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Abstract

This dissertation studies local and asymptotic properties of distributions (gen-

eralized functions) in connection to several problems in harmonic analysis, ap-

proximation theory, classical real and complex function theory, tauberian theory,

summability of divergent series and integrals, and number theory.

In Chapter 2 we give two new proofs of the Prime Number Theory based on

ideas from asymptotic analysis on spaces of distributions.

Several inverse problems in Fourier analysis and summability theory are studied

in detail. Chapter 3 provides a complete characterization of point values of tem-

pered distributions and functions in terms of a generalized pointwise Fourier in-

version formula. The relation of the Fourier inversion formula with several summa-

bility procedures for divergent series and integrals is established. This work also

provides formulas for jump singularities, that is, detection of edges from spectral

data, which can be used as effective numerical detectors. Chapters 5 and 6 in-

troduce new summability methods for the determination of jump discontinuities.

Estimations on orders of summability are given in Chapter 8.

Chapters 4 and 9 give a tauberian theory for distributional point values; this

theory recovers important classical tauberians of Hardy and Littlewood, among

others, for Dirichlet series.

We make a complete wavelet analysis of asymptotic properties of distributions in

Chapter 11. This study connects the boundary asymptotic behavior of the wavelet

transform with asymptotics of tempered distributions. It is shown that our taube-

rian theorems become full characterizations.

Chapter 10 makes a comprehensive study of asymptotic properties of distri-

butions. Open problems in the area are solved in Chapter 10 and new tools are

ix



developed. We obtain a complete structural description of quasiasymptotics in one

variable.

We introduce the φ−transform for the local analysis of functions, measures, and

distributions. In Chapter 7 the transform is used to study distributionally regulated

functions (introduced here). Chapter 12 presents a characterization of measures in

terms of the boundary behavior of this transform. We characterize the support of

tempered distributions in Chapter 13 by various summability means of the Fourier

transform.
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Introduction

The theory of Schwartz distributions, and other types of generalized functions,

is a very powerful tool in analysis and applied mathematics. There are several

approaches to the theory of distributions, but in all of them one quickly learns

that distributions do not have point values, as functions do, despite the fact that

they are called “generalized functions.” Interestingly, many common objects in

analysis do not have point values, even though they are referred as “functions”:

If f ∈ L1 (R) , what is f (0)? Recall that the elements of L1 (R) are equivalence

classes of functions equal almost everywhere, and thus one may change the values

on any set of measure zero, as {0} for instance, without changing the element of

L1 (R) . Nevertheless, point values are a fundamental necessity in most problems

of analysis, and this makes analysts look for substitutes, for example the notion of

Lebesgue points, which is the actual concept used for point values of Lp−functions.

In a seminal work,  Lojasiewicz [128, 129] was the first to give a satisfactory defi-

nition of the value of a distribution at a point, which when applied at points where

the distribution is locally equal to a continuous function gives the usual value,

but can also be applied in more complicated situations (Lebesgue points, Denjoy

integrable functions, Peano differentials [34, 128], de la Vallée Poussin derivatives

[256], among others). Once a notion of point value is introduced, one can start to

ask questions about its relation with other concepts in analysis where pointwise

problems play a fundamental role. The concept of  Lojasiewicz point value has been

shown to be very useful in several areas, such as abelian and tauberian results for

integral transforms [139, 149], spectral expansions [47, 236, 237], the summability

of cardinal series [239, 240], wavelet analysis [241, 242, 188], or partial differential

equations [54, 235]. The idea of  Lojasiewicz has been extended to other asymp-

1



totic notions which can be used to measure the pointwise behavior, or asymptotic

behavior at infinity, of a generalized function.

Asymptotic analysis is an old subject and, as distribution theory, it has found

applications in various fields of pure and applied mathematics, physics, and en-

gineering. The requirements of modern mathematics, and mathematical physics

[61, 231, 234, 249], have brought the necessity to incorporate ideas from asymp-

totic analysis to the field of generalized functions, and reciprocally.

During the past five decades, numerous definitions of asymptotic behavior for

generalized functions have been elaborated and applied to concrete problems in

mathematics and mathematical physics. Some of the main features of these theories

and their applications have been collected in various monographs [61, 139, 160,

231].

The core of this dissertation lies in the study of local and asymptotic properties

of Schwartz distributions and their interactions with other areas of analysis such

as harmonic analysis, asymptotic analysis, classical theory of real and complex

functions, summability of divergent series and integrals, tauberian theory, analytic

number theory, and applied mathematics. We will use tools from functional analy-

sis and integral transform methods, especially of abelian and tauberian nature, to

investigate several problems in the above mentioned areas. Interestingly, a distri-

butional point of view can lead to generalizations of many important theorems in

classical analysis which very often can be used to recover the classical result and

reveal new information to the problem itself.

In the course of this doctoral investigation, many of my results have appeared

published. This dissertation is based on 15 of my articles ([212]–[228]), 12 of which

have been already published or accepted for publication. The intention of this

document is to explain such contributions in detail. The exposition may differ from

2



that given in the individual articles and I have tried to make it more complete and

accessible to non-specialists. I have also added a preliminary chapter (Chapter 1)

where the reader can find some background material and references to it, I hope

this be useful for the reader.

In the following, I specialize the discussion to the main subjects of interest.

Although the study is unified by technique and scope, the topics and applica-

tions covered are somehow broad. Therefore, I have decided to divide the rest of

this introduction into three categories which better enclose the character of each

individual problem and topic. These categories are inverse problems in Fourier

analysis, generalized asymptotics, and tauberian and abelian theory. In addition,

most of the chapter have their own independent introductions where the reader

can find further bibliographical comments.

Inverse Problems in Fourier Analysis

The study of the relationship between the local behavior of a function (or general-

ized function) and the convergence or summability properties of its Fourier series

or Fourier transform is a very rich problem. It has a long tradition and history

[62, 63, 89, 105, 131, 184, 236, 256]. Furthermore, it is still a subject of active

research [23, 47, 71, 74, 164]. These types of problems have constantly been a new

source of ideas for analysts for more than two centuries. They are also of great

importance in applied mathematics, since they can be used as the base of many

important computational algorithms.

There is an intimate and interesting relation between the value of a periodic dis-

tribution and its Fourier series. It was shown in [47] that if a 2π-periodic distribu-

tion f has Fourier series
∑∞

n=−∞ cne
inx and x0 ∈ R, then f(x0) = γ distributionally

(i.e., in the sense of  Lojasiewicz [128]) if and only if there exists k such that

lim
x→∞

∑
−x<n≤ax

cne
inx0 = γ (C, k) , (0.0.1)

3



for each a > 0, where (C, k) means in the Cesàro sense of order k [61, 85]. Observe

that the characterization holds in terms of the slightly asymmetric means of (0.0.1);

the summability of symmetric partial sums (i.e., the series in cosines-sines form)

is not enough to conclude the existence of the point value.

The characterization (0.0.1) and its extensions is the starting point of our incur-

sions into Fourier inverse problems. It is natural to ask whether there is an analog

to (0.0.1) for the Fourier transform. The answer to this question is positive. It will

be the subject of Chapter 3, where a generalized pointwise Fourier inversion for-

mula will be presented. Such a contribution appeared published in [215, 216]. This

pointwise Fourier inversion formula has a general character, it is applicable to very

general tempered distributions, i.e., elements of the space S ′(R) [180], and is valid

at every point where the distribution has a distributional point value. The formula

depends on the concept of e.v distributional evaluations in the Cesàro sense, intro-

duced by R. Estrada and myself also in [216]. This result is stated as follows. Here

f̂ stands for the Fourier transform of f . I refer the reader to Chapter 3 for the

notation used in the statement. For a tempered distribution, we have f(x0) = γ,

distributionally, if and only if there exists a k ∈ N such that

1

2π
e.v.

〈
f̂ (t) , e−ix0t

〉
= γ (C, k) . (0.0.2)

It is remarkable that no such characterizations have been given for classical func-

tions. The notion of e.v. distributional evaluations uses asymmetric differences of

the primitives of eix0xf̂ , just as in the previously mentioned case of Fourier series.

Moreover, it includes as immediate corollaries the case of Fourier series and other

cases of interest; for instance, if f̂ coincides with a locally integrable function, then

(0.0.2) reads

lim
x→∞

1

2π

∫ ax

−x
f̂(t)eix0tdt = γ (C, k) , for each a > 0 . (0.0.3)

4



Therefore, this theory provides a novel unifying approach to pointwise problems in

Fourier analysis; indeed, it considers Fourier series and integrals at the same time!

It also includes “trigonometric integrals” of distributions. One may also apply this

result to non-harmonic series, and characterize distributional point values in terms

of Riesz typical means (see Chapter 3 or [85] for the definition of Riesz typical

means).

It is worth to say some words about the technique employed to prove (0.0.2) and

its relation with some problems we will discuss later. The technique motivated the

creation of some new tools in generalized asymptotics by the author and S. Pilipović

[227]. When proving (0.0.2), we were led to study the structure of a distributional

quasiasymptotic relation of the form (see Section 1.8.1 for quasiasymptotics)

g(λx) ∼ γδ(x)

λ
, λ→∞ , (0.0.4)

in the space D′(R), where δ is the Dirac delta distribution. The difficulty to study

the structure of these types of relations was pointed out in [153, 156, 160, 192],

and a structural characterization remained as an open question in generalized

asymptotics. We basically solved this open question in [216] for the asymptotic

relation (0.0.4).

Another interesting related question is that of convergence of Fourier series and

integrals in the presence of distributional point values; namely, conditions to ensure

convergence, not just the (C) summability, of (0.0.1) and (0.0.3). It is obvious that

one needs to impose extra conditions to deduce convergence, that is, so called

tauberian conditions. It is important to mention that, in particular, any of such

tauberian results implies a tauberian theorem for ordinary Cesàro summability of

series and integrals. We found in [216] some general conditions over the tails of

series (and integrals) to guarantee convergence in this context. In Chapter 3, these

results will be discussed in detail.
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We will address in Chapter 8 the study of the order of summability in the point-

wise Fourier inversion formula (0.0.2). While the results from Chapter 3 provide

characterizations of distributional point values, they do not say anything about

the order of summability. It is a fundamental discovery of  Lojasiewicz that dis-

tributional point value is actually an average notion, in the sense that it can be

described by taking certain (sufficiently large) number of averages [128]. Therefore,

one can assign an order to distributional point values. In [223], we slightly modified

 Lojasiewicz definition and related it with the order of summability of (0.0.2). We

obtained the order of summability of the Fourier inversion formula upon knowledge

of the order of the point value, and conversely. Our results can also be connected

with the classical Hardy-Littlewood problem of the symmetric (C) summability of

a trigonometric series (see [256, Chap.XI] and references therein). We formulated

and solved an analog to this problem in our distributional setting using the concept

of symmetric (distributional) point values [223]; it can be used to obtain the clas-

sical results for trigonometric series, but also can be applied to more complicated

cases of interest. Those results will be presented in Chapter 3 without informa-

tion about the order of summability; the order of summability will be obtained

in Chapter 8. These estimates on the order of summability are also important for

determination of jumps of functions and distributions [218, 222, 223], as explained

below.

One can also apply these ideas to the study of jump singularities of functions

(or generalized functions), that is, detection of edges from spectral data. This sub-

ject has had recent attention because of its potential applications in numerical

algorithms for reconstruction of functions. For example, one has the case of peri-

odic functions. In the spectral data context, one is interested in reconstructing a

function f from its Fourier coefficients. While when f is sufficiently smooth the
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straightforward approximation by the partial sums of the Fourier series provides

a highly accurate reconstruction, the situation is radically different for piecewise

smooth functions, mainly due to the Gibbs phenomenon. There are several ap-

proaches to overcome the difficulties presented in the presence of edges (for in-

stance, [77, 134, 211]). However, all these recovery procedures require a priori

knowledge of underlying jump discontinuities of the function or its derivatives.

