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Abstract
A subrecursive rewriting framework for the classical Kirby and Paris

hydra battle is introduced. The termination of a natural rewrite sys-
tem RH for the Hydra battle is shown by using ordinals and additionally
by proving an upper bound on the derivation lengths in terms of a fast
growing function of ordinal index ε0. It is shown that the RH -derivation
lengths cannot be bounded by a fast growing function of ordinal index
less that ε0, hence the termination of RH cannot be proved in first or-
der Peano arithmetic. This yields that any natural pointwise termination
ordering for the hydra battle rewrite system RH must have order type
equal to the Howard Bachmann ordinal, as conjectured by E.A. Cichon.
Rewrite systems for various levels of the extended Grzegorczyk hierarchy
(up to ordinal level ε0) are introduced and their derivation lengths are
classified with appropriate functions from the fast growing hierarchy.

1 A subrecursive rewriting framework for the
hydra battle

We begin with recalling the definition of the classical Kirby and Paris hydra
battle [cf.[12]]. Since the geometrical formulation of this battle is well known
we will not repeat it here. Instead we will directly deal with the underlying set
of involved ordinal notations for the ordinals less than ε0. The (commutative)
natural sum of ordinals is denoted by #. See, for example, [14, 18] for a defini-
tion. Due to the Cantor normal form theorem every ordinal less than ε0 can be
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represented in terms of 0, ω and # (modulo permutative congruence in a unique
way). A hydra α is an ordinal expression built up in terms of 0, ω and #. A
step in the battle is described according to the following rules.
Rule 1. Assume that the hydra α has the form γ[[ωβ#ω0

]], i.e. ωβ#ω0
appears

as a subexpression in α. If Hercules chops off the indicated head ω0 of α then
the hydra α chooses a natural number x and transforms itself into the hydra
α′ = γ[[ωβ · x]]. In this case the number of heads of α′ will usually be larger
than the number of heads of α.
Rule 2. Assume that the hydra α has the form β#ω0. If Hercules chops off the
indicated head ω0 of α then the the hydra α transforms itself into the hydra β.

Using the fact that there does not exist a strictly descending chain of ordinals
less than ε0 it is easily seen that independently of Hercules’ strategy the hydra
α transforms itself into 0, i.e. a hydra without any head and Hercules always
wins the battle (cf. [12]).

Now we consider a special type of the Hydra battle, its miniaturization. At
the beginning the hydra α chooses a natural number x. In the first step of the
battle the hydra can only reproduce x many copies of expression of the form ωβ

if rule 1 applies. In the second step the hydra can only reproduce x + 1 many
copies of expression of the form ωβ if rule 1 applies. So, in step k, the growth
rate on reproductions is bounded by the parameter x+ k− 1. The hydra battle
then yields a sequence of ordered pairs 〈α : x〉, 〈α(x) : x + 1〉, . . . , 〈α(x)(x +
1) . . . (x+ k) : x+ k + 1〉, where α(x)(x+ 1) . . . (x+ k) is the hydra after k + 1
steps in the battle.

How many steps k does Hercules need for winning the battle, i.e. how does
the least k so that α(x)(x + 1) . . . (x + k) = 0 depend on α and x? It is well
known that an appropriate bound on k can be computed in terms of the Hardy
hierarchy.
For α < ε0 and x < ω we define α[x] as follows.

1. 0[x] := 0.

2. (β + 1)[x] := β.

3. If α = ωα1 + · · ·+ωαn+1 > α1 ≥ . . . ≥ αn, then α[x] := ωα1 + · · ·+ωαn ·x.

4. If α = ωα1 + · · · + ωαn > α1 ≥ . . . ≥ αn and αn is a limit ordinal, then
α[x] := ωα1 + · · ·+ ω(αn)[x].

The Hardy hierarchy (Hα)α<ε0 of number-theoretic functions is defined as fol-
lows [cf.[16]].

1. H0(x) := x.

2. Hα(x) := Hα[x](x+ 1).

Then as it is well known the number k of steps which Hercules does need using
even the worst strategy for winning the restricted battle against the hydra α,
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which has chosen x at the beginning, is bounded in terms of Hα(x) and this
bound turns out to be essentially optimal. Since (Hα)α<ε0 exhausts the provably
total functions of Peano arithmetic, the Π0

2-assertion that for each hydra α and
each starting value x there exists a k, so that Hercules wins in k steps, is not
provable in Peano arithmetic (cf. [12]).

For defining a rewrite system for the miniaturization of the Hydra battle
we are going to mimic the definition of the Hardy functions. The appropriate
framework for doing so is not immediately transparent. For example, if one
uses a standard first order rewrite system [cf.[9]] then the formal term which
corresponds to the involved ordinal operation on ordinals less than ε0 has also
to be considered as a possible number-theoretic argument of the term which
represents the Hardy function. The resulting rewrite system [cf. the example
in [9]] will then have a not absolutely transparent semantics.

The new idea in our approach is the introduction of typed (or higher order)
expressions which are not considered as (first order) terms (of type zero) but
which are used for defining terms. The rewriting itself applies only to terms.
Once this decision is made the approach becomes transparent and it has its
intended semantics. This approach is related to the notion of higher order
rewriting which is investigated in [19, 20]. We now come to the formal develop-
ment of the rewrite system for the hydra battle.

Let X be a countable infinite set of variables. Let 0 be a nullary and S be a
unary function symbol. Let H and ω be symbols.

