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Abstract. Every embedding of a hermitian unital with at least four
points on a block into any pappian projective plane is standard, i.e. it
originates from an inclusion of the pertinent fields. This result about
embeddings also allows to determine the full automorphism groups of
(generalized) hermitian unitals.

A hermitian unital in a pappian projective plane consists of the absolute
points of a unitary polarity of that plane, with blocks induced by secant
lines (see Section 2). The finite hermitian unitals of order q are the classical
examples of 2-(q3 + 1, q + 1, 1)-designs.

In Section 2 we define and determine the groups of projectivities in her-
mitian unitals. In fact, we consider generalized hermitian unitals H(C|R)
where C|R is any quadratic extension of fields; separable extensions C|R
yield the hermitian unitals, inseparable extensions give certain projections
of quadrics. In Section 3 we classify some embeddings of affine quadrangles
into affine spaces. This is used in the final section to obtain the following
results (Theorem 5.1, Corollary 5.4 with Remark 5.5).

Main Theorem. For |R| > 2 every embedding of H(C|R) into a projective
plane PG(2, E) over a field E originates from an embedding C → E of fields.

Thus the image of such an embedding generates a subplane of PG(2, E)
that is isomorphic to PG(2, C), and H(C|R) is embedded naturally into this
subplane. The assumption |R| > 2 is necessary: H(F4|F2) is isomorphic
to the affine plane AG(2,F3) over F3, and this affine plane embeds into its
projective closure PG(2,F3) and into many other pappian projective planes,
of arbitrary characteristic; see Remark 2.18.

Corollary. Every finite projective plane PG(2,Fq2) contains only one copy
of the hermitian unital H(Fq2 |Fq), up to collineations from PGL3Fq2.

This corollary was proved also by Korchmáros, Siciliano and Szőnyi [20].
They consider a cyclic subgroup of order q+ 1 of the group of projectivities
of H(Fq2 |Fq) and use the conjugacy of all such subgroups in PGL2Fq2 . We
consider the larger group of all projectivities, which allows to replace the
conjugacy statement by Proposition 1.1 below.

Our Main Theorem is also used to determine the full group of automor-
phisms of a (generalized) hermitian unital (Theorem 5.2).
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1. Embeddings between some permutation groups

If X is a set and G is a subgroup of the symmetric group of X, then (G,X)
is called a permutation group. An embedding of (G,X) into another permu-
tation group (H,Y ) is a pair (α, β) where α : G→ H is a monomorphism of
groups and β : X → Y is an injection such that α(g) ◦ β = β ◦ g for every
g ∈ G. Then for every h ∈ H the pair (ih ◦ α, h ◦ β) is also an embed-
ding of (G,X) into (H,Y ), where ih denotes the inner automorphism of H
determined by h.

If α(G) = H and β(X) = Y , then (α, β) is a permutation isomorphism,
and the two permutation groups are permutation isomorphic.

The projective line PG(1, F ) over a field F is the set of all one-dimensional
subspaces of the vector space F 2. We identify PG(1, F ) with F := F ∪{∞}
as usual, where∞ /∈ F . Then the group PGL2F consists of all permutations
of F of the form x 7→ (ax+ b)/(cx+ d) with a, b, c, d ∈ F .

For every subgroup M of the multiplicative group F× of F , we define
SLM2 F := {A ∈ GL2F | detA ∈ M}. These are the groups between SL2F
and GL2F , and their images PSLM2 F in PGL2F are the groups between
PSL2F and PGL2F .

Every embedding β : F → E of fields yields an embedding (α, β) of the
permutation group (PSLM2 F, F ) into (PGL2E,E), where β is extended to
F by β(∞) = ∞. We say that (α, β) and the embeddings (ih ◦ α, h ◦ β) as
above with h ∈ PGL2E originate from β.

Proposition 1.1. Let E and F be fields and let M ≤ F×. If |F | > 3 or
|M | > 1, then every embedding of the permutation group (PSLM2 F, F ) into
(PGL2E,E) originates from an embedding F → E of fields.

Proof. We may assume that we have an embedding (α, β) with β(∞) =
∞, β(0) = 0 and β(1) = 1, because (PGL2E,E) is triply transitive. The
stabilizer (PGL2E)∞,0,1 is trivial, hence α(g) ∈ PGL2E is determined by its
restriction to the set β({∞, 0, 1}) = {∞, 0, 1}. Thus the monomorphism α
is determined by β, and it suffices to show that the restriction β|F : F → E
is an embedding of fields.

For m ∈ M , a ∈ F× and c ∈ F , the two permutations (x 7→ ma2x) and
(x 7→ x + c) belong to the stabilizer (PSLM2 F )∞ and have the commutator
(x 7→ x + (1 − ma2)c). By our assumptions on F and M we can achieve
that ma2 6= 1, hence tb := (x 7→ x + b) is a commutator in (PSLM2 F )∞ for
every b ∈ F . Thus α(tb) is a commutator in (PGL2E)∞ = AGL1E, whence
α(tb) = (y 7→ y + b′) for some b′ ∈ E. The equation α(tb) ◦ β = β ◦ tb says
that β(x) + b′ = β(x + b) for every x ∈ F . Using β(0) = 0 we infer that
b′ = β(b). Thus β|F is additive (and charF = charE).

The involution g = (x 7→ −1/x) ∈ PSL2F ≤ PSLM2 F exchanges 0 and∞.
Hence α(g) ∈ PGL2E has the same property, whence α(g) = (y 7→ d/y) for
some d ∈ E. The equation α(g)◦β = β◦g implies that d/β(x) = β(−1/x) =
−β(1/x) for every x ∈ F . Specializing x = 1 yields d = −β(1) = −1, thus
β(1/x) = 1/β(x) for every x ∈ F . Now a theorem of Hua implies that β|F
is multiplicative (or antimultiplicative, but E is commutative); see Artin [1]
Theorem 1.15, p. 37 or Cohn [5] Theorem 9.1.3. Thus β|F : F → E is an
embedding of fields. �
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The following examples show that Proposition 1.1 does not hold if |F | ≤ 3
and |M | = 1. Let E be a field.

For every subset X ⊆ E with |X| = 3, the stabilizer (PGL2E)X induces
on X the symmetric group of X, and ((PGL2E)X , X) is permutation iso-
morphic to (PSL2F2,F2), even if F2 is not a subfield of E.

If the multiplicative group E× contains an element ζ of order three,
then F3 is not a subfield of E. The two permutations (x 7→ ζx) and
(x 7→ (1 − x)/(1 + 2x)) act on X = {0, 1, ζ, ζ2} ⊆ E as a 3-cycle and as
a double transposition, respectively. Hence the group generated by these
two permutations induces on X the alternating group of X, which is per-
mutation isomorphic to (PSL2F3,F3).

2. Generalized hermitian unitals and their projectivities

Let C|R be any quadratic (possibly inseparable) extension of fields; the
classical example is C|R. We can write C = R+ εR, with ε ∈ C rR. There
exist t, d ∈ R such that ε2 − tε+ d = 0, since ε2 ∈ R+ εR. The mapping

σ : C → C : x+ εy 7→ (x+ ty)− εy for x, y ∈ R
is a field automorphism which generates AutR C: if C|R is separable, then
σ has order 2 and generates the Galois group of C|R; if C|R is inseparable,
then σ is the identity.

Now we introduce our geometric objects. We consider the pappian projec-
tive plane PG(2, C) arising from the 3-dimensional vector space C3 over C,
and we use homogeneous coordinates [X,Y, Z] := (X,Y, Z)C for the points
of PG(2, C).

Definition 2.1. The generalized hermitian unital H(C|R) is the incidence
structure (U,B) with the point set U := {[X,Y, Z] |σ(X)Y + σ(Z)Z ∈ εR},
and the set B of blocks consists of the intersections of U with secant lines,
i.e. lines of PG(2, C) containing more than one point of U .

Note that U is not empty: it contains [1, 0, 0] and [0, 1, 0]. The condition
σ(X)Y + σ(Z)Z ∈ εR is homogeneous, since σ(c)c ∈ R for every c ∈ C.

Using terminology as in [13, 5.1C], one can regard εR as a form parameter,
and (C, εR) as a form ring relative to id and 1.

In the next proposition, we identify H(C|R) in classical terms and moti-
vate the name “generalized hermitian unital”. The nucleus of a quadric is
the projective subspace corresponding to the radical of the associated polar
form.

Proposition 2.2. If C|R is separable, then H(C|R) is the hermitian unital
arising from the skew-hermitian form h : C3 × C3 → C defined by

h
(
(X,Y, Z), (X ′, Y ′, Z ′)

)
= σ(ε)σ(X)Y ′ − εσ(Y )X ′ + (σ(ε)− ε)σ(Z)Z ′ .

In this case, the point set U is the image of

{[X,Y, Z] |σ(Y )X + σ(X)Y + σ(Z)Z = 0}
under some element of PGL3C.

If C|R is inseparable, then H(C|R) is the projection of an ordinary quadric
Q in some projective space of dimension at least 3 over C from a subspace
of codimension 1 in the nucleus of Q.
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Proof. First assume that C|R is separable. The set C(σ) = {t−σ(t) : t ∈ C}
is a 1-dimensional subspace of C considered as vector space over R. Hence
H(C|R) is the null set of the pseudo-quadratic form

C3 → C/C(σ) : (X,Y, Z) 7→ (1− σ(ε)ε−1)(σ(X)Y + σ(Z)Z) mod C(σ).

The first assertion follows in this case from Chapter 10 of [4]. For the
convenience of the reader, we include the following direct argument.

A point [X,Y, Z] belongs toH(C|R) if and only if σ(X)Y+σ(Z)Z = εk for
some k ∈ R. We apply σ and obtain σ(Y )X+σ(Z)Z = σ(ε)k. Eliminating k
from these two equations, we obtain that [X,Y, Z] belongs to H(C|R) if and
only if

σ(ε)σ(X)Y − εσ(Y )X + (σ(ε)− ε)σ(Z)Z = 0 ;

that is, if h ((X,Y, Z), (X,Y, Z)) = 0. This gives the description via the
skew-hermitian form h.