Thus, detection of edges is a critical issue in the problem. Detection of edges is

also fundamental in a variety of computational algorithms, from spectral accurate

schemes for capturing shock discontinuities [133] to image compression [4].

The model results for the determination of jumps by spectral data are those of

Fejér and Lukács [63, 131, 256], and many modern works still follow their ideas.

Therefore, it is convenient to state their formulas. Let f be a 2π-periodic function

with Fourier series a0/2+
∑∞

n=1(an cosnx+sin bnx). Then, the classical Lukács and

Fejér theorems use the conjugate series [256] to calculate the jump of a function,

say [f ]x=x0 , the first one by

lim
N→∞

1

logN

N∑
n=1

(an sinnx0 − bn cosnx0) = − [f ]x=x0

π
, (0.0.5)

and the second one by the formula

lim
N→∞

1

N

N∑
n=1

n(an sinnx− bn cosnx) = − [f ]x=x0

π
. (0.0.6)

One may say that the numerous recent extensions of (0.0.5) and (0.0.6) in the

literature ([9, 54, 66, 67, 70, 165, 186, 187, 218, 222, 244, 248, 253], [118]–[121],

[140]–[142]) go into three directions: enlargement of the class of functions, exten-

sions of the notion of jump, and the use of different means to determine the jump.

Also an important matter, having much relevance in applications, is that of finding

higher accurate formulas; here one usually has to sacrifice generality and ask for
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more from the function (often hypotheses such as piecewise smoothness or so). We

will address the first three questions in Chapters 5, 6, 7, and 8.

In [215, 218, 222, 223], we have initiated a distributional comprehensive ap-

proach to the problem. Such results will be the subjects of Chapters 5, 6, and

7. This scheme is still in progress, but promises many improvements to the cur-

rent results, including numerical ones. We have left the usual classes of classical

functions, and obtained results for very general distributions and tempered dis-

tributions. Using the concept of the quasiasymptotic behavior (see Section 1.8.1),

we extended the usual notions for jumps to distributional notions for pointwise

jumps, namely, the jump behavior and the symmetric jump behavior (Section 5.2).

A complete characterization of the distributional jumps is given in Chapter 5. The

distributional jumps include those of classical functions; hence one gains generality

considering at the same time all those functions inside the large space of distri-

butions, and most notions for jumps at individual points used in analysis. These

concepts being applicable to arbitrary tempered distributions, they also provide a

way to treat formulas in terms of Fourier series and integrals in just one approach.

The distributional jumps only use very local information from functions and distri-

butions, thus, one can remove global assumptions from the analysis of the problem

that have been classically imposed to the functions.

In the case of tempered distributions, we will study the analogs to (0.0.5) and

(0.0.6) in Chapter 5 and Chapter 6, respectively. These formulas determine the

jumps of distributions in terms of higher order Cesàro averages of the distribu-

tional Fourier transforms. In the first case, we use a logarithmic-Cesàro average

[218]. We have estimated the order of summability in [223], this result will be pre-

sented in Chapter 8. For the distributional generalization of (0.0.6), we introduced

in [222] what we named differentiated means in the Cesàro and Riesz sense in order
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to find formulas for jumps. For instance, the differentiated means of order 0 in the

Cesàro sense of a series coincide with (0.0.6). When one deals only with distribu-

tions in D′(R) [180], thus one does not have the Fourier transform available, the

jump can still be found by using differentiated Abel-Poisson means, that is, the

jump can be calculated in terms of the asymptotic behavior of harmonic, harmonic

conjugates, and analytic representations, as shown in [218, 222]. In [215], we also

gave formulas for the jump in terms of the asymptotic behavior of partial deriva-

tives of the φ−transform (see Chapter 7), which in particular provide formulas in

terms of the asymptotic boundary behavior of solutions to certain partial differ-

ential equations on the upper half-plane. The approach we have taken has also a

numerical advantage with respect to others. Making a clear distinction between

the jump and symmetric jump behaviors (usually obscured in the literature), one

realizes that for the jump behavior one only needs a portion of the spectral data

(either the positive or negative part of the spectrum) to recover a jump.

It is important to mention two problems which will not be studied here, higher

accurate formulas and multidimensional problems. Gelb and Tadmor [66, 67] in-

troduced the so called concentration factors in order to accelerate the convergence

rate for the unacceptable slow error O(1/ logN) provided by Lukács approximation

(0.0.5). Their idea is to consider approximations of the form

N∑
n=1

σ
( n
N

)
(an sinnx0 − bn cosnx0) . (0.0.7)

Imposing conditions over σ, they obtained a considerable better error, O (1/N),

for certain classes of functions. In [187], Sjölin has shown that this method is also

effective to approximate jumps of functions by generalized conjugate partial Fourier

integrals. Some variants and improvements, in the case of Fourier series, have been

recently given in [244], where imposing more regularity restriction they obtained an
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error of order O(1/N2). I strongly believe that the distributional method can lead

to formulas that provide accuracy as o (1/Np), if one assumes the analyzed function

satisfies regularity conditions as being piecewise Cp. For the multidimensional case,

F. Móricz [142] has shown analogs to Lukács theorem for functions in two variables

in terms of Abel-Poisson means. It is my belief some of the ideas of this dissertation

can be pulled up to multidimensional problems in edge detection.

The problems we have discussed so far are of local nature. In Chapter 14 we

deal with global estimates for integral transforms of a certain class of differentiable

functions. These results extend those of R. Berndt’s dissertation [13, 14] which were

used to study singular integrals with new singularities (suitable generalizations of

the Hilbert transform). Berndt’s result is only applicable to the sine transform. We

shall extend his result in three directions. We first generalize the global estimates

to wider classes of oscillatory kernels rather than sine. We then relax Berndt’s

hypotheses for the sine transform case and obtain estimates for the transform of

certain distributions which are regular off the origin but singular at the origin.

Finally, we obtain similar results for the Laplace transform.

We now turn our attention to problems in several variables. In recent studies,

there have been serious efforts to characterize the support of tempered distributions

by summability of the Fourier transform. In the spirit of some results of Kahane and

Salem, who studied the case of periodic distributions in [105], González Vieli and

Graham have given several characterizations of the support of certain tempered

distributions in several variables in terms of uniform convergence of the symmetric

Cesàro means of the Fourier inversion formula [72, 74, 75, 78, 79]. They proved that

for tempered distributions whose Fourier transforms are functions, i.e., f ∈ S ′(Rn)

and f̂ is a function of polynomial growth, if for some k ∈ N

lim
r→∞

∫
|u|≤r

f̂ (u) eiu·xdu = 0 (C,k) , (0.0.8)
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uniformly on compacts of an open set Ω ⊂ Rn, then Ω ⊂ Rn\ supp f, and con-

versely.

We have characterized the support of any tempered distribution in [221]; there-

fore, we extended the result just described. This result will be the subject of Chap-

ter 13. Our characterization presents three important aspects. First, it only asks

for a pointwise verification of (0.0.8) plus L1−boundedness over compact subsets

of Ω, rather than the much stronger hypothesis of uniform convergence. Second,

it holds in terms of several summability methods for the pointwise Fourier inver-

sion; that is, Abel-Poisson means, Cesàro means, and the ψ−means (introduced

in [221]). Finally, our summability means are applicable to the Fourier transform

of any tempered distribution; having solved a difficulty shown in previous works,

where the Fourier transform had to be assumed to be a function, mainly because

of the unavailability of summability methods for arbitrary distributions.

Problems in multidimensional Fourier analysis are, in general, much more dif-

ficult than in one dimension. Even the summability procedures for Fourier series

are hard to handle [184]. The difficulty often comes from choosing the right ar-

rangement of the lattice points to take the summability. One encounters the same

problem for Fourier integrals. Classically, the popular method has been that of

Bochner-Riesz summability [16, 184]; it corresponds, in the one dimensional case,

to the Cesàro means of the symmetric partial sums. Therefore, as the one dimen-

sional case suggests, it is to be expected that Bochner-Riesz summability is not

good enough to characterize distributional point values in several variables. While

the results of this dissertation provide a complete characterization of point val-

ues in one variable, the corresponding multidimensional problem is still an open

questions. The solution to such a problem can be a great step forward in the un-

derstanding of local properties of functions and distributions of several variables. I
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invite the interested reader to study the following open problem: To extend (0.0.2)

to several variables, that is, to find a characterization of distributional point values

for a tempered distribution (in several variables) in terms of the summability of its

Fourier transform. Intuition suggests the characterization should be in terms of

one dimensional Cesàro-Riesz means of averages of the Fourier transform over dila-

tions of certain family of sets; so, the fundamental problem here is to find a suitable

family of sets to obtain the desired characterization. Obviously, there many other

related open problems in several variables raised by the present doctoral thesis.

For instance, the analogs to the results from Chapters 5, 6, 7, and 8 to several

variables can be considered as open questions.

Generalized Asymptotics

The term generalized asymptotics refers to asymptotic analysis on spaces of gener-

alized functions. For more than five decades, many approaches have appeared and

considerably evolved. A survey of definitions and results up to 1989 can be found

in [160]. Perhaps, the most developed approaches to generalized asymptotics are

those of Vladimirov, Drozhzhinov and Zavialov [231], and of Estrada and Kanwal

[61]. This work makes extensive use of two asymptotic notions for Schwartz dis-

tributions: quasiasymptotics [231] and the Cesàro behavior [49, 224]. Actually, the

Cesàro behavior is a particular case of the quasiasymptotic behavior, but it is of

practical value to make the distinction between them. We will employ a third no-

tion, though with a much more modest use, that of S−asymptotics, widely studied

by the Novi Sad School [155, 156, 157, 158, 160, 193, 194].

In this work the reader will be introduced into the ideas of generalized asymp-

totics right from the beginning. In Chapter 2, two quick new distributional proofs

of the celebrated Prime Number Theorem are provided. The exposition is based

on [220], a collaborative work with R. Estrada. The proofs are direct applications
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of the theory of asymptotic behaviors on spaces of distributions, specifically, of

the concepts of quasiasymptotics and S−asymptotics. In view of such results, it

is then interesting to ask whether techniques from generalized asymptotics could

be applied to other problems in number theory. Expected fields where these tech-

niques could be used seem to be in asymptotic estimations for sums of additive

functions [102], or in estimates of sums involving prime lattices in Rn; however,

these possibilities have been totally unexplored until now (as far as I know). I hope

that this first incursion of methods from generalized functions in analytic number

theory serves as a motivation for further developments.

The reader will find throughout the first nine chapters of this dissertation how

useful the quasiasymptotic behavior is to measure the local behavior of functions

and generalized functions. This fact will be enough motivation to devote a full chap-

ter, Chapter 10, to the study of theoretical questions in quasiasymptotic analysis.

Chapter 10 makes a major contribution to the one-dimensional quasiasymptotic

analysis and can be considered as one the main achievements of my doctoral work.

The introduction of the quasiasymptotic behavior of distributions was one of

major steps toward the understanding of asymptotic properties of distributions.

The concept is due to Zavialov [249]. The motivation for its introduction came

from theoretical questions in quantum field theory, where it was later effectively

applied [231, 233, 234]. Roughly speaking, the idea is to study the asymptotic

behavior at large or small scale of the dilates of a distribution. So, given a function

or a generalized function, one looks for asymptotic representations of the form

f(λx) ∼ ρ(λ)g(x) ,

where the parameter λ is taken to either ∞ or 0. One can show [61, 160, 231] that

the comparison function ρ must be regularly varying in the sense of Karamata

[111, 112]. It brings into scene the well developed and powerful theory of regular
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variation [15] which has important applications to analytic number theory, the

theory of entire functions, differential equations, and probability theory [15, 64,

136].