Definition 1.1 Inductive definition of a set EH of expressions and a set TH

of terms.

1. If x ∈ X then x ∈ TH .

2. 0 ∈ TH .

3. If t ∈ TH then St ∈ TH .

4. If t ∈ TH and α ∈ EH then Hα(t) ∈ TH .

5. If t ∈ TH then ω0 · t ∈ EH .

6. If t1, . . . , tn ∈ TH and if α1, . . . , αn ∈ EH then ωα1 ·t1+· · ·+ωαn ·tn ∈ EH .

Definition 1.2 Inductive definition of a set C of contexts.
Let ∗ be a symbol.

1. If α, β ∈ EH then ∗, α+ ∗, α+ ∗+ β, ∗+ β ∈ C.

2. If γ ∈ C, t0, . . . , tn ∈ TH and if α1, . . . , αn ∈ EH , then ωγ · t0 + ωα1 · t1 +
· · ·+ωαn ·tn ∈ C, ωα1 ·t0+· · ·+ωαi ·ti−1+ωγ ·ti+ωαi+1 ·ti+1 · · ·+ωαn ·tn ∈ C
and ωα1 · t0 + · · ·+ ωαn · tn−1 + ωγ · tn ∈ C.
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If γ ∈ C and β ∈ EH then γ[[β]] denotes the result of replacing (the only
occurrence of) ∗ in γ by β; then γ[[β]] ∈ EH . In the sequel γ ranges over
contexts (and also over ordinal contexts which are defined similarly by replacing
+ throughout #).

Definition 1.3 We define a set RH of rewrite rules as follows.

1. Hωα1 ·0+···+ωαn ·0(z) → z.

2. Hγ[[ωα+ω0·S0·Sx]](z) → Hγ[[ωα+ω0·S0·x+ωα·z]](Sz).

3. Hγ[[ω0·Sx]](z) → Hγ[[ω0·x]](Sz).

If σ : X → TH is a substitution then tσ denotes the result of replacing every
occurrence of a variable x in t by σ(x); then tσ ∈ TH .

Definition 1.4 Definition of the rewrite relation →RH
.

Let →RH
be the least binary relation on TH so that.

1. If σ : X → TH and if l→ r ∈ RH then lσ →RH
rσ.

2. If s→RH
t then Hα(s) →RH

Hα(t).

3. If s→RH
t then Hγ[[ωα·s]](r) →RH

Hγ[[ωα·t]](r).

Definition 1.5 Definition of a numeral n for n < ω.
Let 0 := 0 and m + 1 := Sm.

Definition 1.6 Definition of Φ : ε0 → EH .

1. Φ(0) := 0.

2. Φ(ωα1 ·m1 + · · ·+ ωαn ·mn) := ωΦ(α1) ·m1 + · · ·+ ωΦ(αn) ·mn.

Proposition 1.1 For every α < ε0 and n ∈ ω there exists a reduction
HΦ(α)(n) →RH

· · · →RH
SHα(n)0 of length Hα(n)− n.

Proof. The hydra α has to be in Cantor normal form with respect to 0, ω and +.
It has to mimic the definition of the fundamental sequences for the ordinals less
than ε0. Hercules has always to chop off the rightmost head. Then the battle
corresponds the computations of the least k so that α[n][n+ 1]. . .[n+ k] = 0.
This k is equal to Hα(n)− n by well known results. [cf., for example, [4] for a
proof.] 2

R is therefore a natural formulation of a rewrite system for the hydra battle and
the Hardy functions. Different strategies for Hercules correspond to a different
number of steps which Hercules does need for a win. These differences are
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reflected in different numerals computed by the rewrite system RH which is not
confluent.

For defining a system which computes uniquely determined normal forms one
has to restrict the rewrite rules with respect to the following formal analogue of
fundamental sequences.

Definition 1.7 Definition of α[x] for α ∈ EH and x ∈ X.

1. If α = β + ω0 · S0 + ωβ1 · 0 + · · · + ωβl · 0, then α[x] is defined and
α[x] := β + ω0 · 0 + ωβ1 · 0 + · · ·+ ωβl · 0.

2. If α = ωα1 · t1 + · · · + ωαm · Sy + ωαm+1 · 0 + · · · + ωαn · 0, and if αm =
β + ω0 · S0 + ωβ1 · 0 + · · · + ωβl · 0, then α[x] is defined and α[x] :=
ωα1 · t1 + · · ·+ωαm ·y+ωβ+ω0·0+ωβ1 ·0+···+ωβl ·0 ·x+ωαm+1 ·0+ · · ·+ωαn ·0.

3. If α = ωα1 · t1 + · · · + ωαm · Sy + ωαm+1 · 0 + · · · + ωαn · 0 and if αm =
β + ωβ0 · S0 + ωβ1 · 0 + · · ·+ ωβl · 0 and if β0 has the form ωδ1 · r1 + · · ·+
ωδi · Sri + · · · + ωδk · rk and if αm[x] is defined, then α[x] := ωα1 · t1 +
· · ·+ ωαm · y + ωαm[x] + ωαm+1 · 0 + · · ·+ ωαn · 0.

Using this formal analogue of fundamental sequences one easily defines a rewrite
system for the Hardy functions which computes unique normal forms consisting
of numerals which correspond to the values of the Hardy functions.