Using ε − σ(ε) 6= 0 we define a collineation of PG(2, C) by [X,Y, Z] 7→
[ ε−σ(ε)ε X,Y, Z]. That collineation maps the set U to the set

{[X,Y, Z] |σ(Y )X + σ(X)Y + σ(Z)Z = 0} ,
and we obtain the description by the hermitian form.

Now suppose that C|R is inseparable. Then H(C|R) is the null set of the
generalized pseudo-quadratic form (X,Y, Z) 7→ XY + Z2 mod εR, in the
sense of Pasini [24], and the second assertion follows from [24]. Explicitly,
since the field of squares in C is isomorphic to C and contained in R, we can
consider R as a vector space over C, where scalars operate by c · r := c2r.
The quadratic form

q : C × C × C ×R→ C : (X,Y, Z,w) 7→ XY + Z2 + εw

has the polar form ((X ′, Y ′, Z ′, u′), (X,Y, Z, u)) 7→ X ′Y + Y ′X, which is
a degenerate alternating form with radical {(0, 0)} × C × R. The condi-
tion XY + Z2 ∈ εR is equivalent to the existence of w ∈ R such that
q(X,Y, Z,w) = 0. Thus H(C|R) is obtained by projection of the quadric Q
defined by q along the subspace {(0, 0, 0)}×R, which is a codimension 1 sub-
space of the radical of the polar form, hence it defines a projective subspace
in the nucleus of Q of codimension 1. �

Proposition 2.3. The isomorphism type of H(C|R) does not depend on the
choice of ε ∈ C rR. Hence it is determined uniquely by the extension C|R.

(1) If σ 6= id then the orthogonal space p⊥ with respect to the skew-
hermitian form h in 2.2 is the unique tangent through p (i.e. the
unique line meeting U just in p), for any p ∈ U .

(2) If σ = id then for each point p ∈ U the line p+ [0, 0, 1] is the unique
tangent through p.

Proof. If σ 6= id then the description by the hermitian form (not the skew-
hermitian one) given in Proposition 2.2 shows uniqueness. See [15, Lemma
II.2.47, p. 59] for the assertion about the tangents.

Now assume σ = id. Consider elements γ, ε ∈ C r R. Then there exist
u, v ∈ R such that u+ vε = ε/γ, and we find that a := uγ/ε coincides with
γv + 1. If XY + Z2 = εr with r ∈ R then aXY + Z2 = a(XY + Z2) +
(a+ 1)Z2 = γur+ γvZ2 belongs to γR. Conversely, from (aX)Y +Z2 = γs
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with s ∈ R we infer XY + Z2 = γs/a+ (1 + 1/a)Z2 = ε(s+ v)Z2/u ∈ εR.
So the linear transformation (X,Y, Z) 7→ (aX, Y, Z) induces a collineation
of PG(2, C) mapping the generalized hermitian unital for ε onto that for γ.

We use the quadratic form q : C3 → C : (X,Y, Z) 7→ XY + Z2 and its
polar form f . Let p = vC, and let wC be any point of PG(2, C) different
from vC. The line vC + wC contains another point of U if there exists
c ∈ C such that (cv + w)C ∈ U . This gives the condition q(cv + w) =
c2q(v) + q(w) + cf(v, w) ∈ εR; note that c2q(v) ∈ εR holds by assumption,
so the condition actually is q(w) + cf(v, w) ∈ εR.

If vC + wC ≤ p⊥ then we may assume w = (0, 0, 1). The condition
becomes q(w) ∈ εR, and is not satisfied for any c. If vC+wC 6≤ p⊥ then we
may assume f(v, w) = 1, and the condition becomes q(w) + c ∈ εR. This is
satisfied by any c ∈ q(w) + εR. �

So, if C|R is separable, then H(C|R) is a classical Hermitian curve arising
from a non-degenerate Hermitian form in a vector space of dimension 3 over
the field C. The aim of the rest of this section is to extend some well-known
properties of this curve to the inseparable case, to introduce the group of
projectivities for every generalized Hermitian unital and to determine the
structure of that group. The latter is new for the separable case, too.

For the convenience of the reader we here summarize, without precise
definitions, the well-known properties of classical Hermitian unitals that we
shall extend to the inseparable case (proper references to the literature shall
be given below in each of the appropriate proofs).

Properties of Hermitian unitals—Let H(C|R) be the classical Her-
mitian unital as defined above, with C|R separable, and let σ be the cor-
responding Galois involution. Let B be any block of H(C|R). Then the
following assertions hold.

1o. H(C|R) does not contain O’Nan configurations.
2o. The stabilizer (PSL3C)H acts doubly transitively on H, and is gener-

ated by translations. If |R| > 2 then this stabilizer is a simple group.
3o. The block B is a Baer subline in PG(2, C) and the action of the block

stabilizer ((PSL3C)H)B on B is permutation equivalent to (PSLN2 (R), R),
where N = {σ(z)z | 0 6= z ∈ C}.

We will also show that the group of projectivities of B (defined below) is
permutation equivalent to the permutation group mentioned in 3o above.

We start with analyzing (PSL3C)H.

Theorem 2.4. The stabilizer (PGL3C)H of H = H(C|R) = (U,B) in
PGL3C is doubly transitive on the point set U , and thus transitive on the
set B of blocks. If |R| > 2 then the same holds for the stabilizer (PSL3C)H.

If C|R is inseparable, we state more explicitly:

(1) Via multiplication from the left on homogeneous coordinates, the ma-

trices Ma,c :=
(

1 0 0
a 1 0
c 0 1

)
with a, c ∈ C and a + c2 ∈ εR induce a

subgroup of (PSL3C)H which acts transitively on U r {[0, 1, 0]}.
(2) The matrices Wa,c :=

(
1 a 0
0 1 0
0 c 1

)
with a, c ∈ C and a+ c2 ∈ εR induce

a subgroup of (PSL3C)H which acts transitively on U r {[1, 0, 0]}.
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(3) The group generated by {Ma,c | a+ c2 ∈ εR} ∪ {Wa,c | a+ c2 ∈ εR}
induces a subgroup of (PSL3C)H which acts two-transitively on U .

(4) The group
{(

a2 0 0
0 1 0
0 0 a

) ∣∣∣ a ∈ C r {0}
}

stabilizes U , and induces a sub-

group of (PGL3C)H.

Proof. If C|R is separable, then the stabilizer (PGL3C)H contains the pro-
jective unitary group PU3(C|R), which is doubly transitive on U by Witt’s
theorem, see [31, 7.4] or [10, 10.12]; if |R| > 2, then the same holds for
PSU3(C|R) ≤ (PSL3C)H, see [31, 10.12] or [10, 11.8, 11.11].

Now assume that C|R is inseparable. Consider a, c ∈ C with a+ c2 ∈ εR.
For (X,Y, Z) ∈ C3 we have X(aX+Y )+(cX+Z)2 = XY +Z2+(a+c2)X2 ∈
XY + Z2 + εR. So multiplication by Ma,c leaves U invariant, and induces
an automorphism of H(C|R). Analogously, multiplication by Wa,b induces
an automorphism of H(C|R). The orbits {[1, a, c] | a, c ∈ C, a+ c2 ∈ εR}
of [1, 0, 0] and {[a, 1, c] | a, c ∈ C, a+ c2 ∈ εR} of [0, 1, 0] coincide with U r
{[0, 1, 0]} and U r {[1, 0, 0]}, respectively. This proves assertions 1 and 2,
and assertion 3 follows.

Now let a ∈ Cr{0} be arbitrary. Then (a2X)Y +(aZ)2 = a2(XY +Z2) ∈
R(XY + Z2) yields that U is invariant under the group in assertion 4. �

Remark 2.5. If C|R is inseparable then the existence of c with a+ c2 ∈ εR
imposes a restriction on a because {c2 + εr | c ∈ C, r ∈ R} is a proper subset
of R + εR, in general. If c ∈ C exists such that c2 ∈ a + εR then c is
determined by a because R and a+εR have at most one element in common.

The center of the elation induced by Ma,c is [0, a, c]. That point lies in U
precisely if c2 ∈ εR. As each square is in R, we find c = 0 and a ∈ εR. In
the inseparable case, it is therefore no longer true that each elation in the
stabilizer of U induces a translation of H (in the sense of 2.10).

Remark 2.6. Assume that C|R is inseparable. Then the group

G :=
〈
Ma,c,Wa,c

∣∣ a, c ∈ C, a+ c2 ∈ εR
〉

generated by the matrices in 2.4.3 is isomorphic to the little projective group
of the Moufang set of the polar lineMPL(C,R, id) in the sense of [6, Section
2.4]; we use the isotopic set (C, εR, id) which is isotopic to the isotopic set
(C,R, id) used in [6, Section 2.4].

In fact, the linear groupG acts on the quotient C3/[0, 0, 1], and that action
is faithful (see the proof of 2.15 below). Under this action the generators
of G are represented by the members of

{
( 1 0
a 1 ) , ( 1 a

0 1 ) | a ∈ S + εR
}

, where

S := {c2 | c ∈ C}, and the action yields an isomorphism from G onto the
little projective group of MPL(C,R, id).

Proposition 2.7. The generalized hermitian unital H(C|R) does not con-
tain any O’Nan configurations.

Proof. For the separable (in particular, the finite) case, this result is well
known; see [11, 2.2] (cf. [22, 3.11] for the finite case). So we treat the
inseparable case only.

Aiming at a contradiction, we consider an O’Nan configuration inH(C|R).
Using 2.4.3 and 2.4.4 we may assume that [1, 0, 0] and [0, 1, 0] are points of
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the configuration, and that [1, 0, 0] + [0, 1, 1] induces a block of the configu-
ration (passing through [1, 0, 0]).