The study of structural theorems in quasiasymptotic analysis has always had a

privileged place in the theory [128, 153, 156, 160, 192, 231]. In general, the word

structural theorem refers in distribution theory to the description of convergence

properties of distributions in terms of ordinary convergence or uniform convergence

of continuous functions. Experience has shown that the structure of quasiasymp-

totics, and other asymptotic notions, plays a very important theoretical role in the

application of the notion to other contexts, this makes its study a fundamental

problem in the theory. Vladimirov and collaborators gave the first general struc-

tural theorems in [231]. Although their results describe the quasiasymptotics for

a wide class of tempered distributions, they need to impose restrictions over the

support of the distributions. For instance, in the one dimensional case, their results

are only applicable to distributions with support bounded at the left. Thereafter,

many authors dedicated efforts to extend the structural characterization and re-

move the support type restrictions [160]. The necessity of a complete solution for

this problem has been recognized in several articles [153, 156, 192, 216]. In a se-

ries of papers [212, 213, 227], I have solved a question which remained open for

long time: a complete structural characterization for quasiasymptotics of Schwartz

distributions (in one dimension).

Having solved the structural question for the particular quasiasymptotic behav-

ior (0.0.2), I took over, in collaboration with Pilipović, the general open problem

of the characterization of all one dimensional quasiasymptotics at the origin. We

succeeded in our goal, the completed solution is presented in [227]. In our solution

to this problem, we introduced new tools in the area: asymptotically and associate
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asymptotically homogeneous functions (with respect to slowly varying functions).

Later, I applied the same technique in [212] to completely describe the case at

infinity. In addition, I have also investigated [213], in the one dimensional case,

quasiasymptotic boundedness, i.e., relations of the form

f(λx) = O(ρ(λ)) ,

where ρ is a regularly varying function (in the sense of Karamata). All these results

will be the main body of Chapter 10.

Finally, I would like to point out some important open questions in the area.

While the complete structure of quasiasymptotic is now known for the one di-

mensional case, the problem still remains open in the multidimensional case. Open

question: To describe the structure of (multidimensional) quasiasymptotics and

quasiasymptotic boundedness. Some partial results have been already obtained by

Zavialov and Drozhzhinov [42, 43]. Their results suggest that spherical represen-

tations could be a path to be followed in order to obtain the desired structural

description. They have described the structure except for the so called critical de-

grees. The techniques of Chapter 10 are specially effective analyzing critical degrees

in the one dimensional case, so one might expect that they give new insights in

the multidimensional problem. Finally, it would be interesting to try to apply the

same sort of ideas to asymptotic analysis on other spaces of generalized functions

such as spaces of ultradistributions, Fourier hyperfunctions, Colombeau general-

ized functions, and regular convolution quotients [158, 161, 193, 194], where the

structural description of asymptotic notions is far from being complete.

Abelian and Tauberian Theory

The name abelian (or direct) theorem usually refers to those results which obtain

asymptotic information after performing an integral transformation to a (general-

ized) function. On the other hand, a tauberian (or inverse) theorem is the converse
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to an abelian result, subject to an additional (often surprising!) assumption, the so

called tauberian hypothesis. In general, tauberian theorems are much deeper and

more difficult to show than abelian ones.

Tauberian theory is interesting by itself, but the study of tauberian type results

has been historically stimulated by their potential applications in diverse fields

of mathematics. It provides striking methods to attack very hard problems! Its

applications in number theory are vast [15, 102, 115, 246], for instance, one could

mention the famous short proof of the Prime Number Theorem by using the clas-

sical Wiener-Ikehara tauberian theorem [115]. Numerous applications are found

in the area of complex analysis [15]. The great potential of tauberian theory for

probability was realized more than 40 years ago by W. Feller [64]. Tauberian the-

ory has shown to be of importance in partial differential equations for the study

of asymptotics of solutions of Cauchy problems [7, 40, 41, 231]. Even mathemat-

ical physics has pushed forward developments of the subject; indeed, theoretical

questions in quantum field theory have motivated the creation of many multidi-

mensional tauberian tools [231, 233, 234].

In the case of functions and measures (Stieltjes integrals) in one variable, taube-

rian theory is rather advanced. The results of the first half of the last century were

gathered by the extensive work of Wiener [246] and the classical book of Hardy

[85]. More recent accounts are found in the excellent monographs by Bingham et

al [15] (also devoted to regular variation) and Korevaar [115].

The study of abelian and tauberian type results has also attracted the attention

of many researchers in the area of generalized functions, and has produced sev-

eral important generalizations of classical results. Everyone familiar with tauberian

theory would absolutely agree to say that Wiener tauberian theory [246] and Kara-

mata theory of regular variation [15, 109, 110] have had a predominant role in classi-

16



cal tauberian theory. It is then important to mention that these two theories admit

extensions to the setting of generalized functions; moreover, we emphasize that the

tauberian theorems for generalized functions contain as particular cases those for

classical functions and measures. The Wiener tauberian theorem has been extended

for distributions in [39, 149, 157]. Perhaps, the most representative and robust work

in an tauberian direction is that of Vladimirov, Drozhzhinov, and Zavialov started

in the earlies 70’s (see [231] and references therein); their multidimensional taube-

rian theory for the Laplace transform of distributions is a natural extension of

Karamata theory [37, 229, 231]. Tauberian theory for generalized functions also

provides a well established machinery for applications to areas such as mathemati-

cal physics and partial differential equations [40, 160, 235, 231, 233]. The tauberian

and abelian type results for generalized functions have also received an great im-

pulse from the study of various integral transforms [39, 123, 124, 139, 160, 176].

A great part of this dissertation is dedicated to the study of abelian and taube-

rian type results for functions and generalized functions. Part of it has already been

mentioned in detail; for example, many of problems in connection with Fourier in-

verse problems are of abelian nature. On the other hand, Chapters 2, 4, 9, and

11 deal with some tauberian problems. This study provides abelian and tauberian

theorems for distributions in terms of analytic and harmonic representations, the

Fourier transform, the Laplace transform, the wavelet transform, and the so called

φ−transform (explained below). It is essential that tauberian type results for gen-

eralized functions should contain those for functions and measures, or which is the

same the theory must provide systematic tools to obtain in a lucid way the classical

results. In this work, I have tried to take care of this aspect by developing some

tools to link generalized functions to classical tauberian theorems for functions and

Stieltjes integrals.
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Tauberian theorems in which complex-analytic or boundary properties, usu-

ally of global character, of the transform play an important role are called com-

plex tauberians [115]. In Chapter 2 a complex tauberian theorem is obtained as a

natural consequence of our method for showing the Prime Number Theorem. It

is apparently a weaker version of Wiener-Ikehara theorem, though good enough

for many applications in number theory. Actually, the same result was obtained

by Korevaar in [117] via Newman’s contour integration method, and he showed

that Wiener-Ikehara theorem may be deduced from it. So, in essence, the com-

plex tauberian theorem from Chapter 2 is as strong as Wiener-Ikehara tauberian

theorem. Recently, Korevaar has proposed new distributional versions involving

pseudofunction boundary behavior for important complex tauberians [116, 115]. It

is my opinion that a combination of the ideas from Chapter 2 and Korevaar’s new

distributional perspective can lead to improvements in complex tauberian theory

and tauberian remainder theory.

Chapters 4 and 9 are dedicated to the study of tauberian theorems for distri-

butional point values. The exposition is based on the results from [217, 226]. A

tauberian theorem for distributional point values in terms of the boundary be-

havior of analytic representations is given in Chapter 4. The tauberian hypothesis

is provided by distributional boundedness at a point [26, 254]. This theorem is

then used to give a new (and simple) proof of the celebrated Littlewood’s theorem

[85, 127]. Actually the method is good enough to give the more general version of

Ananda Rau for Dirichlet series [5]; this method is a combination of our taube-

rian theorem for distributional point values and arguments previously applied in

[216] to the study of tauberian conditions for convergence of Fourier series (the

latter discussed also in Chapter 3). The study is enlarged in Chapter 9, where a

more comprehensive approach is taken. A tauberian theory for distributional point
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values is developed parallel to Tauber’s second tauberian theorem. The Cesàro be-

havior becomes crucial in Chapter 9, where it shows to be the natural framework

for applications to classical tauberians for Dirichlet series and Stieltjes integrals.

Chapter 11 makes a complete wavelet analysis of quasiasymptotic properties of

distributions via abelian and tauberian theorems. Wavelet analysis is a powerful

method for studying local properties of functions [95, 96, 104, 138]. It is also a

very convenient tool for the study of local properties of generalized functions. The

local asymptotic behavior of distributions in terms of orthogonal wavelets has been

studied in [163, 162, 177, 188, 241]. Relations between the wavelet transform and

pointwise regularity of certain classes of distributions were explored in [209]. In

recent articles [174, 175, 176], Saneva and Buc̆kovska have studied abelian and

tauberian results for the quasiasymptotic behavior of tempered distributions in

terms of the wavelet transform. They also pointed out the importance of a more

complete tauberian study for this transform. The results of Chapter 11 provide

such a complete wavelet analysis. It is remarkable that these results are more

than tauberian theorems in various cases; indeed, they are full characterizations of

quasiasymptotic properties, at least module polynomials.

I end this discussion with some comments about an integral transform which

has been widely use throughout this dissertation. We introduced in [215, 219, 221]

the distributional φ−transform in relation with the study of local properties of

distributions. This is not a new object; in fact the φ−transform is nothing else

than a approximation of the unity used for long time in analysis. However, our

perspective is apparently new. Given f ∈ D′(Rn) and φ a test function, with∫
Rn φ(x)dx = 1, its φ−transform Fφ is defined as the C∞-function on Hn+1 :=

Rn × R+

Fφ(x, t) := 〈f(x + ty), φ(y)〉 , for t > 0,
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where the evaluation is with respect to y. We have used this transform as a tool

for several purposes. In [215], we use it to find formulas for jumps of functions and

distributions (Chapter 7). We applied the φ−transform to characterize the support

of a tempered distribution by the summability of its Fourier transform (Chapter

13). This transform is also an important tool in the passage from local properties to

global ones. For example, we made use of it to show that distributionally regulated

functions [215] can only have jumps at most in a countable set; this result will be

proved in Chapter 7. In the same chapter, we will study many important properties

of the φ−transform of distributions in one variable. In Chapter 12, we will study

this transform in the multidimensional setting; as an application, a characterization

[219] of a positive measure by the behavior of its φ−transform over cones at points

of the boundary will be given.

It is worth to mention the potential applications of the φ−transform to study

certain classes of partial differential equations. The work of Drozhzhinov and Za-

vialov is important in this direction [40, 41]. They used the φ−transform (called

standard average there) for tempered distributions with respect to a rapidly de-

creasing φ with values in Banach spaces to study the Cauchy problem for the heat

equation. They also applied their results to problems in mathematical physics. The

key point is the flexibility of the φ−transform, for example φ can be the Poisson

kernel, in such a case one obtains results for harmonic functions [225], or φ can

be any other kernel associated to a boundary value problem or Cauchy problem for

a PDE [40, 41, 215]. In this approach a problem of vital importance is that not

always the interesting test functions φ are in a standard space of test functions

such as D or S. We have worked [215, 219, 221] in obtaining natural growth condi-

tions over a distributions in order to define its φ−transform with respect to wider
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classes of test functions; those results can be found in Chapter 7 (in one variable)

and Chapter 12 (in several variables) of this dissertation.
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Chapter 1
Preliminaries and Notation

In this chapter we collect some notions and tools to be employed in the future.