Proposition 1.1 shows that the RH -derivation lengths – this notion will be de-
fined precisely in section 3 – can not be bounded in terms of a function Hα for
some fixed α < ε0. Hence the termination of RH can not be shown in Peano
arithmetic. But perhaps RH is not terminating at all. For excluding this pos-
sibility we give in the next section a straightforward termination proof of RH

using ordinals.

Remark: It is possible to include the usual notion of first order rewriting [cf.[9]]
within our approach. Instead of using S as the only non-constant standard func-
tion symbol one can generalize rule 3. in the definition of TH for including usual
first order terms in TH .

2 A “pointwise” termination ordering for RH

This section is devoted for a termination proof of RH using a standard ordinal
notation system for the Howard Bachmann ordinal. Familiarity with the theory
of the unary ordinal function ϑ or the binary ordinal function θ is here assumed.
The theory of ϑ is developed in detail, for example, in [15]. The theory of θ is
developed, for example, in [18]. Readers who are not familiar with the involved
ordinal-theoretic notions can skip this section at first reading. In section 3 an
alternative termination proof for RH – which only involves ordinals less than or
equal to ε0 – will be given.
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Definition 2.1 For closed t ∈ TH and closed α ∈ EH we define ψt ∈ Ω and
Ψα ∈ εΩ+1 as follows:

1. ψ0 := 0.

2. ψ(St) := ψt+ 1.

3. ψ(Hα(t)) := ϑ(Ω ·Ψα+ ψt).

4. Ψ(ω0 · t) := ψt.

5. Ψ(ωα1 · t1 + · · ·+ ωαn · tn) := ΩΨα1 · (1 + ψt1)# · · ·#ΩΨαn · (1 + ψtn).

Lemma 2.1 If s, t ∈ TH are closed and if s→RH
t, then ψs > ψt.

Proof. Let ζ < Ω, α < εΩ+1 and γ be an ordinal context so that γ[[0]] < εΩ+1.
ξ < η < Ω yields ϑ(Ω · γ[[Ωα · ξ]] + ζ) < ϑ(Ω · γ[[Ωα · η]] + ζ) and ϑ(Ω · α+ ξ) <
ϑ(Ω·α+η). Hence ψ is a monotone interpretation and we are left in showing that
the rewrite rules are reducing under ψ. We have ϑ(Ω · γ[[Ωα+1 · (ξ + 1))]] + ζ) >
ϑ(Ω · γ[[Ωα+1 · ξ#Ωα · ζ)]] + ζ), ϑ(Ω · γ[[ξ + 1]] + ζ) > ϑ(Ω · γ[[ξ]] + ζ + 1) and
ϑ(Ω · α+ ξ) > ξ. 2

Corollary 2.1 RH is terminating.

So using the theory of ordinal notations we can easily prove the termination of
RH . It is not so obvious to use a strict segment of ordinals below the Howard
Bachmann ordinal for a termination proof. [Although in the next section we
will show that one can in fact use the well-foundedness of ε0 for a more involved
termination proof of RH .] A (slight variant of a) problem posed by E.A. Cichon
in LNCS 488 is as follows: Must any (pointwise) termination ordering for the
hydra battle have order type equal to the Howard Bachmann ordinal? We have
already seen that the Howard Bachmann ordinal is a convenient termination
ordering for RH . In the next section we are going to show that we have used
the Howard Bachmann ordinal in a pointwise way. This means that one can
use the pointwise collapsing operation (which corresponds to functions from the
slow growing hierarchy) to collapse the involved ordinals less than the Howard
Bachmann ordinal down to natural numbers for obtaining a majorant for the
RH -derivation lengths in terms of the pointwise collapsing hierarchy up to level
equal to the Howard Bachmann ordinal. The latter hierarchy matches – by
definition – up with the fast growing hierarchy of level up to ε0.

If a strict segment of the Howard Bachmann ordinal would yield a “point-
wise” termination ordering for RH , then by the results of the next section the
RH derivation lengths would be bounded in terms of a pointwise collapsing
function of level less than the Howard Bachmann ordinal. This would imply
that the RH -derivation lengths would be bounded in terms of a Hardy function
Hα for some α < ε0. But as we have seen in Proposition 1.1 this is not the case.
In this sense the answer to the modification of Cichon’s question is affirmative.
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More generally it can be shown that the termination of higher order rewrite
systems for the hydra battle(s) H of Buchholz [cf.[2]] can be shown by pointwise
termination orderings of order type equal to the proof-theoretic ordinal of IDn+1

if only n labels are involved resp. of order type equal to the proof-theoretic or-
dinal of ID≺∗ if ω labels are involved. A classification of the derivation lengths
using the appropriate fast growing functions is also possible. Since these inves-
tigations turn out to be technically involved [cf. [23]] we have not included this
material here.

All these results confirm the general principle that under some mild condi-
tions – as suggested by Cichon in [8] – the derivation lengths of rewrite systems
are non-trivially related to the order type of the (pointwise) termination or-
dering which is used in the termination proof via the slow growing hierarchy
[cf.[22]].

3 A second termination proof for RH and a clas-
sification of the RH-derivation lengths

Definition 3.1 Definition of K(α) for α ∈ EH .

1. K(ω0 · t) := {t}.

2. K(ωα1 · t1 + · · ·+ ωαn · tn) := {t1, . . . , tn} ∪K(α1) ∪ · · · ∪K(αn).

Definition 3.2 Definition of c(α) for α ∈ EH .

1. c(ω0 · t) := 1.

2. c(ωα1 · t1 + · · ·+ ωαn · tn) := n+ c(α1) + · · ·+ c(αn).

