(mi ≤ K+g(i))→ ∃i < M(mi � mi+1)].

Let fα(i) := iH
−1
α (i) where H−1

α denotes the functional inverse of the α-th
function from the Hardy hierarchy. Then

PA ` CWF(fα) ⇐⇒ α < ε0.

Keywords: proof theory, phase transition, multiplicative number theory

1 Introduction

The Peano Axioms have been designed in a way such that every true statement
in the language for natural numbers is a consequence of these axioms. It has
therefore been a great surprise when Gödel showed in 1931 that there are true
statements about the natural numbers which do not follow from the Peano
Axioms (PA). The example Gödel came with, was somewhat artificial and thus
not completely satisfying. (It looked like the sentence ’this sentence is true but
unprovable’).

Since then logicians have therefore been searching for mathematically rele-
vant examples for independent statements. A breakthrough has been obtained
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in 1977 by Paris and Harrington [6] who showed that a slight modification of
the finite Ramsey theorem is unprovable in PA.

Around 1980 H. Friedman established further striking natural examples for
independent statements. He showed that the miniaturization of Kruskal’s the-
orem is not provable in predicative analysis. Moreover he introduced principles
of combinatorial well-orderedness and combinatorial well-quasi-orderedness as
paradigms for independent assertions [10].

In 1995 he studied jointly with Sheard [4] combinatorial well-orderedness
principles with respect to abstract elementary recursive ordinal notation sys-
tems. In this article we fix a concrete example for an elementary recursive
ordinal notation system for ε0 which goes back to Schütte 1977. For this spe-
cific natural well-ordering we are able to classify exactly the phase transition
from provability to unprovability for the underlying principle of combinatorial
well-orderedness. This is part of a general research program on phase transi-
tions in logic and combinatorics initiated by the second author (See, for example,
[9, 11, 12]). Our results in this paper reflect specific properties of the natural
well-odering of ε0, in particular numbertheoretic aspects of the coding. The
approach is related to Arai’s investigation on the slowly well-orderedness of ε0

[1] but instead of a norm based approach we work directly with natural number
codes for ordinals. We therefore had to employ methods from multiplicative
number theory (Dirichlet series, Rankin’s method) instead of additive methods
to obtain the asymptotic of the count functions. Nevertheless in the unprov-
ability part we make essential use of Arai’s result. Moreover we adapt parts of
Arai’s treatment to the current situation. It is still quite mysterious why this
is possible and it seems that this problem is closely related to Burris central
problem 12.21 [3] on finding general principles to explain why local additive
results lift to global multiplicative results. In our situation we have a lift from
an additive independence result to a multiplicative one.

1.1 Notation and definitions

With N we denote the natural numbers, starting at 0. Let (pi)i≥1 enumerate
the prime numbers in increasing order. Let P be the set of all primes. Define
the following transitive relation on N :
m ≺ n :⇔ (m 6= n&(n = 0 ∨ m = 1 ∨ [ m

gcd(m,n) = pm1 · . . . · pmk
& n

gcd(m,n) =
pn1 · . . . ·nl

&∀i ≤ k∃j ≤ l(mi ≺ nj ]))
Then 〈N+,≺〉 ' 〈E ≤ ε0, <〉.

A multiplicative number system 〈A,P, ·, 1,M〉 is a countable free commuta-
tive monoid 〈A, ·, 1〉 with P the set of indecomposable elements (’primes’), and
M a multiplicative norm on A (i.e. M : A → N , M(a) = 1 ⇔ a = 1, M(a · b) =
M(a) ·M(b) for all a, b ∈ A), such that for every n ≥ 2, {a ∈ A : M(a) = n} is
finite.
Let q1 := p2 and qk+1 := pqk

for k ≥ 1; and q0(d) := d and qk+1(d) := pqk(d) for
k ≥ 1
For K ≥ 1, let QK := {m ∈ N : m ≺ qK} and QK(d) := {m ∈ N : m ≺ qK}
Define a norm M(n) := n
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Then 〈QK ,P ∩ QK , · ↑ (QK × QK), 1,M ↑ QK〉 is a multiplicative system. (↑
means restriction). Let CQK

(n) := #{a ∈ QK : M(a) ≤ n} be its global count
function. In [2] the following lower- and upperbounds are proven.