In addition, we comment and fix the general notation to be used in the subse-

quent chapters. We pay special attention to function and distribution spaces and

related concepts. The material to be discussed in Sections 1.2–1.6 can be found in

any standard textbook on distribution theory, so readers familiar with distribution

theory can skip those sections. In Section 1.8 we introduce some asymptotic no-

tions for Schwartz distributions, they will play a crucial role in our study; further

asymptotic concepts will be introduced and developed later.

1.1 Generalities

The set of positive and negative integers are denoted by Z+ and Z−, respectively;

we will include 0 in the set of natural numbers N. If x ∈ R, then [x] denotes its

integral part. The sets of positive and negative real numbers will be denoted by

R+ and R−, respectively.

Points in the n-dimensional euclidean space Rn are denoted by bold fonts. We

use the notation x • y for the standard euclidean inner product between x and y.

The euclidean norm is simply denoted by |x|. The set Hn denotes the upper (n+1)-

dimensional half-space, that is, Hn = Rn ×R+.; whenever the context presents no

ambiguities, we just write H for Hn. Given a complex number z = x+ iy ∈ C, we

write <e z = x and =m z = y. When n = 1, we often refer to H as “ the subset

=m z > 0 ”. The complex conjugate of z is z̄ = x− iy.

The notation Ā is used for the closure of a set A in a given topological space.

Given a continuous complex-valued function g we denote the support of the func-

tion by supp g, i.e., the closure of the set where the function does not vanish.
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A multi-index is an element m ∈ Nn. The length of the multi-index is the sum

of its coordinates, that is, |m| = m1 +m2 + · · ·+mn, where m = (m1,m2, . . . ,mn).

Notice that we employ the same notion for the length of multi-indices as for the

euclidean norm, but the distinction should be always clear from the context. We

use the notations m! = m1!m2! . . .mn! and xm = xm1
1 xm2

2 . . . xmn
n , where x =

(x1, x2, . . . xn). The differential operators Dm = Dm1
1 Dm2

2 . . .Dmn
n , where each Dj

is partial differentiation in the ith variable. For the one variable case, we use the

usual calculus notation for derivatives.

Let Ω ⊆ Rn be an open subset. The space of complex-valued continuous functions

on Ω is denoted by C(Ω); the space of k-times continuously differentiable functions

by Ck(Ω), that is, φ ∈ Ck(Ω) if Dmφ ∈ C(Ω), for all |m| ≤ k. If k = ∞, we also

use the notation E(Ω) := C∞(Ω). The space Ck(Ω) is the subspace of Ck(Ω)

consisting of those elements φ for which Dmφ admits a continuous extension to

Ω, for all |m| ≤ k. The space Ck
c (Ω) consists of those elements of Ck(Ω) with

compact support; when k = ∞, we always denote it by D(Ω) := C∞
c (Ω). If Ω is

compact, then Cc(Ω) is the subspace of functions in Ck(Ω) which vanish on ∂Ω,

the boundary of Ω.

We assume the reader is familiar with measure theory and integration theory,

for which we refer to the excellent monographs [76, 173]. Measurability and inte-

grability is always taken with respect to the Lebesgue measure, unless explicitly

specified. The (Lebesgue) integral of g over an open set Ω ⊆ Rn is given by∫
Ω

g(x)dx .

The classical Lebesgue spaces over Ω are denoted by Lp(Ω), 1 ≤ p ≤ ∞. We say

that a (complex-valued, measurable) function g is p-locally integrable in Ω (for

p = 1 we say it is locally integrable) if g ∈ Lp(K), for any compact subset K

of Ω. We denote the set of p-locally integrable functions by Lploc(Ω). Occasionally,
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we shall also consider the more general integral in the sense of Denjoy-Perron-

Henstock; again, we refer the reader to [76, 173] for definitions and properties.

Techniques from functional analysis will be extensively used in this study. In

particular, the theory of locally convex topological spaces and duality. We assume

the reader has experience working with Fréchet spaces as well as projective and

inductive limits of such spaces. For the fundamental definitions and results we

refer to [99, 208] without further comments. The Hahn-Banach [208, p.181] and

Banach-Steinhaus [208, p.346] theorems will be very important tools for us.

We shall make use of the Landau order symbols. Let g and h be two complex-

valued functions defined in a pointed neighborhood of x0. We write

g(x) = O(h(x)) , x→ x0 ,

if there exists a positive constant M such that |g(x)| ≤ M |h(x)|, for all x suffi-

ciently close to x0. We write

g(x) = o(h(x)) , x→ x0 ,

if for any ε > 0 there exists a pointed neighborhood of x0 such that |g(x)| ≤ ε |h(x)|,

for all values in that pointed neighborhood. We also allow x0 to be infinity. We say

that g is asymptotic to h as x→ x0 if g(x) = h(x) + o(h(x)). In this case, we write

g(x) ∼ h(x) , x→ x0 ,

When h is non-zero near x0, it means that

lim
x→x0

g(x)

h(x)
= 1 .

If we write g(x) ∼ Ch(x), the constant C might be 0, in that case the asymptotic

relation is interpreted as g(x) = o(h(x)). Suppose that {hn}∞n=0 is a sequence of

functions defined on a pointed neighborhood of x0 such that hn+1(x) = o(hn(x)), as
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x→ x0. We say that g has an asymptotic expansion with respect to {hn}∞n=0 if there

exists a sequence of complex numbers {cn}∞n=0 such that g(x)−
∑N

n=0 cN+1hn(x) ∼

cN+1hN+1(x), for each N . In such a case we write

g(x) ∼
∞∑
n=0

cnhn(x) , x→ x0 ,

The right hand side of the last relation is called an asymptotic series. Of course,

there is no assumption of convergence for asymptotic series.

1.2 Spaces of Test Functions and Distributions

We now present a brief summary of basic definitions and properties of the main

spaces of functions and generalized functions (Schwartz distributions) to be em-

ployed in the sequel. For further details about the theory of Schwartz distributions

and other types of generalized functions we refer to [6, 24, 26, 30, 61, 97, 99, 107,

108, 139, 144, 146, 180, 197, 208, 230, 251, 252].

Let Ω ⊆ Rn be an open set.

Radon Measures

Let K ⊂ Ω be a compact set with non-empty interior. We equip the space Cc(K)

with the topology of uniform convergence. A Radon measure on Ω is a continuous

(complex) linear functional over the space Cc(Ω), equipped with the natural in-

ductive limit topology generated by the spaces Cc(K) [208, Chap.21]. Let µ be a

Radon measure, by the Riesz representation theorem, we can always associate to

it a regular Borel measure which is finite on compacts of Ω; we denote both the

measure and the functional by µ, so that the action of µ on φ ∈ Cc(Ω) is given by

〈µ, φ〉 =

∫
Ω

φ(x)dµ(x) .

Every positive linear functional on Cc(Ω), i.e., one such that 〈µ, φ〉 ≥ 0 whenever

φ ≥ 0, is a Radon measure. Observe that if f ∈ Lploc(Ω), it can be viewed as the
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Radon measure

〈f, φ〉 =

∫
Ω

φ(x)f(x)dx .

In the one variable case, given an arbitrary Radon measure µ on (a, b), there is

a function of local bounded variation sµ such that µ = dsµ, that is, the action of

µ on a function φ ∈ Cc(a, b) can be computed as a Stieltjes integral,

〈µ, φ〉 =

∫ b

a

φ(x)dsµ(x) .

The Space of Distributions

Let K ⊂ Ω be compact set with non-empty interior. We endow the space C∞
c (K)

with its canonical Fréchet space topology, i.e., the one of uniform convergence of

all partial derivatives [99, 180, 208]. The Schwartz topology of D(Ω) is given by the

inductive limit topology of the spaces C∞
c (K); the space D(Ω) has the structure

of an LF-space [208]. It is a montel space, and hence it is reflexive [208].

A distributions on Ω is a continuous (complex) linear functional over D(Ω), the

space of distributions is denoted by D′(Ω). Therefore a linear functional over D(Ω)

is a distribution if its restriction to each C∞
c (K) is continuous. Distributions will

be denoted by either f or f(x); the variable x makes no allusion to a point value

(unless specified), it only plays the role of a “variable of evaluation” just as the

calculus use of variables of integration. The evaluation of f ∈ D′(Ω) at a test

function φ, that is, an element of D(Ω), is denoted by

〈f, φ〉 = 〈f(x), φ(x)〉 .

Any Radon measure on Ω can be viewed as a distribution. Therefore Lploc(Ω) ⊂

D′(Ω). We call regular distributions to those which arise from locally integrable

functions. Furthermore, any positive distribution, i.e., one such that 〈µ, φ〉 ≥ 0

whenever 0 ≤ φ ∈ D(Ω), is a positive Radon measure [180, 208].
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We will equip D′(Ω) with two main dual topologies [180, 208]: the weak topology

of pointwise convergence over elements of D(Ω), and the strong topology of uniform

convergence over bounded sets of D(Ω). The use of the corresponding topology will

depend on the context. Since D(Ω) is a barrelled space [208], it follows from the

Banach-Steinhaus theorem [208, Chap.33] that weak boundedness, strong bound-

edness, and equicontinuity are equivalent for subsets of distribution spaces. It has

the following useful consequence: for sequences {fn}∞n=0 or more generally for filters

with a countably basis in D′(Ω), weak and strong convergence are equivalent. The

last fact follows in view of the Montel property of D(Ω) and the Banach-Steinhaus

theorem [208, p.348].

Let f ∈ D′(Ω), the restriction of f to an open subset U ⊂ Ω makes sense as the

transpose of the canonical inclusion D(U) ↪→ D(Ω) [208, Chap.23]. A distribution

g ∈ D′(U) is called extendable to Ω, if there exists f ∈ D′(Ω) whose restriction to

U is exactly g. In general, not all distribution defined on U is extendable to Ω.

A distribution f ∈ D′(Ω) is said to vanish on an open subset U ⊂ Ω if 〈f, φ〉 for

all φ ∈ D(U). The support of f , denoted by supp f , is the complement in Ω of the

largest open set where it vanishes. Observe that if f ∈ Lploc(Ω), then the support of

f as a distribution is precisely the essential support of f , this justifies the equality

supp f = ess supp f .

Let m be a multi-index and g ∈ D′(Ω). The distribution Dmg is defined by

〈Dmg, φ〉 = (−1)|m| 〈g,Dmφ〉

Given any multi-index and f ∈ D′(Ω), there exists a distribution g such that

Dmg = f [180]. We will say that g is an m-primitive of f .

We now focus in structural properties of distributions and distributional conver-

gence. We discuss Schwartz characterization theorems of boundedness and conver-

gence of distributions [180, 230]. Suppose that B ⊂ D′(Ω) is a bounded set for the
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weak (or strong) topology. Then for any given open subset U ⊂ Ω, with compact

closure in Ω, there exists a multi-index mU such that any f ∈ B satisfies

f = DmUFf (on U) ,

where each Ff ∈ C(U) and the family {Ff}f∈B is uniformly bounded on U . Con-

versely, if the last property is satisfied for each such an open subset U , then B is

bounded in the strong topology of D′(Ω). In particular, any distribution is locally

equal to the distributional derivative of a continuous function. The description for

convergence is similar, suppose that fj → 0 as n→∞ in the weak topology, then

for each open U with compact closure there exists mU and a sequence of continuous

functions Fj ∈ C(U) such that fj = DmUFj, on U , and Fj → 0 uniformly over U .