Proposition 3.1 The cardinality of K(α) is equal to c(α).

Definition 3.3 Recursive definition of dp(t) for t ∈ TH .

1. dp(0) := 0.

2. dp(x) := 0.

3. dp(St) := dp(t) + 1.

4. dp(Hα(t)) := 1 + max{dp(t), c(α),max{dp(s) : s ∈ K(α)}}.

Definition 3.4 Definition of DR : ω → ω.
DR(m) := max{n : ∃ closed t1, . . . , tn ∈ THt1 →RH

· · · →RH
tndp(t1) ≤ m}.

Following [4] we define the norm for the ordinals in question. The norm function
counts the number-theoretic content of the ordinal under consideration and is
the basic ingredient for defining subrecursive hierarchies a la [4].
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Definition 3.5 Definition of Nα for α ≤ ε0.

1. N0 := 0.

2. Nα := m1 + · · ·+mn +Nα1 + · · ·+Nαn if α = ωα1 ·m1 + · · ·+ωαn ·mn

where α1 > . . . , αn and m1, . . . ,mn 6= 0.

3. Nε0 := 1.

Proposition 3.2 Nγ[[α]] := Nγ[[0]] +Nα.

Proof. The proof is by induction on the built up of the context γ[[∗]].
N(∗[[α]]) = N0 + Nα. N((β#∗)[[α]]) = N((∗#β)[[α]] = Nβ + Nα. N((β# ∗
#γ)[[α]]) = N(β#0#γ)+Nα. N(ωγ[[α]] · t0 + · · ·+ωαn · tn) = N(ωγ[[0]] · t0 + · · ·+
ωαn · tn) +Nα, etc. 2

We denote the n−th iteration of a number-theoretic function f : ω → ω by fn.

Definition 3.6 Definition of Fα : ω → ω for α ≤ ε0.

1. F0(n) := 2x.

2. Fα(n) := max{F2·(n+2)
β (x) : β < αN(β) ≤ 3Nα+n+1}.

This definition of the fast growing hierarchy is taken from [4] where it has been
shown that this definition yields a hierarchy which is equivalent to the classical
extended Grzegorczyk hierarchy.

Proposition 3.3 1. x < y ⇒ Fα(x) < Fα(y).

2. α < βN(α) ≤ 3Nβ+x+1 ⇒ Fα(x) < Fβ(x).

3. Fα+1(x) ≥ F
2·(x+2)
α (x).

Proof. The proposition follows easily from the definition of Fα. 2

Theorem 3.1 DR(m) ≤ Fε0(m).

Proof. For closed t ∈ TH and closed α ∈ EH define I(t) ∈ ω and J (α) < ε0 as
follows:

1. I(0) := 0.

2. I(St) := I(t) + 1.

3. I(Hα(t)) := Fω·J (α)+I(t)(0).

4. J (ω0 · t) := ω0 · I(t).

5. J (ωα1 · t1 + · · ·+ωαn · tn) := ωJ (α1) ·(1+I(t1))# · · ·#ωJ (αn) ·(1+I(tn)).
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Claim: s→RH
t⇒ I(s) > I(t).

Proof of the claim. Ifm < n, then ω·J (β)+m < ω·J (β)+n and, by Proposition
3.2, N(ω · J (β) +m) < N(ω · J (β) + n), hence Fω·J (β)+m(0) < Fω·J (β)+n(0)
by assertion 2 of Proposition 3.3. If m < n, then ω · J (γ)[[ωJ (α) · m]] + l <
ω · J (γ)[[ωJ (α) · n]] + l and, by Proposition 3.2, N(ω · J (γ)[[ωJ (α) ·m]] + l) <
N(ω · J (γ)[[ωJ (α) · n]] + l), hence Fω·J (γ)[[ωJ (α)·m]]+l(0) < Fω·J (γ)[[ωJ (α)·n]]+l(0)
by assertion 2 of Proposition 3.3. This discussion shows that I is a monotone
interpretation. So we are left in showing that the rules are reducing under I.
We have ω · J (γ)[[ωJ (α)+1 · (m+ 1)]] +n > ω · J (γ)[[ωJ (α)+1 ·m#ωJ (α) ·n]] +n
and, by Proposition 3.2,
3N(ω·J (γ)[[ωJ (α)+1·(m+1)]]+n)+1 > N(ω · J (γ)[[ωJ (α)+1 ·m#ωJ (α) ·n]] +n), hence
Fω·J (γ)[[ωJ(α)+1·(m+1)]]+n(0) > Fω·J (γ)[[ωJ (α)+1·m#ωJ (α)·n]]+n(0) by assertion 2 of
Proposition 3.3.
Furthermore we have
ω · J (γ)[[m+ 1]] + n > ω · J (γ)[[m]] + n+ 1 and, by Proposition 3.2,
3N(ω·J (γ)[[m+1]]+n)+1 > N(ω · J (γ)[[m]] + n+ 1), hence
Fω·J (γ)[[m+1]]+n(0) > Fω·J (γ)[[m]]+n+1(0) by assertion 2 of Proposition 3.3. We
also have Fω·0+n(0) > n. This proves the claim.
Fω3·dp(t)+1(dp(t)) > I(t) follows by a straightforward induction on dp(t). Finally
we have Fε0(dp(t)) > Fω3·dp(t)+1(dp(t)). Putting things together, the theorem
follows. 2