The two further points on that block are then of the form [1, x, x] and
[1, y, y] with 0 6= x 6= y 6= 0 and x+x2, y+ y2 both in εR. The second block
through [1, 0, 0] is induced by [1, 0, 0] + [0, u, v] with uv 6= 0 and u 6= v. We
compute the missing two points as [v, ux, vx] and [v, uy, vy], respectively.

These two points lie in U , so vux + v2x2 and vuy + v2y2 belong to εR.
Subtracting v2(x+ x2) or v2(y + y2) we find v(u+ v)x and v(u+ v)y both
in εR, so y = rx with r ∈ Rr {0}. Now εR contains (y+ y2)− r(x+ x2) =
(r2 − r)x2 ∈ R, and r2 − r = 0 follows. This is a contradiction. �

Recall that a Baer subplane in a projective plane P is a proper subplane S
of P such that every line of P contains at least one point of S, and every
point of P is on at least one line of S. A Baer subline of P is a set of at
least two points that is obtained as the intersection of a line with a Baer
subplane of P.

Lemma 2.8. The line [1, 0, 0] + [0, 1, 0] = C2 × {0} of PG(2, C) induces
the block B = {[εx, y, 0] | (0, 0) 6= (x, y) ∈ R2} of H(C|R), and each block of
H(C|R) is a Baer subline of PG(2, C).

Proof. A point [εx, y, 0] belongs to H = H(C|R) precisely if εxy ∈ εR. If
y 6= 0, we can choose it in R and then also x ∈ R. Similarly if x 6= 0. This
yields the formula for B.

The block B is the line of the Baer subplane Σ given by restricting
the coordinates to εR × R × R. This is indeed a Baer subplane as is
well known in the separable case (a Baer involution is then [X,Y, Z] 7→
[σ(X)ε, σ(Y )σ(ε), σ(Z)σ(ε)]). In the inseparable case, consider the equa-
tion aX+ bY + cZ = 0 of a line in PG(2, C). The three elements aε, b, c are
linearly dependent in the two-dimensional vector space C over R. Therefore,
there exists (x, y, z) ∈ R3r{(0, 0, 0)} with (aε)x+ by+ cz = 0, and [εx, y, z]
is a point on the line and in the Baer subplane. Dually, the point [a, b, c]
lies on the line defined by (εx)X + yY + zZ = 0, with the same choice of
x, y, z ∈ R. Every other block is the image of B under some element from
(PGL3C)H by Theorem 2.4. �

Definition 2.9. Let B and B′ be blocks of a generalized hermitian unital
H(C|R). If c /∈ B ∪B′ is a point such that every block joining c to a point
x ∈ B meets B′ in a point x′, and every block joining c to a point of B′ meets
B, then the bijection B → B′ : x 7→ x′ is a perspectivity in H(C|R) with
center c from B onto B′. A projectivity in H(C|R) is any concatenation
of perspectivities. The group of all projectivities of B onto itself will be
denoted by ΠB.

In general, there is no perspectivity between two given blocks in a gener-
alized hermitian unital. We construct projectivities as restrictions of auto-
morphisms of H(C|R). Translations of generalized hermitian unitals play a
crucial role here.

Definition 2.10. Let c be a point of the generalized hermitian unital
H(C|R). A translation τ of H(C|R) with center c is an automorphism
of H(C|R) leaving invariant each line through the point c. If τ is not the
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identity, then c is uniquely determined (by 2.7), and we call it the center
of τ .

Lemma 2.11. For a ∈ εR, the matrices Ma,0 and Wa,0 from 2.4.1 and 2.4.2
induce translations of H(C|R), with centers [0, 1, 0] and [1, 0, 0], respectively.

These translations generate a subgroup isomorphic to SL2R in the block
stabilizer, and the induced action on the block is permutation equivalent to
the standard action of PSL2R on the projective line R = R ∪ {∞}.

Proof. From 2.4 and 2.5 we know that an elation of PG(2, C) induces a
translation of H with center [1, 0, 0] if, and only if, it is induced by Wrε,0

with r ∈ R. Analogously, translations with center [0, 1, 0] are induced by
Mr/ε,0 with r ∈ R. The block determined by the line [1, 0, 0] + [0, 1, 0] is
B = {[1, 0, 0]} ∪ {[εx, 1, 0] |x ∈ R}; see 2.8. On this set, the matrices Wrε,0

and Mr/ε,0 act as usual (by x 7→ x/(1+rx) and x 7→ x+r, respectively). This
induces a faithful representation as PSL2R which is permutation equivalent
to the natural one.

The group generated by all translations with center [1, 0, 0] or [0, 1, 0]
contains all translations with centers on that block B, and coincides with
the group just discussed. �

Remark 2.12. Lemma 2.11 yields, in particular, that for each point c
and each block B through c the group of all translations with center c
acts transitively on B r {c}. For finite unitals, this transitivity property
characterizes the hermitian unitals (see [12]). This further justifies the name
“generalized hermitian unital” for H(C|R) also in the inseparable case.

Lemma 2.13. Let C|R be a quadratic extension of fields, let B be a block
of the generalized hermitian unital H = H(C|R) and let c ∈ B.

(1) Every translation of H with center c extends to an elation of PG(2, C)
with center c and axis c′, the tangent line at c. The group of all
translations of H with center c acts sharply transitively on B r {c}.

(2) Every product of translations of H can be written as a product ρk ◦
ρk−1 ◦ · · · ◦ ρ1 of translations ρi 6= id of H such that the center of ρi
is not on the block (ρi−1 ◦ · · · ◦ ρ1)(B) for 2 ≤ i ≤ k.

Proof. (1) By the double transitivity of (PGL3)H, see Theorem 2.4, it suf-
fices to consider the block B in 2.8 and the point c = [1, 0, 0]; then c′ =
[1, 0, 0] + [0, 0, 1]. For every r ∈ R, the matrix Wrε,0 induces a (c, c′)-elation
ηr that leaves U invariant, and induces a translation of H with center c; see
Example 2.11. Clearly, the group {ηr | r ∈ R} acts sharply transitively on
B r {c} = {[εr, 1, 0] | r ∈ R}.

If H would admit any other translation with center c, we could find a
non-trivial translation τ with center c fixing a point p ∈ B r {c}. If τ fixes
each block through p then every point x ∈ U r B is fixed by τ , and then
also every point on B is fixed. So there is a point x ∈ U rB such that τ(x)
is not on the block joining x to p. For any third point y on that block, the
set {c, p, x, y, τ(x), τ(y)} forms an O’Nan configuration in H, contradicting
Proposition 2.7.

(2) Let ρ be a translation with center c on the block B. For the following
construction see Figure 1. Choose an arbitrary point d /∈ B, and let τ be the
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d

τ(c) = ρ(d)
ρ(τ(c))

c

ρ(x)

x

τ(x)

ρ(τ(x))

Bi
τ(Bi)

ρ(τ(Bi))

Figure 2. Constructing translations

Let ρ1, . . . , ρk be translations and put Bi := (ρi−1 ◦ · · · ◦ ρ1)(B). Assume
that the center c of ρ := ρi is incident with the block Bi. Choose an arbitrary
point d /∈ Bi, and let τ be the (non-trivial) translation with center d and such
that τ(c) = ρ(d);m see Figure 2. Now d /∈ Bi by our choice, and c /∈ τ(Bi)

m: three points on a
block suffice!because c ∈ Bi and τ is a non-trivial translation with center d outside Bi.

m

m: we use the ab-
sence of O’Nan config-
urations here

The conjugate ρ◦ τ−1 ◦ρ−1 is a translation with center ρ(d) not on ρ(τ(Bi))
because d /∈ τ(Bi). We can thus replace ρ = (ρ ◦ τ−1 ◦ ρ−1) ◦ ρ ◦ τ by the
product of three translations that induce perspectivities from Bi to τ(Bi),
from τ(Bi) to ρ(τ(Bi)) and from there to Bi. Repeated replacements of this
type yield a product representation as required.tm �

t: More details ??

m: and less errors :)Theorem 2.9. Let C|R be a quadratic Galois extension of fields, and let B
and B� be blocks of the hermitian unital H(C|R).

(1) The group ΠB of all projectivities of B onto itself in H(C|R) is
permutation isomorphic to the permutation group (PGL2R,R).

(2) If |R| > 2 then H(C|R) admits a projectivity of B onto B�.
(3) If |R| = 2 then H(C|R) ∼= H(F4|F2) admits a projectivity of B onto

B� if, and only if, the two blocks are either disjoint or equal, i.e., if
they are parallel as lines in AG2(F3) ∼= H(F4|F2).

Proof. Let G be the group of automorphisms of H(C|R) generated by all
translations. This is a normal subgroup of PSU3(C|R), and coincides with
the latter if |R| > 2. In any case, the group PSU3(C|R) acts two-transitively
on the set of absolute points (cf. 2.2), and thus transitively on the set of
blocks.

The smallest case |R| = 2 is special, and has been treated in 2.5 and 2.7.
So we assume |R| > 2 from now on, then G is two-transitive on the set
of points of the unital, and transitive on the set of blocks. Let GB be the
stabilizer of B in G. We show that ΠB, as a permutation group on B,
coincides with the action of GB on B (modulo the kernel of that action).

Our assumption |R| > 2 implies that γ(B) = B� for some γ ∈ G. mBy
m: we had two ver-
sions of the following
argument here

Lemma 2.8 every γ ∈ GB has a product representation which shows that
the restriction of γ to B is a product of perpectivities in H(C|R); thus
this restriction belongs to ΠB. Conversely, every π ∈ ΠB is the product of

Figure 1. Constructing translations

(non-trivial) translation with center d and such that τ(c) = ρ(d); see (1).
Now d /∈ B by our choice, and c /∈ τ(B) because c ∈ B and τ is a non-
trivial translation with center d outside B. The conjugate ρ ◦ τ−1 ◦ ρ−1 is a
translation with center ρ(d) not on ρ(τ(B)) because d /∈ τ(B). We can thus
replace ρ = (ρ ◦ τ−1 ◦ ρ−1) ◦ ρ ◦ τ by the product of three translations that
induce perspectivities from B to τ(B), from τ(B) to ρ(τ(B)) and from there
to B. Repeated replacements of this type yield a product representation as
required. �

Proposition 2.14. Let C|R be a quadratic extension of fields. The action
of the stabilizer of a block of H = H(C|R) in (PSL3C)H is permutation
equivalent to (PSLN2 R,R), where N := {σ(z)z | 0 6= z ∈ C} is the norm
group of C|R.