Naturally, the converse is also true. Obviously, j may be replaced by a continuous

parameter λ ∈ R in the last statement and the result would still be valid.

We now discuss some other operations with distributions. Let ϕ ∈ E(Ω) and

f ∈ D′(Ω), the multiplication ϕf is the distribution given by 〈ϕf, φ〉 := 〈f, ϕφ〉.

The multiplication of two distributions is an irregular operation [6], it cannot be

defined in general within the framework of the theory of distributions [179], unless

additional conditions be imposed [30, 97, 106, 146, 230]. The change of variables

is defined as follows. Let f ∈ D′(Ω) and Ψ : U −→ Ω be a C∞-diffeomorphism,

the distribution f(Ψ(x)) ∈ D′(U) is given by

〈f(Ψ(x)), φ(x)〉 :=

〈
f(y),

φ(Ψ−1(y))

|JΨ(Ψ−1(y)))|

〉
,

where JΨ(·) = det(dΨ(·)) is the jabobian of the transformation, so that it is con-

sistent with the change of variables for regular distributions. If A is an invertible

linear transformation and x0 ∈ Rn, we obtain

〈f(Ax + x0)), φ(x)〉 =
1

|detA|
〈
f(y), φ(A−1(y − x0))

〉
.
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If f ∈ D′(Ω) and g ∈ D′(Ω1), their tensor product (or direct product) [180, 230] is

the distribution f ⊗ g ∈ D′(Ω× Ω1) generated by

〈f ⊗ g, φ⊗ ψ〉 = 〈f, φ〉 〈g, ψ〉 ,

where φ ∈ D(Ω) and ψ ∈ D(Ω1).

Other Spaces

We need to consider other spaces of distributions.

The space E(Ω) = C∞(Ω) is equipped with its usual Fréchet space structure

of uniform convergence of all partial derivatives over compact subsets of Ω. Its

dual space, E ′(Ω) coincides then with the distributions of compact support in Ω

[180, 208].

The space S(Rn) is the Schwartz space of rapidly decreasing smooth test func-

tions, that is, those functions in φ ∈ E(Rn) for which there are constants Mk,m

such that

|x|k |Dmφ(x)| < Mk,m ,

for all x ∈ Rn, k ∈ N, and m ∈ Nn. It is topologized in the usual way [180, 208, 230].

Its dual, the space of tempered distributions, is denoted by S ′(Rn). The structure

of tempered distributions is simple: f ∈ S ′(Rn) if and only if there exist k ∈ N,

m ∈ Nn and a continuous functions F such that DmF = f and F (x) = O(|x|k),

|x| → ∞. Clearly, E ′(Rn) ⊂ S ′(Rn) ⊂ D′(Rn) .

We now consider spaces of type K and Kβ [61, 82]. We first need the following

definition.

Definition 1.1. Let φ ∈ E(Rn) and β ∈ R. We say that

φ(x) = O(|x|β) strongly as |x| → ∞ , (1.2.1)
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if for each m ∈ Nn

Dmφ(x) = O(|x|β−|m|) |x| → ∞ . (1.2.2)

The set of test functions φ satisfying Definition 1.1 for a particular β forms the

space Kβ(Rn). It is topologized in the obvious way [61], having a Fréchet space

structure. These spaces and their dual spaces are very important in the theory of

asymptotic expansions of distributions [61]. we set K(Rn) =
⋃
Kβ(Rn) (the union

having a topological meaning), and K′(Rn) =
⋂
K′

β(Rn) (with projective limit

topology) is the space of distributional small distributions at infinity [49, 61]. We

have the inclusion K′(Rn) ⊂ S ′(Rn).

We now turn our attention to some other spaces in one variable. Let a ∈ R, the

spaces D[a,∞) and S[a,∞) consist of restrictions of elements of D(R) and S(R),

respectively, to the interval [a,∞). They are provided with the inhered canonical

topology. Their dual spaces are D′[a,∞) and S ′[a,∞); they coincide [230, 231]

with distributions and tempered distributions, respectively, supported in [a,∞).

When a = 0, we also use the notations D′(R+) = D′[0,∞) and S ′(R+) = S ′[0,∞).

Remark 1.2. In general the word distribution will be extrictly used for elements

(or subspaces) of spaces D′(Ω). However, in very few occasions (Chapter 11), the

author will commit abuse to such a terminology by calling “distributions” to ele-

ments of other duals spaces which are not necessarily contained in a distribution

space.

Convolution

The convolution of two distributions is an irregular operation and can only be

defined in some special circumstances. We shall make a very modest use of the

convolution (mostly in one variable) in the simplest cases. There are many defini-

tions in the literature which may be applied to more complicated situations, for

those we refer to [6, 106, 180, 230].
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If f ∈ A′(Rn) and φ ∈ A(Rn), where A = D, E ,S, then f ∗ φ ∈ E(Rn) is given

by

f ∗ φ(x) = 〈f(y), φ(x− y)〉 .

Naturally the above evaluation is with respect to y.

In the one-dimensional case, the convolution can always be defined for two dis-

tributions with support bounded at the left (see [230, Section 4]). So, for a, b ∈ R

∗ : D′[a,∞)×D′[b,∞) −→ D′[a+ b,∞) ,

∗ : S ′[a,∞)× S ′[b,∞) −→ S ′[a+ b,∞) ,

are separately continuous bilinear maps [230]. In particular, the spaces D′[0,∞)

and S ′[0,∞) are convolution algebras.

1.3 Special Distributions

In this section we discuss some particular examples of distributions over the real

line. These special distributions are more than examples, since they will often ap-

pear throughout all the chapters. Some properties and formulas are stated without

proof, we leave to the reader the verification of these well known facts (they may

also be found in [61, 68, 97, 230]).

The Heaviside function is the regular distribution H given by

〈H(x), φ(x)〉 =

∫ ∞

0

φ(x)dx . (1.3.1)

The signum function is sgnx = H(x)−H(−x).

The Dirac delta distribution is the Radon measure defined as

〈δ(x), φ(x)〉 = φ(0) , (1.3.2)

observe that δ(x) = H ′(x) = (1/2)sgn′x. The kth derivative of δ, the distribution

δ(k), is then given by
〈
δ(k)(x), φ(x)

〉
= (−1)kφ(k)(0).
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The distribution p.v.(1/x) is defined by the Cauchy principal value integral

〈
p.v.

(
1

x

)
, φ(x)

〉
= p.v.

∫ ∞

−∞

φ(x)

x
dx

:= lim
ε→0+

(∫ −ε

−∞

φ(x)

x
dx+

∫ ∞

ε

φ(x)

x
dx

)
=

∫ ∞

0

φ(x)− φ(−x)

x
dx ;

it is not a Radon measure. Notice that (log |x|)′ = p.v.(1/x).

If <e α > −1, the distribution xα+ is a regular distribution whose action on test

functions is given by the integral

〈
xα+, φ(x)

〉
=

∫ ∞

0

xαφ(x)dx ; (1.3.3)

when <eα < −1, α /∈ Z−, then xα+ is defined as

xα+
Γ(α + 1)

=

(
xα+n

+

)(n)

Γ(α + n+ 1)
, (1.3.4)

where Γ is the Euler Gamma function and n = [−α]. Therefore, xα+ is well defined

for α ∈ C \ Z−. The expression (1.3.4) is meaningful for α = −k ∈ Z−; indeed

xα+
Γ(α + 1)

∣∣∣∣
α=−k

= δ(k−1)(x) . (1.3.5)

Alternatively, we may have defined the distributions xα+ by the Marcel Riesz an-

alytic continuation procedure [61, 68, 97] of (1.3.3). This analytic continuation

produces a family of analytic distributions on C \ Z−, having simple poles at the

negative integers with residues [61, p.65]

Resα=−k x
α
+ =

(−1)k−1

(k − 1)!
δ(k−1)(x) . (1.3.6)

The distributions xα− are defined as xα− = (−x)α+ so that when <e α > −1,

〈
xα−, φ(x)

〉
=

∫ ∞

0

xαφ(−x)dx , (1.3.7)
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they also form an analytic family of distributions on C \ Z−, with residues at the

negative integers given by

Resα=−k x
α
− =

δ(k−1)(x)

(k − 1)!
. (1.3.8)

Note that the distributions Φα(x) := xα−1/Γ(α) form an abelian group under

convolution, i.e., Φα ∗ Φβ = Φα+β.

The distributions xα−1
+ /Γ(α) can be used to define fractional derivatives and

primitives for distributions with support bounded at the left [60, 68, 230]. If f has

support bounded at the left, its α-primitive is defined as

f (−α) := f ∗ x
α−1

Γ(α)
. (1.3.9)

Observe that the α-primitive is nothing else than the fractional derivative [230] of

order −α. So, f (α) the fractional α-derivative of f .

When f is no longer supported on an interval of the form [b,∞), we cannot in

general speak about fractional order primitives. However, if k ∈ N, we say that F

is a k-primitive of f if F (k) = f . Primitives of distributions always exist [180, 230].

When f is locally integrable, not necessarily with support bounded on the left, we

can still use the k-primitive given by formula (1.3.9) with α = k.

Let k ∈ Z+. If k is an even positive integer, we define x−k := (xα− + xα+)
∣∣
α=−k;

on the other hand, if k is odd, x−k := (xα+ − xα−)
∣∣
α=−k. Due to (1.3.6) and (1.3.8),

we have cancellation of the poles and these distributions are well defined. Notice

that

p.v.

(
1

x

)
= x−1 ; (1.3.10)

we will use both notations for this distribution.

Another useful method for defining distributions out of divergent integrals is that

of Hadamard finite part [61, p.67]. Assume g is integrable on any compact subset

of (0, a], the Hadamard finite part at 0 of an integral
∫ a

0
g(x)dx is constructed as
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follows. Let

G(ε) =

∫ a

ε

g(x)dx . (1.3.11)

Suppose that G(ε) can be split into two parts as

G(ε) = G1(ε) +G2(ε) , (1.3.12)

where G1 is a linear combination of functions of the form ε−α(log ε)β and ε−γ,

α, γ > 0, and G2 has a finite limit as ε→ 0+. We then define the finite part of the

integral as

F.p.

∫ a

0

g(x)dx = lim
ε→0+

G2(ε) . (1.3.13)

One can show [61, p.68] that

〈
xα+, φ(x)

〉
= F.p.

∫ ∞

0

xαφ(x)dx . (1.3.14)

We will also employ the distributions Pf(H(x)/xk) , k ∈ Z+, here Pf stands for

the word pseudo-function. They are defined as

〈
Pf

(
H(x)

xk

)
, φ(x)

〉
= F.p.

∫ ∞

0

φ(x)

xk
dx . (1.3.15)

One defines Pf(H(−x)/xk) as

〈
Pf

(
H(−x)

xk

)
, φ(x)

〉
= (−1)kF.p.

∫ ∞

0

φ(−x)

xk
dx . (1.3.16)

The formulas

(H(x) log x)′ = Pf

(
1

x

)
, (1.3.17)

and (
Pf

(
H(x)

xk

))′
= −kPf

(
H(x)

xk+1

)
+

(−1)k

k!
δ(k)(x) , (1.3.18)

are readily verified [61, p.68].
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1.4 Homogeneous Distributions

A distribution g ∈ D′(Rn) is said to be homogeneous of degree α ∈ C if g(ax) =

aαg(x), for any a > 0. In terms of test functions, it means that

〈g(ax), φ(x)〉 =
1

an

〈
g(x), φ

(x

a

)〉
= aα 〈g(x), φ(x)〉 , (1.4.1)

for each a > 0 and φ ∈ D(Rn). One can find an explicit characterization of homo-

geneous distribution in [61, p.72] (see also [97, 68]).