Lemma 1.1 1. CQK
(n) ≥ exp

(
22−K

(
ln(n)

lnK−1(n)

))
for K ≥ 3, n ≥ T (K) :=

max{ee3
4 , eK}

2. ∃V ∀n CQK
(n) ≤ exp(V ln(n)

lnK−1(n) ) for all K ≥ 3

An additive number system 〈< A,P, ·, 1, N〉 is a countable free commutative
monoid 〈A, ·, 1〉 with P the set of indecomposable elements, and with N an
additive norm on A (i.e. N : A → N , N(a) = 0 ⇔ a = 1, N(a·b) = N(a)+N(b)
for all a, b ∈ A), such that for every n ≥ 1, {a ∈ A : N(a) = n} is finite
Let N(1) := 0 and N(Πi∈Ip

mi
i ) :=

∑
i∈I mi · (N(i) + 1) be an additive norm.

Let cQK
(n) := #{a ∈ QK : N(a) = n} be the local count function.

Bounds for the local count function have already been obtained in the literature
on additive number theory, and even the asymptotic behaviour. For example a
famous theorem of Hardy and Ramanujan says

cQ2(n) ∼
exp

(
π
√

2
3n

)
4
√

3n

Related results for the set QK for K ≥ 3 have been obtained by [13].
We write a1 := a, ak+1 := aak , a0(d) := d, ak+1(d) := aak(d) for a, d ∈ R, k ∈

N . For n ≥ 1 let ln1(n) := max{(1, ln(n)} and lnk+1(n) := max{1, ln1(lnk(n))}
With |x| we denote the binary length of x. Thus |0| := 1 and |x| := dlog2(x+1)e
for x > 0. We call a function h : N → N unbounded if h is weakly increasing and
limx→∞ h(x) = ∞. If h is unbounded, we let h−1(x) := min{n ∈ N : x < h(n)}.
We call an unbounded function h log-like if (∀x > 0)[h(x−1) < h(x) ⇒ (∃y)[x =
2y]] We call an unbounded function h exp-like if (∀x)[F (x) ∈ {0}∪{2y : y ∈ N}].

For any limit ordinal λ < ε0, let (λ[n])n∈N be the fundamental sequence
of λ. Thus if λ = ωα1 + . . . + ωαk > α1 ≥ . . . ≥ αk = β + 1, then λ[n] =
ωα1 + . . . + ωαk−1 + ωβ · n and if λ = ωα1 + . . . + ωαk > α1 ≥ . . . ≥ αk ∈ Lim,
then λ[n] = ωα1 + . . . + ωαk−1 + ωαk[n].
For all ordinals α ≤ ε0 we define the explike function Fα : N → N as follows
F0(x) := 2x, Fα+1(x) := F x+1

α (x), where the upper index denotes the number
of iterations, and Fλ(x) := Fλ[x](x) if λ is a limit.

A basic result is that PA proves the totality of Fα iff α < ε0. Thus PA does
not prove the assertion (∀x)(∃y)[Fε0(x) = y]. See [4] for a proof.
For all α ≤ ε0 we put fa(K, i) := K + i

|i|
F
−1
α (i)

1.2 Summary of the result

In this section we establish the following result.
1. PA 0 (∀K)(∃M) ((∀m0, · · · ,mM−1)[0 � m0&∀i < M : mi ≤ fε0(K, i)]) ⇒
∃i < M − 1 : mi � mi+1
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2. If α < ε0 then PA ` (∀K)(∃M) ((∀m0, · · · ,mM−1)[0 � m0&∀i < M : mi ≤ fα(K, i)]) ⇒
∃i < M − 1 : mi � mi+1

So if we define the function: D(K, h) := max{M : (∃m0 � · · · � mM−1)[0 �
m0&(∀i < M)mi ≤ K + i|i|h(i) ]} then our theorem is equivalent to
PA ` (∀K)(∃M)M > D(K, F−1

α ) ⇐⇒ α < ε0
This theorem is the multiplicative analogue of the following result of [1] and [9]:
1. PA 0 (∀K)(∃M)

(
(∀m0, · · · ,mM−1)[0 � m0&∀i < M : N(mi) ≤ K + |i| · |i|F−1

e0 (i)