Comment: The pointwise collapsing operation k 7→ Ck(α) is defined for ordi-
nals α less than the Howard Bachmann ordinal as follows:

1. Ck(0) := 0.

2. Ck(ωα + β) := (k + 2)Ck(α) + Ck(β).

3. Ck(Ω) := ω.

4. Ck(ϑα) := FCk(α)(k).

The pointwise ordering <k for the ordinals less than the Howard Bachmann
ordinal is defined by α <k β : ⇐⇒ α < βCk(α) < Ck(β). The proof just given
yields that we have used the Howard ordinal in the termination proof given in
section 2 in a pointwise way with parameter equal to 0. More general inves-
tigations on using pointwise termination orderings for termination proofs are
carried out in [22]. In these investigations it turned out that for proving the
desired results it is very convenient to use the Buchholz, Cichon and Weiermann
1994 approach to fast growing hierarchies.

Remark. If one replaces in the definition of the rewrite system RH the clause
Hγ[[ωα+ω0·S0·Sx]](z) → Hγ[[ωα+ω0·S0·x+ωα·z]](Sz) by its slow growing variant
Hγ[[ωα+ω0·S0·Sx]](z) → S(Hγ[[ωα+ω0·S0·x+ωα·z]](z)) then the corresponding deriva-
tion lengths are bounded in terms of the function F2, hence by a primitive
recursive function. The simple proof of this fact is left to the reader.
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4 Subrecursive rewriting theory for the extended
Grzegorczyk hierarchy

In this section we describe how the extended Grzegorczyk hierarchy can be
modeled within the framework of subrecursive rewriting theory. We define a
rewrite system RF for the Grzegorczyk hierarchy and we introduce subsystems
for various levels of this hierarchy. We classify the resulting derivation lengths
in terms of the F hierarchy thereby showing that termination of some rewrite
systems cannot be proved in the corresponding fragments of first order Peano
arithmetic.

For α < ε0 we define a number-theoretic function Fα as follows.

1. F0(x) := x+ 1.

2. Fα+1(x) := Fx+1
α (x).

3. Fλ(x) := Fλ[x](x) if λ is a limit ordinal.

We are going to define a natural rewriting system for (Fα)α<ε0 . Let X be a
countable infinite set of variables. Let 0 be a nullary and S be a unary function
symbol. Let F , I and ω be symbols.

Definition 4.1 Inductive definition of a set EF of expressions and a set TF

of terms.

1. If x ∈ X then x ∈ TF .

2. 0 ∈ TF .

3. If t ∈ TF then St ∈ TF .

4. If t ∈ TF and α ∈ EF then Fα(t) ∈ TH .

5. If t, s ∈ TF and α ∈ EF then I(Fα)(s, t) ∈ TF .

6. If t ∈ TF then ω0 · t ∈ EF .

7. If t1, . . . , tn ∈ TF and if α1, . . . , αn ∈ EF then ωα1 ·t1+ · · ·+ωαn ·tn ∈ EF .

The corresponding set of contexts is defined similarly as for TH and EH .

Definition 4.2 We define a set RF of rewriting rules as follows.

1. Fωα1 ·0+···+ωαn ·0(z) → Sz.

2. Fβ[[ωα+ω0·S0·Sx]](y) → Fβ[[ωα+ω0·S0·x+ωα·y]](y).

3. Fβ[[ω0·Sx]](y) → I(Fβ[[ω0·x]])(Sy, y).
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4. I(Fα)(0, y) → y.

5. I(Fα)(Sy, z) → Fα(I(Fα)(y, z)).

Definition 4.3 Inductive definition of the rewrite relation →RF
.

1. If σ : X → TF and if l→ r ∈ RH then lσ →RF
rσ.

2. If s→RF
t then Fα(s) →RF

Fα(t).

3. If s→RF
t then Fγ[[ωα·s]](r) →RF

Fγ[[ωα·t]](r).

4. If s→RF
t then I(Fα)(s, u) →RF

I(Fα)(t, u) and I(Fα)(u, s) →RF
I(Fα)(u, t).

5. If s→RF
t then I(Fγ[[ωα·s]])(u, v) →RF

I(Fγ[[ωα·t]])(u, v).

It is easy to see that the RF derivation lengths cannot be bounded in terms of
a single function Hα for some α < ε0. Hence the termination of RF cannot be
proved in Peano arithmetic.

Remark. For obtaining a confluent version of RF one has to restrict the rules
similar as in the case for RH .

Theorem 4.1 RF is terminating.

Proof. The following proof gives a pointwise termination proof using the
Howard Bachmann ordinal. An alternative proof only involving only ordinals
less than or equal to ε0 is given in the proof of theorem 4.2. For closed t ∈ TF

and closed α ∈ EF we define ψ(t) < Ω and Ψ(α) < εΩ+1 as follows.

1. ψ(0) := 0.

2. ψ(St) := ψ(t) + 1.

3. ψ(Fα(t)) := ϑ(Ω2 ·Ψ(α) + ψ(t)).

4. ψ(I(Fα)(s, t) := ϑ(Ω2 ·Ψ(α) + Ω · ψ(s) + ψ(t)).

5. Ψ(ω0 · t) := ψ(t).

6. Ψ(ωα1 · t1 + · · ·+ωαn · tn) := ΩΨ(α1) ·(1+ψ(t1))# · · ·#ΩΨ(αn) ·(1+ψ(tn)).