In particular, we explicitly know all the homogeneous distributions over the real

line. So, if g ∈ D′(R) is homogeneous of degree α, then either g has the form

g(x) = C−x
α
− + C+x

α
+, if α /∈ Z−, (1.4.2)

for some constants C− and C+, or

g(x) = γδ(k−1)(x) + βx−k, if α = −k ∈ Z−, (1.4.3)

for some constants γ and β.

Notice that the distributions Pf(H(±)x)/xk) are not homogeneous. They are

rather associate homogeneous [68, 61, 185], that is, their dilates follow the formula:

Pf

(
H(±ax)

(ax)k

)
=

1

ak
Pf

(
H(±x)

xk

)
∓ (−1)k−1 log a

ak(k − 1)!
δ(k−1)(x) . (1.4.4)

We finally remark that some interesting extensions of homogeneity can be found

in [83, 185].

1.5 The Fourier and Laplace Transforms

The Fourier transform is an isomorphism of S(Rn) onto itself [68, 180, 197, 252,

230]. It is a very well known tool in analysis, and we assume the reader is familiar

with it. We fix the constants so that the Fourier transform of φ ∈ S(Rn) is given

by

F(φ)(u) = φ̂(u) =

∫
Rn

e−ix•uφ(x)dx , (1.5.1)
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then the Fourier inversion formula becomes

φ(x) =
1

(2π)n

∫
Rn

eix•uφ̂(u)du . (1.5.2)

The Fourier transform is defined on S ′(Rn) by duality, i.e., if f is a tempered

distribution, then 〈
f̂(x), φ(x)

〉
:=
〈
f(x), φ̂(x)

〉
. (1.5.3)

We use the notation F−1 for the inverse Fourier transform.

Only in Chapter 2 we will make a different choice of the constants in the Fourier

transform which better fit to our purposes.

We will follow the definition of the Laplace transform due to L. Schwartz [11,

180, 230, 231]. It is equivalent to the one given in [251, 252]. We will only consider

the Laplace transform of distributions in one-variable. A distribution f ∈ D′(R)

is said to be Laplace transformable [180] on the strip a < <e z < b if e−ξtf(t) is a

tempered distribution for a < ξ < b; in such a case its Laplace transform is well

defined on that strip and can be computed by the evaluation

L{f ; z} =
〈
f(t), e−zt

〉
, a < <e z < b . (1.5.4)

In particular if the support of f ∈ S ′(R) is bounded at the left, then its Laplace

transform is well defined on <e z > 0 and is given by (1.5.4). When the support of

f is bounded at the right, formula (1.5.4) is applicable but for <e z < 0.

1.6 Analytic and Harmonic Representations

Any distribution f ∈ D′(R) may be seen as a hyperfunction [144, 107], that is,

f(x) = F (x + i0) − F (x − i0), where F is analytic for =m z 6= 0; moreover, this

representation holds distributionally in the sense that

f(x) = lim
y→0+

(F (x+ iy)− F (x− iy)) , (1.6.1)
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where the last limit is taken in the weak topology of D′(R) [24]. It means that for

each test function φ ∈ D(R)

〈f(x), φ(x)〉 = lim
y→0+

∫ ∞

−∞
(F (x+ iy)− F (x− iy))φ(x)dx . (1.6.2)

In such a case, we say that F is an analytic representation of f on C\R. Note that,

initially, we are not assuming that the limits limy→0+ F (x ± iy) belong to D′(R)

separately, but that their difference does; however, it is shown in [48, Section 5]

that the existence of the distributional jump of F across the real axis implies the

existence of limy→0+ F (x±iy), separately, in D′(R). We write F (x±i0) to represent

these distributional boundary values.

A necessary and sufficient condition [48, 97] for a function F , analytic on a region

((a, b)× (−R,R)) \R, to have a distributional boundary values on real line is the

existence of constants MK and nK such that

|F (x+ iy)| < MK

|y|nK
, 0 < |y| < R , x ∈ K , (1.6.3)

for each compact subset K ⊂ (a, b).

We recall the well known edge of the wedge theorem [24, 11] (in one-dimension).

Suppose that F+ and F− are analytic in some rectangular regions (a, b)± i(0, R),

respectively, and that both have distributional boundary values on the real axis.

If F+(x+ i0) = F−(x− i0), in D′(a, b), then there exists a function F , analytic on

(a, b)× (−R,R), such that F (z) = F±(z), for ±=mz > 0. So, they are the analytic

continuation of each other across the interval (a, b).

There are various standard methods to construct analytic representations for

certain distributions. Let us start with distributions from E ′(R). If f ∈ E ′(R) is a

distribution with compact support, then the Cauchy transform is given by

F (z) = F {f ; z} :=
1

2πi

〈
f(t),

1

t− z

〉
, <e z /∈ supp f . (1.6.4)
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One can then show [24] that f(x) = F (x+ i0)− F (x− i0). For example,

F (z) =
(−1)k+1k!

2πizk+1

is an analytic representation of δ(k).

When f ∈ S ′(R). We can use the Fourier transform to produce an analytic

representation. Decompose f̂ = f̂− + f̂+, where supp f̂− ⊆ (−∞, 0] and supp f̂+ ⊆

[0,∞), respectively. Then [24],

F (z) :=


1

2π

〈
f̂+(t), eizt

〉
, =m z > 0 ,

− 1

2π

〈
f̂−(t), eizt

〉
, =m z < 0 ,

(1.6.5)

is an analytic representation of f . So, F (z) = ±L
{
f̂±;∓iz

}
, if ±=m z > 0. We

call this analytic representation the Fourier-Laplace representation.

Notice that if f has compact support, then f̂ is locally integrable; it is actually

the restriction to the real axis of an analytic function of exponential type, by

Schwartz-Paley-Wiener theorem [97, 208]. If we choose f̂± to be locally integrable

functions, then it is not hard to see that (1.6.4) and (1.6.5) give the same analytic

function.

Next, we consider representations of distributions by harmonic functions. We

say that U(z), harmonic on =m z > 0, is a harmonic representation of f ∈ D′(R)

if

lim
y→0+

U(x+ iy) = f(x) , in D′(R) , (1.6.6)

in the sense that

〈f(x), φ(x)〉 = lim
y→0+

∫ ∞

−∞
U(x+ iy)φ(x)dx .

We write f(x) = U(x + i0). Any distribution admits a harmonic representation.

Indeed, let F be an analytic representation on C \ R, then U(z) = F (z)− F (z̄) is

harmonic on =m z > 0 and f(x) = U(x+ i0).
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Suppose that U(x+ i0) = 0 in D′(a, b); then by applying the reflection principle

to the real and imaginary parts of U ([11, Section 4.5], [207, Section 3.4],[32]), we

have that U admits a harmonic extension to a (complex) neighborhood of (a, b). We

will refer to this result as the distributional reflection principle (or just reflection

principle).

Recall [32, 207] that V is called a harmonic conjugate to U if they satisfy the

Cauchy-Riemann equations,

∂U

∂x
=
∂V

∂y
,
∂U

∂y
= −∂V

∂x
,

then, U + iV is analytic. Observe that, because of the results from [56] and [48,

Section 5], one has that if a harmonic function on the upper half-plane admits

distributional boundary values, then any harmonic conjugate to it admits distri-

butional boundary values.

1.7 Slowly Varying Functions

Slowly varying functions will be important in several parts of our study. We only

comment some basic properties, we will come back to slowly varying functions in

due course.

They were introduced by J. Karamata in [111, 112]. The associated theory is

usual referred as Karamata theory of regular variation. It was later refined by him

and others. The standard references to the subject are [15, 183], the first being

the most comprehensive one. Both books are a rich source of historical facts about

the theory. We also comment the important role that regular variation have had

in the modern and classical developments of tauberian theory [15, 109, 110, 115,

160, 231, 232].

We start with regularly varying functions at infinity. We say that a function

ρ, measurable, positive and defined on an interval of the form [A,∞) is regularly
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varying at infinity if

lim
x→∞

ρ(ax)

ρ(x)
= h(a), (1.7.1)

exists and is finite for each a > 0. One can then show [15, 183] that h(a) = aα,

for some α. The number α is called the index of regular variation. If α = 0, then

the function is called slowly varying function at infinity ; the letter L is commonly

used for denoting slowly varying functions, we should follow this convention. Note

that ρ is regularly varying if and only if it can be written as ρ(x) = xαL(x),

where L is slowly varying. Hence, it is enough to explore the properties of slowly

varying functions in order to study those of regularly varying functions. We remark

an important result [15, 183], as long as (1.7.1) holds for each a > 0 in a set of

positive measure, then it holds uniformly on any compact subset of (0,∞).

One of the most basic (and most important) results in the theory of slowly

varying functions is the representation formula (see first two pages of Seneta’s

book [183]). Furthermore, the representation formula completely characterizes all

the slowly varying functions; L is slowly varying at the infinity if and only if

there exist measurable functions u and w defined on some interval [B,∞), u being

bounded and having a finite limit at infinity and w being continuous on [B,∞)

with w(x) = o(1), such that

L(x) = exp

(
u(x) +

∫ x

B

w(t)

t
dt

)
, x ∈ [B,∞) . (1.7.2)

This formula is important because it will enable us to obtain some useful esti-

mates for L. For instance, it is clear that if σ > 0, then

L(x) = o(xσ) , and
1

L(x)
= o(xσ) , x→∞ .

The above estimates have a valuable consequence to keep in mind: regularly

varying functions at infinity are tempered distributions for large values of x.
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With the obvious modifications, we define regularly varying and slowly varying

functions at the origin. In particular, L is slowly varying at the origin if and only if

L(1/x) is slowly varying at infinity, hence a representation formula of type (1.7.2)

holds for L with the interval of integration being [x,B]. We also remark that slowly

varying functions at the origin are regular distributions for small arguments.

1.8 Asymptotic Behavior of Generalized

Functions

There are several ways to define the asymptotic behavior for generalized functions.

We will consider the three most important asymptotic notions for Schwartz dis-

tributions, they will be the natural framework in our future investigations of the

local behavior of distributions. We will refer in the future to the asymptotic notions

presented in this section as generalized asymptotics.

1.8.1 Quasiasymptotics

The quasiasymptotic behavior of distributions was introduced by Zavialov [249] as

a result of his investigations in Quantum Field Theory, and further developed by

him, Vladimirov and Drozhzhinov [231]. It is fair to mention the contributions of

the Novi Sad (Serbian) School to the field [160]. We only consider here Schwartz

distributions, but we point out that the quasiasymptotic behavior can also be

defined for other classes of generalized functions, the interested reader might want

to consult [158, 161, 40, 41].

It is our intension in this section to give a very brief introduction to the subject,

paying special attention to some particular cases and properties that will be abso-

lutely necessary requirements for the first chapters of this treatise. We will retake

the subject in Chapter 10, where we will make a major contribution toward the

understanding of quasiasymptotic properties of distributions in one variable.
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In general, we cannot talk about pointwise behavior of distributions, therefore,

if we want to study asymptotic properties of distributions, we should usually intro-

duce new parameters in order to give sense to asymptotic relations. The idea of the

concept of quasiasymptotic behaviors of distributions is to look for asymptotic rep-

resentations, at either small scale or large scale, of the dilations of a distribution.

Specifically, we look for asymptotic representations of the form

f(hx) ∼ ρ(h)g(x), as h→ 0+ , or h→∞ , (1.8.1)

in the distributional sense, that is, holding after evaluation at each test function

〈f(hx), φ(x)〉 ∼ ρ(h) 〈g(x), φ(x)〉 . (1.8.2)

We now define the concept of quasiasymptotic behavior and quasiasymptotic

boundedness of distributions at infinity.