)
⇒

∃i < M − 1 : mi � mi+1

2. If α < ε0 then PA ` (∀K)(∃M)
(
(∀m0, · · · ,mM−1)[0 � m0&∀i < M : N(mi) ≤ K + |i| · |i|F−1

a (i)

)
⇒

∃i < M − 1 : mi � mi+1

Or, with L(K, h) := max{M : (∃m0 � · · · � mM−1)[0 � m0&(∀i <
M)N(mi) ≤ K + |i| · |i|h(i)]}

PA ` (∀K)(∃M)M > L(K, F−1
α ) ⇐⇒ αε0

So by replacing the additive norm N with the multiplicative norm M , and
replacing the function K+|i|·|i|F−1

a (i) with K+i
|i|

F
−1
α , we get again an indepen-

dence result. The first is obtained by using bounds on the local countfunction
cQK

, the latter by using bounds on the global count function CQK
. This suggests

the existence of a relation between local additive and global multiplicative. In
fact, this parallelism is stated as an open problem (12.21) in the book of Burris
[3]

In [1] it is shown that, with l(i) = |i|2, Fε0 is bounded by K 7→ L(2K + 16, l).
Therefore the latter function is not provably total in PA. In section 3.3 of this
paper we show that Fε0 is also bounded by a function which involves D. This
yields the unprovability assertion.
For the provability result, section 3.2, we show that for α < ε0, D is bounded
from above by a function which is primitive recursive in Fα. This implies that
D is provable recursive in PA.

Of course, we also need to show that the assertion about which the independence
result is retrieved, is true indeed. This is a simple consequence of Königs lemma
(every finitely-branched infinite tree has a path), and the fact that an descending
chain of ordinals cannot be infinite. Remember that 〈N+,≺〉 ' 〈E ≤ ε0, <〉

Lemma 1.2 Let || || be any norm, let f be any function N → N
(∀K)(∃M)∀α0, . . . , αM ≺ 0(∀i ≤ M : ||αi|| ≤ K + f(i) ⇒ ∃i : αi � αi+1)

Proof
Let

b := {< α0, . . . , αM >: ∀i ≤ M : ||αi|| ≤ K + f(i), 0 � α0 � . . . � αM}

Suppose the lemma is false
Then (∃K)(∀M)∃ < α0, . . . , αM >∈ b
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Then b is an infinite tree. b is also finitely branched, since: suppose < α0, . . . , αM >∈
b. If < α0, . . . , αM+1 >∈ b then ||αM+1|| ≤ K + f(m + 1), so there are only
finite possible succesors.
By Königs lemma, there is a path f : N → N , (∀i) < f(0), f(1), . . . , f(i) >∈ b.
But then f(0), f(1), . . . are isomorph with an infinite descending chain of ordi-
nals, which is impossible

2 The provability assertion

Lemma 2.1 1. x ≥ 4 ⇒ x2 ≤ 2x

2. x ≥ 3 ⇒ 3n(x) ≤ 2n(2x)
3. |2K(y)|K ≥ y
4. 2K−1(|N + 1|K) ≤ N + 1 for all K ≥ 4, N + 1 ≥ 2K−1(K − 2)
5. K ≥ 4&1 ≤ m0 ≤ K + 1 ⇒ m0 � qK−1.
6. h loglike ⇒ h−1 explike
7. F explike ⇒ F−1 loglike

Proof
1. and 2. See Proposition 14 in [1]
3. Induction on K. If K=1 then |21(y)| = dlog2(2y + 1)e ≥ dlog2(2y)e = y
And |2K+1(y)|K+1 = | |21(2K(y))| |K ≥ |2K(y)|K ≥ y
4. First we show it is true for N + 1 = 2K−1(K − 2) using induction on K ≥ 4
K = 4 : 24−1(|24−1(4− 2)|4) = 24 = N + 1
K > 4 : 2K(|N + 1|K+1) = 21(2K−1(||N + 1||K) ≤ 21(|N + 1|)
Take N + 1 = 2K−1(K − 2) : 2K(|2K−1(K − 2)|K+1) ≤ 21(|2K−1(K − 2)|) =
21(2K−2(K − 2)) = 2K−1(K − 2)
Since 2K−1(|N + 1|K) grows slower in N than 1, the assertion follows for all
N + 1 ≥ 2K1(K − 2)
5. For K = 4 it is checked by hand.
For K ≥ 5 we prove the assertion by induction on m0