Proof. By the double transitivity of AutH, see Theorem 2.4, it suffices to
consider the block B induced by [1, 0, 0] + [0, 1, 0]. We have already seen
in 2.11 that the groups of translations of H with center p = [1, 0, 0] or
q = [0, 1, 0] are induced by the matrices Wrε,0 or Mr/ε,0, respectively, with
r ∈ R, and that the action of the group generated by these two groups of
translations is permutation equivalent to the action of PSL2R on R.

In order to determine the full stabilizer of B in (PGL3C)H, it remains to
study the stabilizer of the points p and q, and its action on B. Consider
M ∈ (GL3C)H and assume that M fixes both p and q. Then M also fixes
the tangents p+[0, 0, 1] and q+[0, 0, 1] (see 2.3), and then the point [0, 0, 1].
So M is a diagonal matrix, and we may assume that M = diag(a, 1, c) with
a, c ∈ C r {0}. So [X,Y, Z] is mapped to [aX, Y, cZ].

Evaluating the condition M(U) = U at points [X,Y, 0] ∈ U , we see that
σ(a) ∈ R. For [X,Y, 1] ∈ U we then obtain the condition aσ(X)Y +σ(c)c ∈
εR ⇐⇒ σ(X)Y +1 ∈ εR which yields −a+σ(c)c ∈ R∩εR. The intersection
is trivial, and M = diag(σ(c)c, 1, c). Conversely, every such M stabilizes U .

The matrix diag(σ(c)c, 1, c) induces on the block B the map [X,Y, 0] 7→
[σ(c)cX, Y, 0]. Now diag(ε, 1, 1) induces a collineation of PG2C that maps
B to {[x, y, 0] | (x, y) ∈ R2 r {(0, 0)}}, while conjugation with that matrix
mapsMr/ε,0 andWrε,0 toMr,0 andWr,0, respectively, and leaves diag(σ(c)c, 1, 1)
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fixed. Restriction to B now gives the equivalence of permutation groups, as
claimed. �

Proposition 2.15. Let C|R be a quadratic extension of fields with |R| > 2.
Then the translations of H = H(C|R) generate the group (PSL3C)H, and
that group is simple.

Proof. If C|R is separable, this follows from [10, Theorem 11.15] as |R| > 2.
So we consider the inseparable case.

We first show that (PSL3C)H acts faithfully on the quotient C3/[0, 0, 1].
Indeed, the point [0, 0, 1] is fixed because it lies on every tangent (cf. 2.3),
and an element of (PSL3C)H acts trivially on the quotient if, and only if,

it is induced by a matrix of the form
(

1 0 0
0 1 0
u v 1

)
with u, v ∈ C such that

XY + Z2 ∈ εR ⇐⇒ XY + (uX + vY + Z)2 ∈ εR. Evaluating the latter
condition for points with Z = 0, we obtain (uX + vY )2 ∈ R ∩ εR whenever
XY ∈ εR. This implies u = 0 = v.

We now claim that the stabilizer (PSL3C)H coincides with the subgroup
G generated by the set {Ma,c | a+ c2 ∈ εR} ∪ {Wa,c | a+ c2 ∈ εR} from 2.4.
Since both (PSL3C)H and its subgroup G are doubly transitive on the points
of H, it suffices to prove that the stabilizers Gp,q and (PSL3C)H,p,q of the
two points p = [1, 0, 0] and q = [0, 1, 0] coincide. Consider an element
g ∈ (PSL3C)H,p,q; this is induced by a diagonal matrix of the form Db :=
diag(b, 1/b, 0) with no restriction on b ∈ C r {0}.

On the quotient C3/[0, 0, 1], the matrices Ma,c, Wa,c and Db act as ( 1 0
a 1 ),

( 1 a
0 1 ), and

(
b 0
0 b−1

)
, respectively. Invariance of H means the restriction

a ∈ {x2 + εr |x ∈ C, r ∈ R}. The latter set is closed under taking addi-
tive and multiplicative inverses, but not under multiplication (unless every
element of R is a square in C). So the group induced by G on the quotient
contains ( 1 1

0 1 )
(

1 0
−1 1

)
( 1 1
0 1 ) =

(
0 1
−1 0

)
and

(
0 1
−1 0

) (
1 a−1

0 1

) (
1 1
−a 0

) (
1 a−1

0 1

)
=(

a 0
0 a−1

)
for each a ∈ {x2 + εr |x ∈ C, r ∈ R}. It remains to show that

the set {x2 + εr |x ∈ C, r ∈ R} multiplicatively generates C r {0}. Let
r + εs with r, s ∈ R be an arbitrary nonzero element of C. If s = 0,
then we can write r = (εr)(εε−2), noting that ε2 ∈ R. If s 6= 0, then
r + εs = (εs)(1 + ε(rs−1ε−2)).

This shows that G = (PSL3C)H. We now show that G is perfect.
Indeed, one verifies (in the faithful representation on the quotient) that

( 1 0
a 1 )

(
b−1 0
0 b

)
( 1 0
a 1 )

−1 ( b−1 0
0 b

)−1
=
(

1 0
(b2+1)a 1

)
which implies that the derived

group of G contains the generators. So G is perfect, acts primitively (in
fact, two-transitively) on U , and is generated by the conjugates of a normal
abelian subgroup of the stabilizer of p (namely, the group induced by the
matrices Wrε,0). Iwasawa’s criterion therefore yields that G = (PSL3C)H is
simple.

The translations generate a normal subgroup of that simple group, hence
they generate (PSL3C)H. �

We remark that, in the inseparable case, the group (PSL3C)H is isomor-
phic to a proper subgroup of PSL2C but not to PSL2C itself, in general,
cf. 2.5.
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Theorem 2.16. Let C|R be a quadratic extension of fields and let B be a
block of the generalized hermitian unital H(C|R).

(1) The group ΠB of all projectivities in H(C|R) of B onto itself is per-
mutation isomorphic to the permutation group (PSLN2 R,R), where
N := {σ(z)z | 0 6= z ∈ C} is the norm group of C|R.

(2) If |R| > 2 then H(C|R) admits projectivities of B onto every other
block.

Proof. First we prove (1) if R = F2. Then C = F4, N = {1} and H(F4|F2)
is isomorphic to the affine plane AG(2,F3) over F3. This hermitian unital
admits perspectivities only between blocks that form parallel lines in the
affine plane. There are projectivities (in fact, products of three perspectivi-
ties) that act as transpositions on B, and ΠB is isomorphic to the symmetric
group on three symbols, i.e. to PGL2F2 = PSLN2 F2.

Now let |R| > 2 and let G be the group of collineations of H = H(C|R)
generated by all translations. We have G = (PSL3C)H by Proposition 2.15.
Hence G is transitive on the set of blocks of H by Theorem 2.4. By Lemma
2.13 (2) the restriction of every element γ ∈ G to B is a projectivity of B
onto γ(B), whence assertion (2) holds.

Let GB be the stabilizer of B in G. The restriction of every element of
GB to B belongs to ΠB. We show that ΠB, as a permutation group on B,
coincides with the action of GB on B (modulo the kernel of that action).

Every π ∈ ΠB is the product of perspectivities ρ : B1 → B2 between blocks
B1 and B2. Let c be the center of ρ, let c′ be the tangent toH at c and denote
by η the unique elation η of PG(2, C) with center c and axis c′ mapping
some point b ∈ B1 to ρ(b) ∈ B2. Then the absence of O’Nan configurations
in H (see 2.7) forces that η(B1) = B2, hence ρ is the restriction of η to
B1. Moreover, η induces a translation of H by Lemma 2.13 (1), hence the
restriction of η to H belongs to G. Thus π is the restriction to B of some
element of GB.

Now assertion (1) follows from Proposition 2.14. �

Corollary 2.17. For every block B of the finite hermitian unital H(Fq2 |Fq),
the group ΠB of all projectivities of B onto itself is permutation isomorphic
to (PGL2Fq,Fq).

Proof. The norm Fq2 → Fq : c 7→ σ(c)c = c1+q is surjective, hence N = F×q
and PSLN2 Fq = PGL2Fq. �

Remark 2.18. The assumption |R| > 2 in 2.16 (2) excludes the smallest
hermitian unital H(F4|F2), which is isomorphic to the affine plane AG(2,F3)
over F3. The translations of H(F4|F2) ∼= AG(2,F3) are point reflections in
the affine plane. They generate a group of order 18 (isomorphic to F2

3oC2)
which has four orbits on the set of blocks, namely the parallel classes of the
affine plane.

Embeddings of AG(2,F3) into PG(2,C) are well known: the nine points
of AG(2,F3) are the inflection points of a nonsingular cubic; see [7, Thm. 2,
Thm. 3]. In fact, AG(2,F3) embeds into pappian projective planes of ar-
bitrary characteristic, and all embeddings of AG(2,F3) into desarguesian
projective planes are known; see [23, Thm. 2], [27], [3], [25], [16].
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3. Embeddings of certain affine quadrangles

Our incidence structures have no repeated lines (or blocks), hence we
can consider the lines as subsets of the point set. An embedding of such
an incidence structure (P,L) into a second one, say (P ′,L′), is an injective
mapping θ : P → P ′ such that for every line L ∈ L the image θ(L) is
contained in some line from L′. The embedding θ is called full if θ(L) ∈ L′
for every L ∈ L.