Definition 1.3. A distribution f ∈ D′(Rn) has quasiasymptotic behavior at infinity

in D′(Rn) with respect to a real function ρ, which is assumed to be positive and

measurable near infinity, if

lim
λ→∞

〈
f(λx)

ρ(λ)
, φ(x)

〉
(1.8.3)

exists (and is finite) for each φ ∈ D(Rn) .

We refer to quasiasymptotic behavior also as quasiasymptotics. Observe that,

because of Banach-Steinhaus theorem, there must be a distribution g ∈ D′(Rn)

such that the above limit (1.8.3) is equal to 〈g(x), φ(x)〉, for each φ ∈ D(Rn).

One can show that ρ and g cannot be arbitrary. Indeed, if one assumes that g

is a non-zero distribution, then relation (1.8.5) forces ρ to be a regularly varying

function and g a homogeneous distribution having degree of homogeneity equal to

the index of regular variation of ρ [61, 160, 231]; we will not need this fact until

Chapter 10, where we reproduce a proof of it.
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Definition 1.4. A distribution f ∈ D′(Rn) is called quasiasymptotically bounded

at infinity in D′(Rn) with respect to a function real function ρ, which is assumed

to be positive and measurable near infinity, if f(λx)/ρ(λ) is bounded in the weak

topology of D′(Rn) for large values of λ, i.e.,〈
f(λx)

ρ(λ)
, φ(x)

〉
= O(1) , λ→∞ . (1.8.4)

The quasiasymptotics at finite points are defined in a similar manner.

Definition 1.5. Let x0 ∈ Rn. A distribution f ∈ D′(R) is said to have quasiasymp-

totic behavior in D′(Rn) at the point x = x0 with respect to a function ρ, which is

assumed to be measurable and positive near the origin, if there exists g ∈ D′(Rn)

such that

lim
ε→0+

1

ρ(ε)
〈f (x0 + εx) , φ(x)〉 = 〈g(x), φ(x)〉 , ∀φ ∈ D(Rn) . (1.8.5)

Definition 1.6. Let x0 ∈ Rn. A distribution f ∈ D′(R) is said to be quasiasymp-

totically bounded in D′(Rn) at the point x = x0 with respect to a function ρ, which

is assumed to be measurable and positive near the origin, if f(x0 + εx)/ρ(ε) form

a weakly bounded set for ε small enough.

We now discuss some basic properties of the quasiasymptotics. Let us start with

the case at points. Our first trivial observation is that, by shifting to x0, in most

cases is enough to consider x0 = 0. In addition the quasiasymptotics at a point

are local properties; in the sense that if f and h are equal in a neighborhood of

x0 and f has quasiasymptotic behavior (or is quasiasymptotically bounded), then

h has the same quasiasymptotic behavior (or quasiasymptotic boundedness) at

the point. Hence, to talk about the quasiasymptotic behavior or quasiasymptotic

boundedness at x = x0, the distribution only needs to be defined in a neighborhood

of x0.
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We may also talk about quasiasymptotics or quasiasymptotic boundedness in

other spaces of distributions, say A′ the dual of the suitable space of functions

A. For quasiasymptotics, it means that f ∈ A′ and the test functions in (1.8.1),

resp. (1.8.2), can be taken from A. In the case of quasiasymptotic boundedness, it

means that the corresponding set is weakly bounded in A′. For instance, we will

make extensive use of quasiasymptotics in S ′(R). There is an obvious dependence

on the space of distributions to be employed, so to denote the quasiasymptotics at

infinity, we will indistinctly use the two convenient notations

f(λx) ∼ λαL(λ)g(x) as λ→∞ in A′, (1.8.6)

and

f(λx) = λαL(λ)g(x) + o(λαL(λ)) as λ→∞ in A′ . (1.8.7)

For quasiasymptotic boundedness, we use the notation

f(λx) = O(λαL(λ)) as λ→∞ in A′ . (1.8.8)

Likewise, an analogous notation will be used at finite points.

In the following, we focus in the one-dimensional case.

One can also consider asymptotic expansions in the sense of quasiasymptotics,

that is, expansions of the form

f(λx) ∼
∞∑
n=0

cn(λ)gn(x) in A′ , (1.8.9)

in the weak topology of A′, i.e., for each test function φ ∈ A

〈f(λx), φ(x)〉 ∼
∞∑
n=0

cn(λ) 〈gn(x), φ(x)〉 in A′ . (1.8.10)

The asymptotic expansion (1.8.9) is called asymptotic separation of variables or

quasiasymptotic expansion [61, 160, 231]. As an example of (1.8.9), we have the

Estrada-Kanwal moment asymptotic expansion [57, 61]

f (λx) ∼
∞∑
n=0

(−1)nµn
n!λn+1

δ(n)(x) as λ→∞ , (1.8.11)
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where µn = 〈f(x), xn〉 . This expansion is valid in the space K′(R), for any f ∈

K′(R) [61].

Since E ′(R) ⊂ K′(R), any distribution of compact support satisfies the moment

asymptotic expansion. Actually, for f ∈ E ′(R), the moment asymptotic expansion

(1.8.11) holds in the space E ′(R). Therefore, contrary to the case at points, the

quasiasymptotic at ∞ is not a local property.

An advantage of quasiasymptotic relations is that differentiation is permitted,

since the derivative is a continuous operator on spaces of distributions. From now

on, we will make use of this fact without further comments.

We now discuss some basic facts of quasiasymptotics in the case when ρ is a

power function and g is a homogeneous distribution. The first result is very well

known [61, 160, 231], but we state it and prove it for the convenience of the reader;

it relates the ordinary asymptotic behavior of functions and the quasiasymptotic

behavior of distributions.

Proposition 1.7. Let f be a locally integrable function with support on an interval

[b,∞). Suppose that f(x) = O(xα), x → ∞, where α > −1, then f(λx) = O(λα)

as λ → ∞ in S ′(R). Furthermore, if f(x) ∼ Cxα, x → ∞, then f(λx) ∼ C(λx)α+

as λ→∞ in S ′(R).

Proof. We can assume that supp f ⊆ [1,∞). Otherwise, decompose f = f1 + f2,

where f2 is supported on [1,∞) and f1 has compact support; since f1 satisfies the

moment asymptotic expansion (1.8.11), then f1(λx) only contributes to f(λx) up

to an O(λ−1) term, thus, we may assume that f = f2. Next, pick M such that

|f(x)| ≤ Mxα, the same argument we just applied allows to assume that the last

inequality holds for all x > 1. Take φ ∈ S(R). So we have

|〈f(λx), φ(x)〉| = λα
∫ ∞

1
λ

∣∣∣∣f(λx)

(λx)α

∣∣∣∣ xα |φ(x)| dx ≤Mλα
∫ ∞

0

xα |φ(x)| dx.
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If now f(x) ∼ Cxα, we can apply Lebesgue dominated convergence theorem to

conclude that

lim
λ→∞

1

λα
〈f(λx), φ(x)〉 = lim

λ→∞

∫ ∞

1
λ

f(λx)

(λx)α
xαφ(x)dx = C

∫ ∞

0

xαφ(x)dx .

A similar result holds for functions with support bounded at the right.

We now present the structural theorem for quasiasymptotics of distributions in

D′[0,∞). The result was basically obtained in [37].

Proposition 1.8. A distribution f ∈ D′[0,∞) has quasiasymptotic behavior

f(λx) ∼ C
(λx)α+

Γ(α + 1)
as λ→∞ in D′(R) (1.8.12)

if and only if f ∈ S ′[0,∞) and there exists a non-negative integer k > −α−1 such

that f (−k) is an ordinary function and

f (−k)(x) ∼ C
xα+k

+

Γ(α + k + 1)
, x→∞ , (1.8.13)

in the ordinary sense. Moreover, the quasiasymptotic behavior (1.8.12) holds actu-

ally in S ′[0,∞).

Proof. The converse follows directly from Proposition 1.7. The Banach-Steinhaus

theorem, the quasiasymptotic behavior (1.8.12) and the definition of convergence

in D′[0,∞) imply that there exists n, sufficiently large, such that the evaluation

of f at φn(t) := (1 − t)n(H(t) − H(t − 1)) makes sense and (1.8.12) holds when

evaluated at φn. Here H is the Heaviside functions. Put k = n+1, then, as x→∞,
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f (−k)(x) =
1

(k − 1)!

〈
f(t), (x− t)k−1(H(t)−H(t− 1))

〉
=

xk−1

(k − 1)!

〈
f(t), φn

(
t

x

)〉
=

xk

(k − 1)!
〈f(xt), φn (t)〉

∼ Cxk+α

(k − 1)!Γ(α + 1)
F.p.

∫ 1

0

tα(1− t)k−1dt

=
Cxk+α

Γ(α + k + 1)
.

Likewise one shows.

Proposition 1.9. A distribution f ∈ D′[0,∞) satisfies

f(λx) = O(λα) as λ→∞ in D′(R) (1.8.14)

if and only if f ∈ S ′[0,∞) and there exists a non-negative integer k > −α−1 such

that f (−k) is an ordinary function and

f (−k)(x) = O(xα+k) , x→∞ , (1.8.15)

in the ordinary sense. Furthermore, (1.8.14) holds actually in S ′[0,∞).

We end our discussion about quasiasymptotics with a bibliographical remark.

Remark 1.10. In [249, 231] the original definition for the quasiasymptotic be-

haviors at infinity is given only for f ∈ S ′[0,∞); there the function ρ is called an

automodel function but we will not follow this terminology. In [150, 151, 152, 153],

the definition is extended to the form just presented here. Sometimes, it is also as-

sumed that g 6= 0; nevertheless that assumption is not essential for us, and we do

allow g to be 0.
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1.8.2 The Cesàro Behavior

Let us define the Cesàro behavior of a distribution at infinity. We follow closely

the expositions from [49, 61]. At this point, we shall confine ourselves with the

definition for integral Cesàro orders and comparison with respect to power func-

tions; however, we point out that the Cesàro behavior of distributions can also be

defined for fractional orders [223, 224, 226] (see also Chapters 8 and 9 below), in

addition, regularly varying functions may be included in the theory [224].

It is studied by using the order symbols O (xα) and o (xα) in the Cesàro sense.

Definition 1.11. Let f ∈ D′(R), m ∈ N, and α ∈ R \ Z−. We say that f(x) =

O (xα) as x→∞ in the Cesàro sense of order m (in the (C,m) sense) and write

f(x) = O (xα) (C,m) , x→∞ , (1.8.16)

if each primitive F of order m, i.e., F (m) = f , is an ordinary function for large

arguments and satisfies the ordinary order relation

F (x) = p(x) +O
(
xα+m

)
, x→∞ , (1.8.17)

for some suitable polynomial p of degree at most m− 1, which in general depends

on F . Similarly for the little o symbol. We say that f is asymptotic to Cxα as

x→∞ in the Cesàro sense of order m and write

f(x) ∼ Cxα+ (C,m) , x→∞ , (1.8.18)

if we have f(x)− Cxα+ = o(xα) (C,m), x→∞.

Notice that if α > −1, then the polynomial p is irrelevant in (1.8.17). A similar

definition applies when x → −∞. One may also consider the case when α =

−1,−2,−3, ... [61, Def.6.3.1], but we shall not do so here. Obviously, if f vanishes

for large arguments, then f(x) = o(xα) (C,m), for any m and α. When we do not
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want to make reference to the order m in (1.8.16) or (1.8.18), we simply write (C),

meaning (C,m) for some m.

For α = 0, we obtain the notion of Cesàro limits at infinity.