Suppose that m0 � qK−1

If qK−1|m0 then, since m0 6= qK−1, K +1 ≥ m0 > qK−1 > K +1 Contradiction.
Thus qK−1 is not a divisor of m0. Since qK−1 is prime, this implies that
gcd(m0, qK−1) = 1. Them by definition of ≺: there is a prime pj |m0 s.t.
qK−1 ≺ pj , i.e. pqK−2 ≺ pj , i.e. qK−2 ≺ j. (Here we use the fact that
∀a, b 6= 0, 1 a ≺ b ⇔ pa ≺ pb, which follows easy from the definition of ≺)
But j < m0 ≤ K + 1, and thus j ≤ K, K − 1 ≥ 4 ⇒ j � qK−2 by induction
hypothesis. Contradiction.
6. Let h be loglike. h−1(x) = min{n ∈ N : h(n) > x}. Suppose h−1(x) = m 6=
0. Then h(m) > x and h(m− 1) ≤ x, hence h(m) > h(m− 1) ⇒ (∃y)m = 2y

Thus (∀x)h−1(x) ∈ {0}
⋃
{2y : y ∈ N}, hence, h−1 is explike.

7. Let F be explike. F−1(x) = min{n ∈ N : F (n) > x}. Let x > 0 be arbitrary.
Suppose m = F−1(x) > F−1(x − 1) = m′. If F (m′) > x then m = F−1(x) ≤
m′ = F−1(x− 1) but we assumed m > m′

Neither is possible F (m′) < x because then x − 1 < F (m′) < x which is not
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possible
Hence, F (m′) = x, hence, x = 2y ∃y

Theorem 1 Let h be the loglike function h = F−1
α (i) for some α < ε0. Let

K ≥ 4 and let V be as in lemma 1.1.1
Then D(K, h) ≤ max{2Fα(K), 2K(K − 2), 2K+1(5V )}

Proof
Fix K ≥ 4 and let N1 := max{2Fα(K), 2K(K − 2), 2K+1(5V )}.

Choose an arbitrary sequence m0, . . . ,mn−1 s.t. 0 � m0 � · · · � mn−1 and
mi ≤ K + i(|i|h(i)) for all i = 0, · · · , n− 1. We need to show n ≤ N1.
We proof this by contradiction. Assume n > N1.

h is loglike, so Fα = h−1 is explike. From this fact together with K ≥ 4, it
follows that ∃N ≥ 4 s.t. N1 = 2N+1.
We have K ≥ 4 and m0 ≤ K + 0|0|h(0) ≤ K + 1, so by lemma 2.1.5 m0 � qK−1.
By transitivity of �, mi ≺ qK−1 for all i = 0, · · · , n− 1.
Since n > N1 = 2N+1 we thus have m2N , · · · ,m2N+1−1 ∈ QK−1.

h is loglike so h(i) = h(2N ) for all i ∈ [2N , 2N+1 − 1].
Let k := K + (2N+1 − 1)|2

N+1−1|h(2N ) . Then we have
∀i ∈ [2N , 2N+1 − 1] : mi ≤ K + (i)|i|h(i) ≤ k
And hence CQK−1(k) ≥ card([2N , 2N+1 − 1]) = 2N

By lemma 1.1.1 we also have CQK−1(k) ≤ exp(V ln1(k)
lnK−2(k) )

To reach a contradiction we’ll show that exp(V ln1(k)
lnK−2(k) ) < 2N , which is equiv-

alent to

V
ln1(k)

N
< lnK−2(k) ln(2) (1)

Step one ln1(k)
N ≤ ln(2) · (1 + 2|N + 1|K)

Proof step one:
By definition N1 ≥ 2F (K), therefore 2N ≥ F (K) = h−1(K)
h−1(K) = min{n : K < h(n)}, so K < h(h−1(K))
2N ≥ h−1(K) ⇒ h(2N ) ≥ h(h−1(K)) > K (h is weakly increasing) and hence
K ≤ h(2N )− 1
Thus

|N + 1|h(2N )−1 ≤ |N + 1|K (2)