Then s→RF
t implies ψ(s) > ψ(t) for closed s, t ∈ TF . 2

Definition 4.4 1. KF (ω0 · t) := {t}.

2. KF (ωα1 · t1 + · · ·+ ωαn · tn) := {t1, . . . , tn} ∪KF (α1) ∪ . . . ∪KF (αn).

Definition 4.5 1. cF (ω0 · t) := 1.

2. cF (ωα1 · t1 + · · ·+ ωαn · tn) := n+ cF (α1) + . . .+ cF (αn).

11



Definition 4.6 Definition of dpF (t) for t ∈ T .

1. dpF (0) := 0.

2. dpF (x) := 0.

3. dpF (St) := dpF (t) + 1.

4. dpF (Fα(t)) := 1 + max{dpF (t), cF (α),max{dpF (s) : s ∈ KFα}}.

In the sequel we drop the superscript F in KF , cF and dpF .

Definition 4.7 1. ω0 · t occurs directly in ω0 · t with height 0.

2. ω0 · t occurs directly in ωα1 · t1 + · · ·+ωαn · tn with height m+1 if it occurs
directly for some i ≤ n in αi with height m.

Definition 4.8 1. Ed
F := {α ∈ EF : ht(α) ≤ d}

2. T d
F := {t ∈ TF : If α occurs in t then α ∈ Ed

F }

3. Ed,ω
F := {α ∈ Ed

F : If ω0·t occurs directly in α with height d then t is a numeral}.

4. T d,ω
F := {s ∈ Tn

F : If α occurs in s then α ∈ Ed,ω
F }.

5. Ed,e
F := {α ∈ Ed,e

F : If ω0 · t occurs directly in α with height d then t ∈
{0, S0, . . . , e}}.

6. T d,e
F := {s ∈ Tn,ω

F : If α occurs in s then s ∈ Ed,e
F }.

Definition 4.9 Let RF
d, RF

d,ω, RF
d,e be the rewrite system RF restricted to

T d
F , T d,ω

F , T d,e
F .

Definition 4.10 Definition of ωn(α).

1. ω0(α) := α.

2. ωn+1(α) := ωωn(α).

Definition 4.11 Recursive definition of K ′(α) for α < ε0.

1. K ′(ω0 ·m) := {m}.

2. K ′(ωα1 ·m1 + · · ·+ ωαn ·mn) := {m1, . . . ,mn} ∪K ′(α1) ∪ . . . ∪K ′(αn).

We put maxcoeff(α) := maxK ′(α).

Theorem 4.2 Let d, e < ω.

1. DRF
(m) ≤ Fε0(m).
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2. DRF
d(m) ≤ Fωd(ω)+1(m).

3. DRF
d,ω (m) ≤ Fωd(ω)(m).

4. DRF
d,e(m) ≤ Fωd(e+1)+1(m).

Proof. For closed t ∈ TF and closed α ∈ EF we define I(t) ∈ ω and J (α) < ε0
as follows.

1. I(0) := 0.

2. I(S(t)) := I(t) + 1.

3. I(Fα(t)) := FJ (α)(I(t)).

4. I(I(Fα)(s, t)) := FI(s)+1
J (α) (I(t)).

5. J (ω0 · t) := I(t).

6. J (ωα1 · t1 + · · ·+ωαn · tn) := ωJ (α1) ·(1+I(t1))+ · · ·+ωJ (αn) ·(1+I(tn)).

Assume k < l. Then k + 1 < l + 1, Fα(k) < Fα(l), Fγ[[ωα·k]](m) < Fγ[[ωα·l]](m),
Fm+1

α (k) < Fm+1
α (l), Fk+1

α (m) < F l+1
α (m) and Fm+1

γ[[ωα·k]](n) > Fm+1
γ[[ωα·l]](n).

Hence I yields a monotone interpretation for RF .
We show that the rules are reducing under I.
Fα(m) > m.

Fγ[[m+1]](n) ≥ F2·(n+2)
γ[[m]] (n) > Fn+2

γ[[m]](n),

F2·(m+1+2)
α (n) > Fα(F 2·(m+2)

α (n)).
Fγ[[ωα+1·(m+1)]](n) > Fγ[[ωα+1·m#ωα·n]](n).
Therefore, t1 →RF

· · · →RF
tn implies I(t1) > . . . > I(tn), hence n ≤ I(t1).

The rest of the proof consists in proving upper bounds on I(t) in terms of
Fα(dp(t) for appropriate α. These calculations are done in the following lem-
mata.

Proposition 4.1 α ∈ EF ⇒ N(J (α)) ≤ c(α) ·maxcoeff(J (α))

Proof. By induction on c(α). 2

Proposition 4.2 α ∈ EF ⇒ ht(α) ≤ c(α).

Proof. By induction on c(α). 2

Proposition 4.3 α ∈ EF ⇒ J (α) < ωht(α)+1(1)

Proof. By induction on c(α). 2

Lemma 4.1 s ∈ TF ⇒ I(s) < F2·(dp(s)+1)
ωdp(s)+1 (0).
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Proof. By induction on dp(s).
If s = 0, then the assertion is true.
If s = S(t), then the assertion follows easily from the induction hypothesis.
Assume that s = Fα(t). The induction hypothesis yields I(t), I(u) < F2·dp(s)

ωdp(s) (0)
and maxcoeff(J (α)) ≤ F2·dp(s)

ωdp(s) (0).