Let F be a field and let Q(4, F ) be the orthogonal generalized quadrangle
defined by a non-degenerate quadratic form of (maximal) Witt index 2 on
the vector space F 5. Then Q(4, F ) has, by definition, a full embedding
into the 4-dimensional projective space PG(4, F ). Let H be a hyperplane of
PG(4, F ) intersecting Q(4, F ) in a non-degenerate ruled quadric, and denote
by

AQ(4, F ) := Q(4, F ) rH

the incidence structure obtained from Q(4, F ) by removing all points and
lines that are contained in H. Then AQ(4, F ) is an affine quadrangle fully
embedded into the affine space AG(4, F ). We call this embedding the stan-
dard embedding of AQ(4, F ).

The following properties of Q(4, F ) are best proved by considering its
standard embedding in PG(4, F ).

Fact 3.1. (1) Let L,M be two non-intersecting lines of Q(4, F ). Then
the subspace of PG(4, F ) generated by L and M is a 3-space and
intersects Q(4, F ) in a full non-thick subquadrangle Q of Q(4, F ),
i.e. all points of Q(4, F ) on a line of Q belong to Q (full) and each
point of Q is on exactly two lines of Q (non-thick).

(2) Such a subquadrangle contains two classes of lines: two lines belong
to different classes if and only if they intersect nontrivially. We call
each class a regulus. Such a regulus is in fact one family of generators
of a hyperbolic quadric in 3-space, hence determined by any three
of its elements. However, if we insist that the regulus is contained in
Q(4, F ), then it is determined by any two of its elements, since the
intersection of the 3-space generated by these two elements with the
generalized quadrangle Q(4, F ) is exactly that ruled quadric.

(3) Two distinct full non-thick subquadrangles that have at least one line
in common have exactly two lines in common, namely one of each
regulus of either subquadrangle. This follows readily from the fact
that two distinct 3-spaces in PG(4, F ) intersect in a plane, and each
plane of a projective 3-space containing at least one line of a ruled
nondegenerate quadric Q∗ is a tangent plane and hence contains
exactly two lines of Q∗. �

Definition 3.2. If N and N ′ are two lines of a regulus of Q(4, F ), then that
regulus is determined uniquely, and we denote it by R(N,N ′).

Theorem 3.3. Let F be field with |F | > 2. Then up to collineations from
AΓL4F , the standard embedding of AQ(4, F ) is the only full embedding of
AQ(4, F ) into the affine space AG(4, F ) with the property that any two lines
of AQ(4, F ) which do not intersect in Q(4, F ) are not parallel in AG(4, F ).



EMBEDDINGS OF HERMITIAN UNITALS 13

Proof. It is convenient to write AQ(4, F ) = (P,L); here L is a subset of the
line set of Q(4, F ). Let θ be a full embedding of AQ(4, F ) into AG(4, F ), as
defined above. Then θ induces an injective mapping of L into the line set of
AG(4, F ).

For L ∈ L, we denote by ∞L the point of Q(4, F ) incident with L but
not belonging to AQ(4, F ), and we set L = L ∪ {∞L}. We also denote
by ∞θ(L) the unique point on θ(L) belonging to the projective completion
PG(4, F ) of AG(4, F ), but not to AG(4, F ) itself. We assume for L,M ∈ L
with L∪M = ∅ that θ(L) is not parallel to θ(M) in AG(4, F ), and we refer
to this assumption as Assumption (∗).

Our basic aim is to show that, if L,M ∈ L with ∞L = ∞M , then θ(L)
is parallel with θ(M). This enables us to define θ(∞L) as the unique point
of the projective completion PG(4, F ) of AG(4, F ) corresponding with the
direction of θ(L). Then we also show that, if L,M,N ∈ L with∞L,∞M and
∞N collinear in Q(4, F ), then θ(∞L), θ(∞M ) and θ(∞N ) are also collinear.

The set {∞L | L ∈ L} is the point set of a full non-thick subquadrangle
Q of Q(4, F ).

Let L,M ∈ L with ∞L =∞M ∈ Q, and suppose that θ(L) is not parallel
with θ(M), i.e.∞θ(L) 6=∞θ(M). Let X be any of the two lines of Q incident
with ∞L. Let K be any line of AQ(4, F ) intersecting X within Q(4, F ),
and with ∞K 6= ∞L. Then L and K are contained in a unique non-thick
full subquadrangle QL,K of Q(4, F ). By 3.1, the subquadrangle QL,K has
precisely two lines in common with Q, namely X and some other line Y .
By Assumption (∗), the image under θ of the lines of QL,K belonging to
AQ(4, F ) form a grid, so they constitute the affine part of a hyperbolic
quadric intersecting the 3-space PG(3, F )∞ at infinity in two lines. One of
the latter is the line AL defined by∞θ(L) and∞θ(K). That line also contains
∞θ(Z) for each line Z belonging to the regulus R(L,K). There is a unique
point ∞AL

of AL not of the form ∞θ(Z), with Z ∈ R(L,K). Interchanging
the roles of L and M , we can similarly define AM . We first claim that
AL 6= AM . Indeed, if not, by Assumption (∗), AL = AM is equivalent
with ∞θ(M) = ∞AL

. Now, in QM,K (similarly defined as Q(L,K)), there
is a unique line Z ′ concurrent with X and Y . Assumption (∗) yields that
∞θ(Z′) 6= ∞θ(M), hence ∞θ(Z′) = ∞θ(Z) for some Z ∈ R(L,K). As Z ′

does not intersect any such line, this contradicts Assumption (∗). Our claim
follows.

Hence AL 6= AM . But since these lines intersect in ∞θ(K), they span
a plane πX entirely contained in PG(3, F )∞. Now we consider the regulus
R(Z ′, Y ′) where Y ′ is the unique line of Q distinct from X and incident with
∞L. This regulus intersects the regulus R(L,K) in some line Z. Hence the
line AY ′ spanned by ∞θ(Z′) and ∞θ(Z) contains a unique point ∞A′Y

that is

not of the form∞θ(U), for some U ∈ R(Z,Z ′)r{Y ′}. Now we see that each
line AU spanned by ∞θ(L) and ∞θ(U), for U ranging over R(Z,Z ′) r {Y ′},
contains a unique point∞AU

that is not of the form∞θ(W ), for some line W
of AQ(4, F ) intersecting X, but not incident with∞L. It now easily follows
that all the points ∞AU

are contained in a line LX of πX . Moreover, since
we can interchange the roles of L and K, we see that all points ∞θ(N), for
N ranging over the set of lines of AQ(4, F ) incident with∞K , are contained



14 GRUNDHÖFER, STROPPEL, VAN MALDEGHEM

in a unique line LK , of which exactly two points are not of the form ∞θ(N).
One point is the intersection with LX , the other point, Pπ, is the intersection
with the line LM spanned by ∞θ(L) and ∞θ(M). It follows that all points of
LM but Pπ and ∞AY ′ are of the form ∞θ(V ), for V ranging over all lines of
AQ(4, F ) incident with ∞L.

We have shown that the mapping ρX : N 7→ ∞θ(N) is a bijection from the
set of lines of AQ(4, F ) concurrent with X in Q(4, F ) to the set of points of
πX distinct from Pπ and not on LX . Moreover, reguli correspond under ρX
to lines not through Pπ, and line pencils correspond to lines through Pπ.

We now can similarly define πY and πY ′ , which intersect πX in respec-
tive lines through Pπ. The planes πY and πY ′ necessarily intersect in their
common line LY = LY ′ . Varying X over Q, we see that the mapping
ρ : L → PG(3, F )∞ : N 7→ ∞θ(N) is, as the union of all maps ρX with X
ranging over all lines of Q, a bijection from L onto the set of points of
PG(3, F )∞ off the lines LX and LY , for two arbitrary intersecting lines X
and Y of Q.

Now let L,X and Y ′ be as before. Let L′ be a line of AQ(4, F ) intersecting
Y ′, but not X, in Q(4, F ). Then θ(L′) does not intersect πX , and hence θ(L′)
has a unique intersection point b with the 3-space S of AG(4, F ) determined
by L and πX . Let B be the unique line of AQ(4, F ) incident with b and
intersecting L. Then, by the foregoing,∞θ(B) is not contained in πX whereas
θ(B) contains two distinct points of S, namely θ(b) and some point on θ(L).
This contradiction finally shows that ∞θ(L) =∞θ(M).

Now considering again reguli through K and L (M , respectively), we eas-
ily see that the set of points ∞θ(N), for N ranging over all lines of AQ(4, F )
concurrent with X in Q(4, F ), coincides with the set of points of a line of
PG(3, F )∞. Hence we obtain a full embedding of Q(4, F ) into PG(4, F )
and the result follows from Dienst’s main theorem in [8] and the fact that
the projective group of automorphisms of Q(4, F ) acts transitively on full
non-thick subquadrangles. �

We need a slightly more general result (cf. [26, 2.10]), which will follow
from the previous one and the following two lemmas.

Lemma 3.4. The geometry AQ(4, F ) is connected, for all fields F .

Proof. If |F | = 2, then each line has exactly two points, so we can consider
AQ(4, F ) as a graph; it is easy to see that AQ(4, F ) is the complete bipartite
graph of valency 3.

Suppose now that |F | > 2. Let x, y be any two points of AQ(4, F ). We
will show that there is a path in AQ(4, F ) connecting them. We may assume
that they are not collinear in AQ(4, F ), and hence neither in Q(4, F ). Let L
be a line through x. If, in Q(4, F ), the unique point z on L that is collinear
with y belongs to AQ(4, F ), then we are done. So suppose that z belongs
to Q(4, F ) but not to AQ(4, F ). Let X be a line through z in Q(4, F ) that
does not belong to AQ(4, F ), let z′ 6= z be a point on X, and let M be a
line through z′ belonging to AQ(4, F ). Then the respective unique points
x′, y′ on M collinear with x and y belong to AQ(4, F ) (as z′ is collinear to
neither of x, y), and we have the path x, x′, y′, y. �
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Lemma 3.5. Let F be a field with |F | > 2, and let X and Y be two inter-
secting lines of Q(4, F ) that do not belong to AQ(4, F ). Then the geometry
AQX,Y (4, F ) obtained from AQ(4, F ) by deleting all lines that meet the union
X ∪ Y in Q(4, F ) is a connected geometry.