An easy induction on K shows 2K(K−2) ≥ 2K+1, hence 2N+1 = N1 ≥ 2K(K−
2) ≥ 2K+1, and thus N ≥ K.
For k we have using (2)

k = K + (2N+1 − 1)|2
N+1−1|h(2N ) ≤ K + (2N+1)|N+1|h(2N )−1

= K + 2(N+1)|N+1|h(2N )−1 < N + 2(N+1)|N+1|K
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≤ 2N+1 · 2(N+1)|N+1|K

(since ∀y ≥ 1 : N + y ≤ y · 2N+1)
Hence

ln1(k) ≤ ln(2N+1 · 2(N+1)|N+1|K ) = (N + 1)(|N + 1|K + 1) ln(2)

And thus
ln1(k)

N
≤ (N + 1)

N
(|N + 1|K + 1) ln(2) ≤

(
5
4
|N + 1|K +

5
4

)
ln(2)

(since N ≥ 4)

≤ (
5
4
|N + 1|K + 1 +

1
4
· |N + 1|K) ln(2)

(since |N + 1|K ≥ 1)
≤ (2|N + 1|K + 1) ln(2)

Step two V · (1 + 2|N + 1|K) ≤ lnK−2(k)
(This together with step one proves (1) and hence the contradiction)
Proof step two:
Let x := V (1 + 2|N + 1|K). We’ll show eK−2(x) ≤ k

N1 ≥ 2K+1(5V ) ⇒ N + 1 ≥ 2K(5V )
⇒ |N + 1|K ≥ |2K(5V )|K ≥ 5V (Lemma 2.1.3) ≥ 5 > 4

This gives 2x = 2V (1 + 2|N + 1|K) < 4V + 4V |N + 1|K
< |N + 1|KV + 4V |N + 1|K = 5V |N + 1|K < (|N + 1|K)2.

Hence we get
eK−2(x) ≤ 3K−2(x) ≤ 2K−2(2x)

(Lemma 2.1.2)
≤ 2K−2((|N + 1|K)2) ≤ 2K−1(|N + 1|K)

by applying Lemma 2.1.1: |N+1|K ≥ 4 ⇒ (|N+1|K)2 ≤ 2|N+1|K ⇒ 2K−2((|N+
1|K)2) ≤ 2K−2(2|N+1|K ) = 2K−1(|N + 1|K)

Using lemma 2.1.4:

eK−2(x) ≤ 2K−1(|N + 1|K) ≤ N + 1 < k

and we have reached a contradiction
(The last estimation N + 1 < k is true because k = K + (N1 − 1)|N1−1|h(2N ) >

(N1 − 1)|N1−1|h(2N ) ≥ (N1 − 1)1 = 2N+1 − 1 > N + 1)

Corrolary If α < ε0 then PA ` (∀K)(∃M)M > D(K, h)

Proof
D(K, h) is bounded by a function which is primitive recursive in Fα, hence
provably total in PA.
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3 The unprovability assertion

Define the functions g1, g, r as follows:
r(n) := 2n + 16
g1(n) := max{2n+2(n+1), 21(21(21)−1), 2T (n+3)} where T is the function from
lemma 1.1.2
g(n) := 621(3n+20)−1 · 221(3n+20) · 2g1(n)

l(i) := |i|2

Lemma 3.1 1. 2(|i|−1) ≤ i ≤ 2|i| − 1
2. i > g1(n) ⇒ l(|i|) ≥ n + 3 + r(n)
3. i > g1(n) ⇒ (|i| − 1) ≥ 8l(|i|)2
4. qm+r(n) · 2g1(n) ≤ g(n)

Proof
1. |i| = α ⇒ 2α ≤ i ≤ 2α+1 − 1 ⇒ 2|i|−1 ≤ i ≤ 2|i| − 1
2.

i > g1(n) ≥ 2n+2(n + 1) ⇒ l(|i|) = ||i||2 > ||2n+2(n + 1)||2 = |2n+1(n + 1) + 1|2

≥ |2n+1(n + 1)|2 = (2n(n + 1) + 1)2

For n = 1 : (21(1 + 1) + 1)2 = 25 > 22 = 3n + 19
For n > 1 observe that (2n(n + 1) + 1)2 grows faster in n then 3n + 19.
3. If γ ≥ 21 then 2γ > 8(γ + 1)4.
Hence,