Thus, N(J (α)) ≤ c(α) · F2·dp(s)
ωdp(s) (0) < 3

N(ωht(α)+1(1))+F2·dp(s)
ωdp(s)

(0)
. Hence, I(s) =

FJ (α)(I(t)) < FJ (α)(F
2·dp(s)
ωdp(s) (0)) < Fωht(α)+1(1)(F

2·dp(s)
ωdp(s) (0)) < F2·dp(s)+1

ωdp(s)+1 (0).
Finally, assume that s = I(Fα)(t, u). The induction hypothesis yields I(t) <
F2·dp(s)

ωdp(s) (0) and maxcoeff(J (α)) ≤ F2·dp(s)
ωdp(s) (0).

Thus, N(J (α) + 1) ≤ c(α) · F2·dp(s)
ωdp(s) (0) + 1 < 3

N(ωht(α)+1(1))+F2·dp(s)
ωdp(s)

(0)
. Hence,

I(s) = FI(t)+1
J (α) (I(u)) < FJ (α)+1(I(u) + 1 + I(t)) < FJ (α)+1(F

2·dp(s)
ωdp(s)(1)

(0) · 2 +

1) < Fωht(α)+1(1)(F
2·dp(s)
ωdp(s)(1)

(0) · 2 + 2) < F2·dp(s)+1
ωdp(s)+1 (0). 2

Corollary 4.1 s ∈ TF ⇒ I(s) < Fε0(dp(s)). Hence DRF
(m) ≤ Fε0(m).

Proof. Fε0(dp(s)) > Fωdp(s)+1(1)(dp(s)) > I(s). 2

Proposition 4.4 α ∈ Ed
F ⇒ J (α) < ωd(1 + max{dp(s) : s ∈ K(α)}).

Proof. By induction on d. 2

Lemma 4.2 s ∈ T d
F ⇒ I(s) < F2·(dp(s)+1)

ωd(ω) (0).

Proof. By induction on on dp(s).
If s = 0 or s = S(t), then the assertion follows easily.
Assume that s = Fα(t). The induction hypothesis yields I(t) < F2·dp(s)

ωd(ω) (0) and

maxcoeff(J (α)) ≤ F2·dp(s)
ωd(ω) (0).

Thus, N(J (α)) ≤ c(α) · F2·dp(s)
ωd(ω) (0) < 3N(ωht(α)+1(1))+F

2·dp(s)
ωd(ω) (0)

. Hence, I(s) =

FJ (α)(I(t)) < FJ (α)(F
2·dp(s)
ωd(ω) (0)) < Fωd(ω)(F

2·dp(s)
ωd(dp(s))(0)) < F2·dp(s)+1

ωd(ω) (0).
Finally, assume that s = I(Fα)(t, u). The induction hypothesis yields I(t), I(u) <
F2·dp(s)

ωd(ω) (0) and maxcoeff(J (α)) ≤ F2·dp(s)
ωd(ω) (0).

Thus, N(J (α) + 1) ≤ c(α) · F2·dp(s)
ωd(ω) (0) + 1 < 3N(ωht(α)+1(1))+F

2·dp(s)
ωd(ω) (0)

. Hence,

I(s) = FI(t)+1
J (α) (I(u)) < FJ (α)+1(I(u)+1+I(t)) < FJ (α)+1(F

2·dp(s)
ωd(ω) (0)·2+1) <

F2·dp(s)+1
ωd(ω) (0).

Corollary 4.2 s ∈ T d
F ⇒ I(s) < Fωd(ω)+1(dp(s)). Hence DRF

(m) ≤ Fωd(ω)+1(m).

Proof. Fωd(ω)+1(dp(s)) ≥ F2·(dp(s)+1)
ωd(ω) (dp(s)) > I(s). 2

Lemma 4.3 s ∈ T d,ω
F ⇒ I(s) < F2·(dp(s)+1)

ωd(dp(s)+1)(0).
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Proof. By induction on dp(s).
If s = 0 or s = S(t) then the assertion follows easily.
Assume that s = Fα(t). The induction hypothesis yields I(t) < F2·dp(s)

ωd(dp(s))(0)

and maxcoeff(J (α)) ≤ F2·dp(s)
ωd(dp(s))(0).

Thus, N(J (α)) ≤ c(α)·F2·dp(s)
ωd(dp(s))(0) < 3N(ωht(α)+1(1))+F

2·dp(s)
ωd(dp(s))(0).Hence, I(s) =

FJ (α)(I(t)) < FJ (α)(F
2·dp(s)
ωd(dp(s))(0)) < Fωd(dp(s)(F

2·dp(s)
ωd(dp(s))(0)) < F2·dp(s)+1

ωd(dp(s)+1)(0).
Finally, assume that s = I(Fα)(t, u). The induction hypothesis yields I(t), I(u) <
F2·dp(s)

ωd(dp(s))(0) and maxcoeff(J (α)) ≤ F2·dp(s)
ωd(dp(s))(0).

Thus, N(J (α)+1) ≤ c(α)·F2·dp(s)
ωd(dp(s))(0)+1 < 3N(ωht(α)+1(1))+F

2·dp(s)
ωd(dp(s))(0). Hence,

I(s) = FI(t)+1
J (α) (I(u)) < FJ (α)+1(I(u) + 1 + I(t)) < FJ (α)+1(F

2·dp(s)
ωd(dp(s))(0) · 2 +

1) < F2·dp(s)+1
ωd(dp(s)) (0). 2

Corollary 4.3 s ∈ T d,ω
F ⇒ I(s) < Fωd(ω)(dp(s)). Hence DRF

(m) ≤ Fωd(ω)(m).