Proof. By the previous lemma, we only need to show that any two points
x, y of AQ(4, F ) are connected in AQX,Y (4, F ) if they are incident with a
line of Q(4, F ) that intersects X or Y . Let L be the line joining two such
points x and y. We may assume that, in Q(4, F ), L and X intersect in a
point z.

First we suppose that z /∈ Y . Let Y ′ be the (unique) line through z,
different from X and belonging to Q(4, F ), but not to AQ(4, F ). Let z′ 6= z
be a point on Y ′, and let M be a line through z′ belonging to AQ(4, F ), but
not to the regulus R(L, Y ); such a line M exists since |F | > 2. Then
the respective unique points x′, y′ on M collinear with x and y belong
to AQ(4, F ) (as z′ is collinear to neither of x, y), and we have the path
x, x′, y′, y. The lines through x, x′ and through y, y′, respectively, do not
meet X (as there are no triangles in Q(4, F )) nor Y (as they intersect every
member of R(L,M) 63 Y ), and also M does not meet X ∪ Y . Hence x is
joined to y in AQX,Y (4, F ).

If z ∈ Y , then we choose a regulus R through L such that X intersects
every member of R (then X is called a transversal of R) and we choose
M ∈ R r {L}. Then the points x′, y′ of M on a transversal of R together
with x, y, respectively, belong to AQ(4, F ). By the previous paragraph, we
find a path in AQX,Y (4, F ) connecting x′ and y′. Since the above mentioned
transversals do not meet X∪Y , we can extend that path to join x and y. �

Corollary 3.6. Let V be a vector space over a field F with |F | > 2 and
dimF V ≥ 4. Then up to collineations from AΓL(V, F ), the standard em-
bedding of AQ(4, F ) into AG(4, F ) ≤ AG(V, F ) is the only full embedding of
AQ(4, F ) into the affine space AG(V, F ) with the property that any two lines
of AQ(4, F ) which do not intersect in Q(4, F ) are not parallel in AG(V, F ).

Proof. We embed AQ(4, F ) into AG(V, F ) and identify points and lines of
AQ(4, F ) with their images in AG(V, F ).

Let Q be a non-thick full subquadrangle of AQ(4, F ) (this arises from
a non-thick full subquadrangle of Q(4, F ) that contains two lines X,Y of
Q(4, F ) which do not belong to AQ(4, F )). Then, since Q is determined by
two non-intersecting lines, it is entirely contained in a 3-space AG(3, F ) of
AG(V, F ). Let x be a point of AQ(4, F ) not in Q. If we show that every
point of AQ(4, F ) is contained in the affine space A generated by AG(3, F )
and x, then AQ(4, F ) is certainly contained in an affine 4-space; hence we
can apply Theorem 3.3 and the result follows.

Clearly, all points of AQ(4, F ) collinear with x, but not collinear with any
point of X ∪ Y in Q(4, F ) belong to A. By connectivity of the geometry
AQX,Y (4, F ), see Lemma 3.5, all points of AQ(4, F ) belong to A, and the
assertion follows. �
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4. Unitals from the affine quadrangles AQ(4, R)

Let C|R be a quadratic extension of fields. The projective plane PG(2, C)
can be considered as the projective closure of the affine plane AG(2, C).
The latter is constructed from the 2-dimensional vector space VC = C2

over C: the points are the pairs (X,Y ) ∈ C × C, and the lines are the
sets of points satisfying an equation of the form AX + BY + D = 0 with
(A,B) 6= (0, 0). The set VR = R4 is a 4-dimensional vector space over R,
and β : VC → VR : (X,Y ) = (x0 − ε−1x1, y0 + y1) 7→ (x0, x1, y0, y1) is an R-
linear identification between VC and VR. The affine line in VC with equation
AX + BY + D = 0, where A = a0 + εa1, B = b0 + εb1, D = d0 + εd1 is
mapped by β onto the affine plane in VR with equations{

a0x0 − (td−1a0 + a1)x1 + b0y0 − tdb1y1 + d0 = 0,
a1x0 + d−1a0x1 + b1y0 + b0y1 + tb1y1 + d1 = 0.

The points at infinity of such a plane form a line in the projective space
PG(VR), and the set of all such lines forms a line spread of PG(VR), which
we call the ABB spread of β. (ABB stands for André, Bose and Bruck.)

Recall that in PG(2, C) we use homogeneous coordinates [X,Y, Z] to de-
note the point (X/Z, Y/Z) of AG(2, C) if Z 6= 0, and the point at infinity
corresponding with the slope Y/X if Z = 0 and X 6= 0, and the point at
infinity of the Y -axis if X = Z = 0.

We now prove that generalized hermitian unitals H(C|R) are equivalent
to affine quadrangles isomorphic to AQ(4, R) whose grid at infinity shares a
regulus with an ABB spread related to C|R. Note that the line at infinity
induces the block B = {[εx, y, 0] | (0, 0) 6= (x, y) ∈ R2}.

Proposition 4.1. The image of H(C|R)rB under β consists of the points
of an affine quadrangle AQ(4, R) (images of the affine points) together with
one regulus R of a grid in PG(VR) completing it to Q(4, R) (images of
the points at infinity). Conversely, if AQ(4, R) is an affine quadrangle in
PG(4, R) such that one of the reguli of its completion to Q(4, R) is a subset
of the ABB spread, then the point set of AQ(4, R) is projectively equivalent
to the set of affine points of H(C|R).

Two blocks B1, B2 in H(C|R) r B meet in a point of B if, and only
if, there is a line L in the regulus R meeting both images β(B1 r B) and
β(B2 rB).

Proof. A point [X,Y, 1] = [x0 − ε−1x1, y0 + εy1, 1] belongs to H := H(C|R)
if and only if

σ(x0 − ε−1x1)(y0 + εy1) + 1 ∈ εR.
Noting that σ(ε)−1 = d−1ε and ε2 = tε−d, we compute the left hand side as
σ(x0−ε−1x1)(y0+εy1)+1 = x0y0+x1y1+1+ε(x0y1−d−1x1y0−td−1x1y1).
The latter belongs to εR if and only if x0y0 +x1y1 +1 = 0, which is, reading
x0, . . . , y1 as variables, precisely the equation of an affine quadric isomorphic
to AQ(4, R). The equation of the points at infinity of that quadric reads
x0y0 + x1y1 = 0. Now, the points at infinity of H, which have coordinates
[0, 1, 0] and [1, kε, 0] with k ∈ R, are given by the directions of the lines
with equation X = 0 and Y − εkX = 0. These give rise to the lines of
PG(VR) with equations x0 = 0 = x1 and y0 + kx1 = 0 = y1− kx0, and these
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lines constitute indeed one regulus R of the ruled quadric with equation
x0y0 + x1y1 = 0.

In the previous paragraph, we have found the interpretation in PG(2, C)
of the (affine) quadric in VR with equation x0y0 + x1y1 + 1 = 0. Now
let Q be any affine quadric in VR whose structure at infinity is a ruled
quadric where one regulus is a subset of the ABB spread of β. By the 3-
transitivity of the automorphism group of AG(2, C) on its set of points at
infinity, and hence the 3-transitivity of the automorphism group of the ABB
spread on its set of lines, we may assume that the regulus at infinity of Q
which belongs to the ABB spread is R. Then the equation of Q is of the
form x0y0 + x1y1 + k1 + k2x0 + k3x1 + k4y0 + k5y1 = 0. The translation
(x0, x1, y0, y1) 7→ (x0 − k4, x1 − k5, y0 − k2, y1 − k3) is an automorphism
of AG(2, C), and transforms the equation into x0y0 + x1y1 + ` = 0, with
` = k1 + k2k4 + k3k5. If Q is an affine quadrangle then ` 6= 0, and the
automorphism (X,Y ) 7→ (X, `−1Y ) of AG(2, C) maps Q to the set of affine
points of H(C|R). �

Proposition 4.2. Let C|R and C ′|R′ be quadratic extensions of fields. Then
the generalized hermitian unitals H(C|R) and H(C ′|R′) are isomorphic (as
incidence structures) if, and only if, there exists an isomorphism between C
and C ′ mapping R onto R′.

Proof. The “if” part follows from 2.3, so we show the converse implication.
We begin by reconstructing the affine plane AG(2, R) from the unital

H := H(C|R). Let q be a point of H. Let πq be the set of blocks of
H containing q. Consider two blocks B0, B1 ∈ πq. We define the subset
L(B0, B1) as the set containingB0, B1 and each blockB ∈ πqr{B0, B1} with
the property that no block outside πq meets B0, B1, and B. We claim that
L(B0, B1) = L(B′0, B

′
1), for every choice of two blocks B′0, B

′
1 ∈ L(B0, B1).

Indeed, we can do this by an explicit calculation. As AutH is two-
transitive, we may take q = [0, 1, 0] and B0 as the block induced by q + p
with p = [1, 0, 0]. Each block in πq is then induced by a line of the form
q+ [1, 0, Z] with Z ∈ C because q+ [0, 0, 1] is the unique tangent through q.

The maps ρA : [X,Y, Z] 7→ [X,σ(A)AY,AZ] with A ∈ C r {0} form a
group Hq of automorphisms of H fixing q, stabilizing the block B0, and
acting transitively on πq r {B0}. So we may assume B1 = q + [1, 0, 1].
For Z ∈ C, let BZ be the block induced by the line q + [1, 0, Z]; then
πq = {BZ |Z ∈ C}.