β ≥ 8 · 224 ⇒ (
1
8
β)

1
4 − 1 ≥ 21

⇒ 2( 1
8 β)

1
4−1 > 8((

1
8
β)

1
4 − 1 + 1)4 = β

Applying assertion 1 to |i| gives 2(||i||−1) ≤ |i| ≤ 2||i||−1, and applying assertion
1 again to these bounds gives 22(||i||−1)−1 ≤ i ≤ 22||i||−1 − 1
Now

i ≥ 21(21(21)− 1) ⇒ ||i|| ≥ 22 ⇒ 8l(|i|)2 = 8||i||4 ≥ 8 · 224

⇒ 2( 1
8 8||i||4)

1
4−1 > 8||i||4

⇒ 2||i||−1 > 8l(|i|)2 ⇒ |i| − 1 ≥ 2||i||−1 − 1 ≥ 8||i||4

4. Put m := n + 3 and z(n) := 6n ln1(n). Note that z is increasing in
n and that pn ≤ z(n) . This last property follows from n ≥ 20 ⇒ pn ≤
n(ln1(n) + ln1 ln1(n)− 1

2 ), which is proven by [7].

By repeated application we get qk ≤ z(k)(2).
And thus qm+r(n) · 2g1(n) ≤ z(m+r(n))(2) · 2g1(n) ≤ z(3n+20)(2) · 2g1(n)

We claim z(k)(n) ≤ 621(k)−1 · n21(k). This follows with induction: z(1)(n) ≤ 6n2

and

z(k+1)(n) = z(z(k)(n)) ≤ z(621(k)−1·n21(k)) ≤ 6(621(k)−1·n21(k))2 = 621(k+1)−1·n21(k+1)
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And thus

qm+r(n) · 2g1(n) ≤ z(3n+20)(2) · 2g1(n) ≤ 621(3n+20)−1 · 221(3n+20) · 2g1(n) ≤ g(n)

Theorem 2 Let h be the log-like function h(i) = F−1
εo

(i), with inverse h−1 =
Fε0 Then D(g(n), h) ≥ Fε0(n) for all n

Proof
Let m := n + 3. Recall l(i) := |i|2 and

L(r(n)), l) = max{M : (∃0 � m0 � . . . � mM−1)(∀i)N(mi) ≤ r(n) + |i| · |i|l(i)}

Choose a sequence 0 � l0 � . . . � lM0 with ∀i N(li) ≤ r(n)+ |i| · |i|l(i) and M0

maximal (i.e. M0 = L(r(n), l)− 1)
Since |i|2 ≥ 1 ⇒ |i||i|2 ≤ |i| ⇒ |i| · |i|l(i) = |i| · |i||i|2 ≤ |i| · |i| = l(i)
And thus ∀i N(li) ≤ r(n) + l(i).

From this sequence, we’ll construct a sequence 0 � m0 � . . . � mh−1(n) with
∀i mi ≤ g(n) + i|i|h(i) . This proves the assertion.

First we observe that l0 = qr(n).
Since suppose not. Then either l0 ≺ qr(n) or l0 � qr(n). In the first case we have
0 � qr(n) � l0 � . . . � lM0 . Since ∀x N(qx) = x + 1:
N(qr(n)) = r(n) + 1 = r(n) + |0| · |0|l(0)
N(li) ≤ r(n) + |i| · |i|l(i) ≤ r(n) + |i + 1| · |i + 1|l(i+1) And hence M0 is not
maximal. Contradiction.
In the case that l0 � qr(n), we either have that ∃α > 1 l0 = qr(n) · α and then
N(l0) = N(qr(n)) + N(α) > N(qr(n)) = r(n) + 1 = r(n) + |0| · |0|l(0). Contradic-
tion.
Or we have that ∃β > r(n)&∃γ l0 = qβ · γ and then
N(l0) > N(qβ) = β + 1 > r(n) + 1 = r(n) + |0| · |0|l(0). Contradiction.