Proof. Fωd(ω)(dp(s)) > Fωd(dp(s)+1)(dp(s)) > I(s). 2

Proposition 4.5 α ∈ Ed,e
F ⇒ J (α) < ωd(e+ 1).

Proof. By induction on d. 2

Lemma 4.4 s ∈ T d,e
F ⇒ I(s) < F2·(dp(s)+1)

ωd(e+1) (0).

Proof. By induction on dp(s).
If s = 0 or s = S(t), then the assertion follows easily.
Assume that s = Fα(t). The induction hypothesis yields I(t) < F2·dp(s)

ωd(e+1)(0) and

maxcoeff(J (α)) ≤ F2·dp(s)
ωd(e+1)(0).

Thus, N(J (α)) ≤ c(α) · F2·dp(s)
ωd(e+1)(0) < 3N(ωd(e+1))+F2·dp(s)

ωd(e+1)(0). Hence, I(s) =

FJ (α)(I(t)) < FJ (α)(F
2·dp(s)
ωd(e+1)(0)) < Fωd(e+1)(F

2·dp(s)
ωd(e+1)(0)) < F2·dp(s)+1

ωd(e+1) (0).
Finally, assume that s = I(Fα)(t, u). The induction hypothesis yields I(t), I(u) <
F2·dp(s)

ωd(e+1)(0) and maxcoeff(J (α)) ≤ F2·dp(s)
ωd(e+1)(0).

Thus, N(J (α) + 1) ≤ c(α) · F2·dp(s)
ωd(e+1)(0) + 1 < 3N(ωht(α)+1(1))+F

2·dp(s)
ωd(e+1)(0). Hence,

I(s) = FI(t)+1
J (α) (I(u)) < FJ (α)+1(I(u)+1+I(t)) < FJ (α)+1(F

2·dp(s)
ωd(e+1)(0)·2+1) <

F2·dp(s)+1
ωd(e+1) (0). 2

Corollary 4.4 s ∈ T d,e
F ⇒ I(s) < Fωd(e+1)+1(dp(s)). Hence DRF

d,e(m) ≤
Fωd(e+1)+1(m).

Proof. Fωd(e+1)+1(dp(s)) ≥ F2·(dp(s)+1)
ωd(e+1) (dp(s)) > I(s). 2

We end with the following table of results for the rewrite systems for the Grze-
gorczyk hierarchy.
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Definition 4.12 Recursive definition of Ωn(α).

Let Ω0(α) := α and Ωn+1(α) := ΩΩn(α).

A list of rewrite systems and their derivation lengths.
rewrite system pointwise term. ordering bound on der. lengths

RF
0,e ϑ(Ω · e); mpo Fe+2 ∈ prim rec

RF
0,ω ϑ(Ω · ω); supmpo Fω

RF
0 ϑ(Ω2) = Γ0 Fω+1

RF
1,e ϑ(Ωe); lpo Fωe+1+1 ∈ multiply rec

RF
1,ω ϑ(Ωω) = s.Veblen n.; v − lpo Fωω

RF
1 ϑ(ΩΩ) = big Veblen number Fωω+1

...
...

...
RF

d,e ϑ(Ωd(e+ 1)) Fωd(e+1)+1

RF
d,ω ϑ(Ωd(ω)) Fωd(ω)

RF
d ϑ(Ωd(Ω)) Fωd(ω)+1

...
...

...
RF ϑ(εΩ+1) = H.B. ordinal Fε0

...
...

...

4.7 Definition. For t ∈ TF we define its derivation lengths function DRF
(t) as

follows. Assume that FV (t) = {x1, . . . , xn}. DRF
(t)(m1, . . . ,mn) is the max-

imal possible length of an →RF
derivation starting from t[x1 := m1, ..., xn :=

mn].

Explanation and remarks: In the first line of the table mpo denotes the
multiset path ordering over a signature consisting of finitely many but appro-
priately many varyadic function symbols. The order types of these orderings
are bounded by ordinals less than the first primitive recursively closed ordinal.
In general derivation lengths resulting from termination proofs with such a mul-
tiset ordering are bounded by a primitive recursive function [cf., for example,
[10, 3] for a proof]. In line four lpo denotes the lexicographic path ordering
over a signature consisting of appropriately many function symbols. In general
derivation lengths resulting from termination proofs with such a lexicographic
ordering are bounded by a multiply recursive function [cf., for example, [21, 3]
for a proof]. In line five v − lpo denotes the lexicographic path ordering over
a signature consisting of one varyadic function symbol. The order type of this
ordering is equal to the small Veblen ordinal ϑ(Ωω). The termination of RF

d,e
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can be shown for each e ∈ ω in the fragment PA− + (Π0
d) − Ind of PA. The

termination of RF
d,ω can not be shown in the fragment PA− + (Π0

d) − Ind of
PA. The derivation lengths of terms in RF

0 are elementary recursive in Fω,
i.e. elementary recursive in the Ackermann function. The derivation lengths of
terms in RF

1 are elementary recursive in Fωω . The derivation lengths of terms
in RF

d are elementary recursive in Fωd
. The termination of RF

0 resp. RF
1

cannot been shown in PA− plus pointwise transfinite induction along initial
segments of Γ0 resp in PA− plus pointwise transfinite induction along initial
segments of the big Veblen number ϑΩΩ [cf. [1, 17]].
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