A general point of B1 is pr := [1, εr − 1, 1], with r ∈ R. By the existence
of all translations with center q, the members of L(B0, B1) are exactly the
blocks through q that do not meet any block through p and pr, with r ∈ R.
For W = σ(u+ εv) with u, v ∈ R, the intersection point [W, εr− 1, 1] of the
lines p+ pr and q+ [W, 0, 1] belongs to H precisely if u = 1− dvr. If W /∈ R
then v 6= 0, and we find r = 1−u

dv ∈ R such that the blocks induced by p+ pr
and q+ [W, 0, 1] do meet. If W ∈ R then v = 0, and the blocks only meet if
W = 1, and q+ [W, 0, 1] induces the block B1. So L(B0, B1) = {Br | r ∈ R}.

Now {ρa | a ∈ Rr {0}} is a subgroup ofHq fixingB0, stabilizing L(B0, B1)
and acting transitively on L(B0, B1) r {B0}. Interchanging the roles of B0

and B1, we see that some subgroup of the stabilizer of q in (PSL3C)H stabi-
lizes L(B0, B1) and acts two-transitively on L(B0, B1). Our claim is proved.
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For S, T ∈ C with B 6= 0 we put LA,T := {BS+Tu |u ∈ R}; note that
L(B0, B1) = L0,1. Then ρT (L(B0, B1)) = L0,T . It is routine to check that
the map

τS : [X,Y, Z] 7→ [X,−σ(S)SX + Y + σ(S)(σ(ε)−1ε− 1)Z, SX + Z]

is an automorphism of H fixing q, with BS+W = τS(BW ) and thus LS,T =
τS(L0,T ) = τS(ρT (L0,1)) = τS(ρT (L(B0, B)). This yields that LS,T =
L(B′, B′′) for two blocks B′, B′′ ∈ πq. Conversely, any two blocks BV , BW
through q are contained in the set LV,W−V = {BV+(W−V )u |u ∈ R}. Clearly,
πq endowed with this family of subsets is an affine plane Πq isomorphic to
AG(2, R).

We identify the block BW ∈ πq with W ∈ C, use the two-dimensional
vector space C over R as model for the affine plane AG(2, R), and study the
action of τS and ρA; for S ∈ C and A ∈ C r {0}. We have seen above that
τS induces the translation W 7→ S +W . Writing A = a+ εb with a, b ∈ R,
we obtain the matrix describing ρA with respect to the basis 1, ε as

(
a −db
b a+tb

)
.

The characteristic roots of that matrix are A and σ(A), with eigenspaces
(σ(ε),−1)R and (ε,−1)R, respectively (these coincide if σ is the identity,
i.e. in the inseparable case). We interpret these points as points at infinity
over the algebraic closure of R, and refer to them as the cyclic points.

Now let B be an arbitrary block of U not through q. The set of blocks
through q meeting B will be referred to as a circle in Πq. We claim that
every circle contains the cyclic points. More exactly, the intersection of every
circle with the line at infinity is the set of cyclic points.

Indeed, for A,S ∈ C, the collineations ρA and τS preserve the cyclic
points. Therefore, it is enough to show the claim for B meeting B0 and
B1 (with the notation of the first part of the proof). Since we have all
translations, we may assume that B contains [1, 0, 0].

So let B be the block through the points [1, 0, 0] and the arbitrary point
[1, εr − 1, 1] of B1, for some fixed r ∈ R. The points W of ΠP on the
circle determined by B correspond to the points [1,W (εr − 1),W ] of B.
Expressing that such a point belongs to H, we obtain the necessary and
sufficient condition σ(W )(εr−1)+σ(W )W ∈ εR. Writing W = u+εv with
u, v ∈ R, we translate that condition into

u− tv + dvr + u2 + tuv + dv2 = 0 ,

which represents a conic in Πq whose points at infinity are given as (u, v)R
satisfying u2 + tuv + dv2 = 0; these are just the cyclic points.

Hence the circles determine the field C: just add the slopes corresponding
to the points at infinity of any circle to R and this generates the field C. If H
andH′ are isomorphic unitals, then the planes Πq and, with similar notation,
Πq′ are isomorphic, so the fields R and R′ are isomorphic. Moreover, there
is an isomorphism between Πq and Πq′ which also maps circles to circles.
Since C and C ′ are determined by the points a infinity of the circles, the
assertion follows. �

5. Embeddings of generalized hermitian unitals

The generalized hermitian unital H(C|R) defined in Section 2 has, by defini-
tion, an embedding into the projective plane PG(2, C); this is the standard
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embedding. Every embedding C → E of fields yields an embedding θ of
H = H(C|R) into PG(2, E), and we can compose θ with any collineation
from (PΓL3C)H on the right and with any collineation from PΓL3E from the
left. We say that these embeddings originate from the embedding C → E
of fields.

Theorem 5.1. Let E be a field and let C|R be a quadratic extension of fields
with |R| > 2. Then every embedding of the generalized hermitian unital
H(C|R) into the projective plane PG(2, E) originates from an embedding
C → E of fields.

Proof. We identify H := H(C|R) with its image in PG(2, E). Every per-
spectivity ρ : B → B′ in H is the restriction of a unique perspectivity
ρE : L → L′, where L and L′ are the lines of PG(2, E) containing B and
B′, respectively. Thus the group ΠB of all projectivities in H of B onto
itself has a natural embedding (of permutation groups) into the group of
projectivities of L onto itself in PG(2, E), i.e. into the permutation group
(PGL2(E), E). By Theorem 2.16, the permutation group (ΠB, B) is permu-
tation isomorphic to (PSLN2 R,R). Now we apply Proposition 1.1 (if |R| = 3,
then |N | = 2 and PSLN2 R = PGL2F3, see 2.17): the field R embeds into
E such that B is a projective subline over R, i.e. the intersection of a line
with the projective subplane coordinatized by R with respect to a suitable
quadrangle. By Theorem 2.16.2 the same embedding of R is used for each
block of H, since every projectivity is induced by an element of PGL3E, and
thus by an R-linear map.

Now let B and B′ be two intersecting blocks of H, say B ∩ B′ = {x},
and let L and L′ be the lines of PG(2, E) containing B and B′, respectively.
By Theorem 2.16 there is a projectivity ρ of H from B to B′, and ΠB is
transitive on B. Hence we may assume that ρ fixes x, and so does the
projectivity ρE : L→ L′ extending ρ. Since ρE fixes x, it is a perspectivity,
with some center c. Select two points y, z ∈ B r {x} and let y′ and z′ be
the intersection points of B′ with the lines of PG(2, E) defined by c, y and
c, z, respectively. Then the projective subplane π generated by B ∪ {y′, z′}
contains all points of B′; moreover B and B′ are full lines in π.

We have seen above that each block of H is a projective subline over
the subfield R of E. Fix a block B of H and consider the affine plane
AG(2, E) ⊆ PG(2, E) obtained by removing the line containing B. Then
AG(2, E) can be seen as a vector space of dimension 2 over E, and hence also
as a vector space V of (possibly infinite) dimension 2 · dimRE over the field
R. Each block B′ 6= B which meets B becomes a full affine 1-space of V .
We now forget about the vector space structure of V and only consider its
affine space structure AG(V ) over R. Then the points of HrB (the unital
with the points of the block B removed) are points of AG(V ), and all blocks
intersecting B are full lines of AG(V ). These blocks put the structure of
AQ(4, R) on H rB, see [29, 5.1, 5.2]. We have thus derived that AQ(4, R)
is fully embedded in AG(V ).

Now note that parallel lines of AG(V ) are contained in parallel lines of
AG(2, E). Hence, if two blocks of H r B intersecting B are on two non-
parallel lines of AG(2, E), then the corresponding lines in AG(V ) are non-
parallel. Now suppose two blocks B1, B2 of H r B intersecting B are on
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parallel lines of AG(2, E), but define non-intersecting lines in Q(4, R) (the
natural extension of AQ(4, R)). From Proposition 4.1 we know that the
corresponding lines L1 and L2 of AQ(4, R) intersect the same member X
of the regulus R, and they define (cf. 3.2) a regulus R(L1, L2) with X as
a transversal. Let M1,M2 be two other transversals. Then M1,M2 are
lines of AQ(4, R). Since H does not contain an O’Nan configuration (see
Proposition 2.7), the blocks of H corresponding to M1,M2 intersect B in
distinct points. Hence the corresponding lines in AG(V ) are skew (and we
denote these lines also by M1 and M2). It follows that also the lines of
AG(V ) corresponding to B1 and B2 are skew, as they both intersect both
M1 and M2 in different points, and these four points of intersection are not
coplanar.

Hence we can apply Corollary 3.6 and find an affine 4-space AG(4, R) in
AG(V ) containing H r B. Moreover, inside AG(4, R), the points of HrB
and the blocks intersecting B form a standard embedding of AQ(4, R).
Hence there exists an embedding of Q(4, R) into the projective completion
PG(4, R) of AG(4, R) such that AQ(4, R) consists of the points of Q(4, R)
not contained in a full non-thick subquadrangle Q of Q(4, R). Denote by
PG∞(4, R) the projective 3-space PG(4, R) r AG(4, R).

Let PG(V ) be the projective completion of AG(V ); we call the elements
of PG∞(V ) := PG(V ) r AG(V ) the elements at infinity of AG(V ). It is
well known (and easy to see) that the lines of AG(2, E) correspond to affine
subspaces of AG(V ), and that the subspaces at infinity of these subspaces
form a partition (or spread) Σ of the projective space PG∞(V ) (these projec-
tive subspaces are mutually complementary; they have projective dimension
dimRE − 1). Note that PG∞(4, R) is a subspace of PG∞(V ).

We now show that Σ induces a spread Ξ of 1-spaces in PG∞(4, R) con-
taining the regulus R as a subset. First we remark that PG∞(4, R) is not
contained in any member of Σ, as otherwise H r B would be contained in
a line of PG(2, E), which is a contradiction. It now suffices to show that no
member of Σ intersects PG∞(4, R) in just a point, and that the lines of R
are contained in members of Σ.