For 0 ≤ i ≤ g1(n) we put mi := qm+r(n) · 2g1(n)−i. Then obviously 0 � m0 �
. . . � mg1(n). And mi ≤ g(n) by lemma 3.1.4

For g1(n) < i ≤ h−1(n) we define k(i) := 2(|i|−1)(|i|h(i)−1)

Qm(≤ k(i)) := {l ≺ qm : l ≤ k(i)}
And enumQm(≤k(i)) is the enumeration function of enumQm(≤k(i)) with respect
to ≺.
(So enumQm(≤k(i))(2|i|−i) is the (2|i|−i)-th element of the set {l ≺ qm : l ≤ k(i)}
ordered by ≺. Below we show that such an element indeed exists)
We put mi := qm(l|i|) · enumQm(≤k(i))(2|i| − i). Observe that li is welldefined
since |i| ≤ i ≤ h−1(n) ≤ L(r(n), l) where the last inequality is proven in [1].
For all i > g1(n)

mg1(n) = qm+r(n) = qm(qr(n)) = qm(l0) � qm(l|i|)
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since l0 � l|i|. And thus mi ≺ mg1(n) for all i > g1(n).

If |i| = |i + 1| then k(i) = k(i + 1), qm(l|i|) = qm(l|i+1|) and

enumQm(≤k(i))(2|i| − i) � enumQm(≤k(i+1))(2|i+1| − (i + 1))

And thus mi � mi+1

If |i| < |i + 1| then l|i| � l|i+1| ⇒ qm(l|i|) � qm(l|i+1|)
Also enumQm(≤k(i))(2|i| − i) ≺ qm(l|i|) and enumQm(≤k(i+1))(2|i+1| − (i + 1)) ≺
qm(l|i|)
And thus mi � mi+1

So we have shown mg1(n) � mg1(n)+1 � . . . � mh−1(n)

Now we have to show that for those i, mi ≤ g(n) + i|i|h(i)

In [2] it is proven that m ≤ 22·N(m)2 for all m ≥ 1. Using this we obtain

mi ≤ qm(l|i|) · k(i) ≤ 22(N(qm(l|i|)))
2
· k(i)

= 22(m+N(l|i|))
2
· k(i) ≤ 22(m+r(n)+l(|i|))2 · k(i)

Using Lemma 3.1.1, 3.1.2, 3.1.3 we get

mi ≤ 22(2l(|i|))2 · k(i) = 28l(|i|)2+(|i|−1)(|i|h(i)−1)

≤ 2(|i|−1)+(|i|−1)(|i|h(i)−1) = (2(|i|−1))|i|h(i) ≤ i|i|h(i) ≤ i|i|h(i) + g(n)

We still had to show that the (2|i| − i)-th element of Qm(≤ k(i)) exists. We’ll
show that #Qm(≤ k(i)) ≥ 2|i| − 1.
Note h−1(n) ≥ i ⇒ h(i) ≤ n. And from i > g1(n) ≥ 2T (m) follows k(i) =
21((|i| − 1)(|i|h(i) − 1)) ≥ 21((|i| − 1)(|i|n − 1)) ≥ 21(|i| − 1) ≥ T (m)
So by lemma 1.1.2, CQm(k(i)) ≥ exp(22−m ln(k(i))

lnm−1(k(i)) )
i > g1(n) ≥ 2n+2(n+1) implies 22−m(|i|n−1) ≥ lnm−1(21((|i|−1)2)), since the
lefthandside grows faster in i than the righthandside, and for i = 2n+2(n + 1)
the lefthandside is greater than the righthandside
Hence

22−m(|i|n − 1) ≥ lnm−1(21((|i| − 1)2)) ⇒

22−m(|i|h(i)−1) ≥ 22−m(|i|n−1) ≥ lnm−1(21((|i|−1)(|i|h(i)−1)) = lnm−1(k(i))

⇒ 22−m ln(k(i)) = 22−m(|i|h(i) − 1)(|i| − 1) ln(2)

≥ (|i| − 1) ln(2) lnm−1(k(i)) = ln(2|i|−1) lnm−1(k(i))

⇒ 22−m ln(k(i))
lnm−1(k(i))

≥ ln(2|i|−1)
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⇒ CQm
(k(i)) ≥ exp(22−m ln(k(i))

lnm−1(k(i))
) ≥ 2|i|−1

Corrolary PA 0 (∀K)(∃M)M > D(K, F−1
ε0 )

Proof
Fε0 is not provably total in PA, hence D(g(n), F−1

ε0 ) is not provably total in PA,
and the assertion follows.
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