We start with the latter. We already know (see 4.1) that the blocks of H
intersecting B in some point (i.e. corresponding to lines of AQ(4, R) inter-
secting the same line X of R) are contained in lines of PG(2, E) intersecting
B in the same point b ∈ B. Hence the element of Σ corresponding with the
point b contains X.

Now assume that S ∈ Σ intersects PG∞(4, R) in a single point x. Then x
does not lie on the quadric Q(4, R) because the quadric’s points at infinity
are covered by spread elements that meet PG∞(4, R) in elements of the
regulus. So x is contained in a 3-space of PG(4, R) intersecting Q(4, R) in a
non-degenerate quadric, and is, therefore, not a nucleus for Q(4, R). Thus
there exists a line Z of PG(4, R) through x intersecting AQ(4, R) in exactly
two points. Hence the line of PG(2, E) corresponding with the subspace of
PG(V ) generated by S and Z intersects H in exactly two points; this is a
contradiction to the fact that H is embedded in PG(2, E).

We fix one of the points of AG(4, R) as the origin of the affine space
AG(V ). Then the points of AG(4, R) form a vector subspace T of V , the



EMBEDDINGS OF HERMITIAN UNITALS 21

elements of Σ are the lines of AG(2, E) through the origin, and the members
of Ξ form a spread (of 2-dimensional vector subspaces) in T ; these are the
lines through the origin of an affine plane (T, {X + t |X ∈ Ξ, t ∈ T}). Each
element of Ξ is induced by an element of Σ, and the elements of Σ form the
points at infinity in the projective completion of PG(2, E). Those elements
of Σ that induce elements of Ξ now form a subset of the line at infinity that
completes (T, {X + t |X ∈ Ξ, t ∈ T}) to a projective plane π. The plane π is
a subplane of the pappian plane PG(2, E), and thus isomorphic to PG(2, C ′),
where C ′ is a field extension of R. As every element of Ξ is a two-dimensional
vector subspace of T , the extension C ′|R has degree two.

By Proposition 4.1, the unital H is naturally embedded into PG(2, C ′).
Now, by Proposition 4.2, the extensions C|R and C ′|R are isomorphic. The
embedding of π ∼= PG(2, C) into PG(2, E) now yields an embedding of C
into E, and the embedding of H into π ∼= PG(2, C) is standard. �

Theorem 5.2. Let C|R be a quadratic extension of fields, pick ε ∈ C rR,
and consider the generalized hermitian unital H = H(C|R). Then AutH =
(PΓL3C)H; more explicitly, we have:

(1) If C|R is separable then AutH = PΓU3(C|R) is induced by the group
ΓU3(C|R) of semi-similitudes of the skew hermitian form h in 2.2.

(2) In any case, the group AutH is the product of the simple group
(PSL3C)H and the stabilizer of [1, 0, 0] and [0, 1, 0] in (PΓL3C)H.
That stabilizer is induced by the group consisting of all semilinear
maps (X,Y, Z) 7→ (aγ(X), bγ(Y ), γ(Z)) with γ ∈ AutC and a, b ∈
Cr{0} such that σ(a)b equals the unique element in (1+εR)∩ ε

γ(ε)R.

In particular, the linear elements of that group satisfy σ(a)b = 1.
In the inseparable case, we thus obtain (PGL3C)H = (PSL3C)H. In
the separable case, we have (PGL3C)H/(PSL3C)H ∼= R×.

(3) An automorphism of C occurs as the companion of a semilinear map
in (ΓL3C)H if, and only if, it centralizes σ. In particular, in the
inseparable case there is no restriction on such a companion, and
AutH = (PΓL3C)H = (PSL3C)H o AutC.

Proof. Let η : [X,Y, Z] 7→ [X,Y, Z] denote the standard embedding of H
into PG(2, C). Every automorphism α ∈ AutH yields an embedding η ◦ α,
and Theorem 5.1 says that there exists α′ ∈ PΓL3C such that η ◦α = α′ ◦ η.
So α is the restriction of α′, and α′ is an element of the stabilizer (PΓL3C)H.
Assertion 1 is a known result; see [29, 8.1], cp. [30, 6.1, 5.5] for an alternative
approach if charR 6= 2.

As (PSL3)H acts two-transitively on U (see 2.4), the full group (PΓL3C)H
is the product of (PSL3C)H and the stabilizer H of p = [1, 0, 0] and q =
[0, 1, 0] in (PΓL3C)H. Obviously, the semilinear maps of the form given in
assertion 2 belong to H.

From 2.3 we know that the tangents to U in p and q, respectively, inter-
sect in [0, 0, 1]. Thus that point is fixed by H, as well. We choose semilinear
representatives that actually fix the vector (0, 0, 1). It thus remains to de-
termine the semilinear maps of the form (X,Y, Z) 7→ (aγ(X), bγ(Y ), γ(Z))
with a, b ∈ C r {0} and γ ∈ AutC such that U is invariant.
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The block B joining p and q consists of q and the points of the form
[1, εr, 0] with r ∈ R. The condition that these stay in U amounts to
σ(a)b γ(εR) = εR. We infer γ(R) = R and σ(a)b γ(ε) ∈ εR.

Points of UrB are of the form [X,Y, 1] with σ(X)Y ∈ −1+εR. Invariance
of U now leads to −1 + εR = σ(a)b γ(−1 + εR) = −σ(a)b+ εR, so σ(a)b ∈
(1 + εR) ∩ ε

γ(ε)R. As γ(ε) /∈ R, that intersection consists of precisely one

element, and the product is determined uniquely by γ. If γ = id then
σ(a)b = 1. This completes the proof of assertion 2.

Assertion 3 follows from the known fact that the centralizer of σ in AutC
consists of those automorphisms that leave R invariant, see [17, Proof of 1.3]
or [18, Proof of 1.3]. �

Remark 5.3. Let C|R be a quadratic extension of fields, pick ε ∈ C r R,
and consider the generalized hermitian unital H(C|R). On the set of all
embeddings of H(C|R) into PG(2, E), the group Aut PG(2, E) = PΓL3E
acts from the left and AutH(C|R) acts from the right. Since AutH(C|R)
is induced by collineations of PG(2, E), it suffices to compose the standard
embedding on the left with elements from PΓL3E.

If each automorphism of E leaves the images of both R and C in E
invariant, then every element of AutE occurs as the companion of an auto-
morphism of H(C|R), see 5.2.3. In this case, the images of H(C|R) under
embeddings into PG(2, E) form a single orbit under PGL3E.

Corollary 5.4. Let q > 2 be a power of a prime p. Every embedding of the
finite hermitian unital H(Fq2 |Fq) into the pappian projective plane PG(2, E)
over any field E is the composition of the standard embedding with some
collineation from PΓL3E, and the images of these embeddings form a single
orbit under the group PGL3E. In particular, this holds if E = Fq2.

Proof. We apply Theorem 5.1 with C = Fq2 and obtain all embeddings.
Every finite subfield of E is invariant under each automorphism of E. Ac-
cording to 5.3, there is just one orbit under PGL3E. �

Remark 5.5. The assertion of Corollary 5.4 remains true if q = 2 and
E = F4; this is proved in [14, Cor. 11.2].

In the case E = Fq2 , an alternative argument for the assertion of Corol-
lary 5.4 can be based on the observation that every block is a Baer subline
(see 2.8): the assertion follows from [21] or [9], see also [2, 7.1, 7.2].

Let X be a set of points of a projective space. The tangents of X at
p ∈ X are the lines L of the projective space with L ∩X = {p}.

Corollary 5.6. Let E be an infinite field and let C|R be a quadratic ex-
tension of fields with |R| > 2. Then every embedding of the generalized
hermitian unital H(C|R) into the projective plane PG(2, E) with less than
|E| tangents at some point p of the image of H(C|R) originates from an
isomorphism C → E of fields. In particular, there is just one tangent at p.

Proof. By Theorem 5.1 the embedding originates from an embedding C → E
of fields. Let C ′ be the image of C in E. All lines through p not belonging
to the subplane PG(2, C ′) are tangents. Hence there are at least |E rC ′| =
|E r C ′| tangents at p, and we infer that |E r C ′| < |E|.
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If E r C ′ is not empty, then it contains an additive coset of C ′, hence
|C ′| ≤ |E r C ′| < |E| = |C ′| + |E r C ′| ≤ 2|E r C ′| < |E|, which is
absurd. Therefore E = C ′, and the embedding C → E is an isomorphism.
Uniqueness of the tangent now follows from 2.3 (it is a classical result in the
separable case, see [15, Lemma II.2.47]). �

Remark 5.7. Some infinite fields admit proper field endomorphisms, i.e.
they are isomorphic to proper subfields. For example, for every field F the
rational function field F (t) is isomorphic to its subfield F (tn), for every
integer n 6= 0, and the power series field F ((t)) is isomorphic to F ((tn)).
If F is a non-perfect field of characteristic p, then F is isomorphic to its
proper subfield F p via the Frobenius endomorphism x 7→ xp. Moreover, the
field C of complex numbers admits many proper field endomorphisms, and
the same is true for every algebraically closed field of infinite transcendency
degree over its prime field; see [28, 14.9].

If ϕ : E → E is a proper endomorphism of the field E, then PG(2, ϕ(E))
is a proper subplane of PG(2, E) with |E| tangents at each point. Every in-
cidence structure embeddable into PG(2, E) embeds also into PG(2, ϕ(E)),
with |E| tangents in PG(2, E) at each point. This shows that some cardinal-
ity bound (like the one for the number of tangents) is needed in Corollary
5.6. even if we embed H(C|R) in PG(2, C).
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[11] T. Grundhöfer, B. Krinn, M. Stroppel, Non-existence of isomorphisms between certain
unitals. Des. Codes Cryptogr. 60 (2011) 197–201.
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[20] G. Korchmáros, A. Siciliano, T. Szőnyi, Embedding of classical polar unitals in
PG(2, q2). J. Combin. Theory (A) 153 (2018), 67–75.
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