Definition 1.12. Let f ∈ D′(R) and m ∈ N. We say that f has a limit ` at

infinity in the Cesàro sense of order m (in the (C,m) sense) and write

lim
x→∞

f(x) = ` (C,m) ,

if we have that f(x) = `+ o(1) (C,m), x→∞.

We want discuss the close relation between Cesàro asymptotics and the quasi-

asymptotic behavior. For further properties, we refer to [61].

The next theorem shows that the Cesàro behavior, in the case α > −1, is totally

determined by the quasiasymptotic properties of the distribution on intervals being

bounded at the left.

Proposition 1.13. Let f ∈ D′(R), m ∈ N, and α > −1. Let f+ be any distribution

supported on an interval of the form [a,∞), a ∈ R, coinciding with f for large

arguments, i.e., in some open interval with finite left end point. Then, we have the

next equivalences.

(i) The following two conditions are equivalent,

f(x) = O (xα) (C) , x→∞ , (1.8.19)

and f+ belongs to S ′(R) and is quasiasymptotically bounded of degree α, i.e.,

f+(λx) = O(λα) as λ→∞ in S ′(R) . (1.8.20)

(ii) The conditions,

f(x) ∼ Cxα+ (C) , x→∞ , (1.8.21)
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and f+ ∈ S ′(R) has the quasiasymptotic behavior

f+(λx) = Cλαxα+ + o(λα) as λ→∞ in S ′(R) , (1.8.22)

are equivalent.

Proof. We can assume that f = f+ and that f ∈ D′[0,∞), and so the equiva-

lence between (1.8.19) and (1.8.22) is precisely the structural theorem for quasi-

asymptotic boundedness (Proposition 1.9) in this space. On the other hand, the

equivalence between (1.8.21) and (1.8.22) is precisely the content of the struc-

tural theorem for quasiasymptotic behavior of degree α > −1 (Proposition 1.8) in

D′[0,∞).

When α < −1, we do not exactly obtain a characterization in terms of quasi-

asymptotics because delta terms could appear in the expansion.

Proposition 1.14. Let f ∈ D′(R), m ∈ N, and α < −1, α /∈ Z−. Let f+ be any

distribution supported on an interval of the form [a,∞), a ∈ R, coinciding with f

for large arguments. Then, we have the next equivalences.

(i) The following two conditions are equivalent,

f(x) = O
(
xα+
)

(C) , x→∞ , (1.8.23)

and there exist n > −α constants a0, . . . , an−1, in general depending on f+,

such that f+ has the asymptotic expansion

f+(λx) =
n−1∑
j=0

aj
δ(j)(x)

λj+1
+O(λα) as λ→∞ in S ′(R) . (1.8.24)

(ii) The conditions,

f(x) ∼ Cxα+ (C) , x→∞ , (1.8.25)
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and the existence of constants n > −α constants a0, . . . , an−1, in general

depending on f+, such that

f+(λx) = Cλαxα+ +
n−1∑
j=0

aj
δ(j)(x)

λj+1
+ o(λα) as λ→∞ in S ′(R) , (1.8.26)

are equivalent.

Proof. We can assume f = f+. We only show (ii), the proof of (i) is similar to this

case and is left to the reader. Assume (1.8.25), then there exist G1, G2, m > −α−1,

and m constants c0, . . . , cm−1 such that f = G1 +G2, G1 has compact support, G2

is a locally integral functions with support on [,∞), and

G2(x) =
m−1∑
j=0

cj
xj

j!
+ C

Γ(α + 1)

Γ(m+ α + 1)
xm+α + o(xm+α) ,

x → ∞. Since G1 has compact support, then G1(λx) = O(λ−1), in S ′(R), and so

G(m)(λx) = O(λ−m−1) = o(λα); then, since it does not contributes for (1.8.26),

we can assume that G1 = 0. On the other hand, by Proposition 1.7, the ordinary

asymptotic expansion of G2 implies

G2(λx) =
m−1∑
j=0

cj
(λx)j+
j!

+ C
Γ(α + 1)

Γ(m+ α + 1)
(λx)m+α

+ + o(λm+α)

in S ′(R). Differentiating m-times the above asymptotic formula, and discarding

the irrelevant constants, we obtain (1.8.26) with aj = cm−1−j. The converse follows

from the structural theorem, Proposition 1.8, applied to f+ −
∑n−1

j=0 cj δ
(j).

1.8.3 S−asymptotics

The final asymptotic notion we shall need is that of S-asymptotics, it stands for

shift-asymptotics. They were introduced by Pilipović and Stanković in [155] in-

spired by previous notions from [6, 25, 180]. We only state the definition, since we

will not make use of any deep result about S−asymptotics, besides basic properties

which follow directly from the definition. For a complete account we refer to [160];
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for S−asymptotics in other spaces of generalized functions the reader may consult

[158, 193, 194].

Definition 1.15. A distribution f ∈ D′(R) is said to have S-asymptotic at infinity

in D′(Rn) with respect to a real function ρ, which is assumed to be positive and

measurable near infinity, if there exists g ∈ D′(R) such that

lim
h→∞

〈
f(x+ h)

ρ(h)
, φ(x)

〉
= 〈g(x), φ(x)〉 , h→∞ , (1.8.27)

for each φ ∈ D(R).

We use the notations

f(x+ h) ∼ ρ(h)g(x) as h→∞ in D′(R) , (1.8.28)

or

f(x+ h) = ρ(h)g(x) + o(ρ(h)) as h→∞ in D′(R) , (1.8.29)

for S-asymptotics. Obviously, we can consider S-asymptotics in other spaces of

distributions with a clear meaning. As quasiasymptotic relations, S-asymptotic

relations still hold if we differentiate them. Observe also, that this asymptotic

notion is a local one at infinity.
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Chapter 2
A Quick Way to the Prime Number
Theorem

2.1 Introduction

This first short chapter serves as a motivation for our further study of local and

asymptotic properties of Schwartz distributions. We obtain a non-trivial appli-

cation of generalized asymptotics. We give two new distributional proofs of the

celebrated Prime Number Theorem (in short PNT). Of course, the word distribu-

tional refers to Schwartz distributions. So, we show that

π(x) ∼ x

log x
, x→∞ , (2.1.1)

where

π(x) =
∑

p prime, p<x

1 . (2.1.2)

We provide two related proofs. It is remarkable that both proofs are direct and

do not use any tauberian argument. Our arguments are based on Chebyshev’s

elementary estimate [101, p.14]

π(x) = O (x/ log x) , x→∞ , (2.1.3)

and additional properties of the Riemann zeta function on the line <e z = 1.

The author hopes that this first incursion of generalized asymptotics into number

theory encourages a future exploration of the range of applicability of techniques

from distribution theory to other problems from analytic number theory.

The result of this chapter have already been put into article form [220], but we

add to the exposition from [220] a complementary tauberian theorem of Wiener-

Ikehara type, this is done in the last section of the chapter.
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2.2 Special Functions and Distributions Related

to the PNT

In this section we briefly explain some special functions and distributions related

to prime numbers.

Throughout this article, the letter p stands only for a prime number. We denote

by Λ the von Mangoldt function defined on the natural numbers as

Λ(n) =



0 , if n = 1 ,

log p , if n = pm with p prime and m > 0 ,

0 , otherwise .

(2.2.1)

As usually done, we denote by ψ the Chebyshev function

ψ(x) =
∑
pm<x

log p =
∑
n<x

Λ(n) . (2.2.2)

It follows easily from Chebyshev’s classical estimate (2.1.3) that for some M > 0

ψ(x) < Mx . (2.2.3)

It is very well known since the time of Chebyshev that the PNT is equivalent to

the statement

ψ(x) ∼ x . (2.2.4)

Our approach to the PNT will be to show (2.2.4).

Our proof of the PNT is based on finding the distributional asymptotic behavior

of ψ′(x) (the derivative is understood in the distributional sense, of course); observe

that

ψ′(x) =
∞∑
n=1

Λ(n) δ(x− n) , (2.2.5)

where δ is the well known Dirac delta distribution (Section 1.3). For this goal, we

shall study the asymptotic properties of the distribution

v(x) =
∞∑
n=1

Λ(n)

n
δ(x− log n) ; (2.2.6)
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clearly v ∈ S ′(R).

Consider the Riemann zeta function

ζ(z) =
∞∑
n=1

1

nz
, <e z > 1 . (2.2.7)

Let us first take the Fourier-Laplace transform of v, that is, for =m z > 0〈
v(t), eizt

〉
=

∞∑
n=1

Λ(n)

n1−iz = −ζ
′(1− iz)

ζ(1− iz)
, (2.2.8)

a formula that Riemann obtained by logarithmic differentiation of the Euler prod-

uct for the zeta function ζ(z) =
∏

p 1/(1− p−z) .

Taking the boundary values on the real axis, in the distributional sense, we

obtain the Fourier transform of v ,

v̂(x) = −ζ
′(1− ix)

ζ(1− ix)
. (2.2.9)

Notice that we are not saying that the right hand side on the last relation is a

function but rather that it is a tempered distribution. We shall always interpret

(2.2.9) as equality in the space S ′(R), meaning that for each φ ∈ S(R)

〈v̂(x), φ(x)〉 = − lim
y→0+

∫ ∞

−∞
φ(x)

ζ ′(1− ix+ y)

ζ(1− ix+ y)
dx . (2.2.10)

It is implicit in (2.2.9) that the Fourier transform we are using is

φ̂(x) =

∫ ∞

−∞
eixtφ(t) dt , for φ ∈ S(R) .

We discuss some properties of the distribution v̂. From the well known properties

of ζ, we conclude that on R \ {0} v̂ is a locally integrable function. Indeed,

ζ(z)− 1

z − 1
(2.2.11)

admits an analytic continuation to a neighborhood of <ez = 1, as one easily proves

by applying the Euler-Maclaurin formula [61]; in addition, ζ(1 + ix), x 6= 0, is free

of zeros [103, 115]. It follows then that

v̂(x)− i

(x+ i0)
∈ L1

loc(R) , (2.2.12)

55



where here we use the notation 1/(x+ i0) for the distributional boundary value of

the analytic function z−1, =m z > 0.

The property (2.2.12) together with Chebyshev’s estimate (2.2.3) will be the key

ingredients for the proof of the PNT given in Section 2.5.

The proof to be given in Section 2.4 makes use of additional information of

the Riemann zeta function on the line <e z = 1; we shall take for granted that

v̂ has at most polynomial growth as |x| → ∞. In fact, more than this is true:

v̂(x) = O(logβ(x)) as x → ∞, for some β > 0. The reader can find the proof of

this fact in [101, Chap.2] (see also [122]). Summarizing, we have that

v̂(x)− i

(x+ i0)
∈ L1

loc(R) and has polynomial growth . (2.2.13)

2.3 Notation from Generalized Asymptotics

The purpose of this section is to clarify the notation to be used in the following

two sections. It was basically explained in Section 1.8, but we choose to make

some comments. Besides the notation, we do not make use of any deep result from

generalized asymptotics.

Let f ∈ D′(R), a relation of the form

lim
h→∞

f(x+ h) = β , in D′(R) , (2.3.1)

means that the limit is taken in the weak topology of D′(R), that is, for each test

function from D(R) the following limit holds,

lim
h→∞

〈f(x+ h), φ(x)〉 = β

∫ ∞

−∞
φ(x)dx . (2.3.2)

The meaning of the expression limh→∞ f(x+h) = β in S ′(R) is clear. Observe that

relation (2.3.1) is an example of the so-called S-asymptotics, introduced already in

Section 1.8.3.
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On the other hand, we will study in connection to the PNT a particular case of

the quasiasymptotic behavior (Section 1.8.1), namely, a limit of the form

lim
λ→∞

f(λx) = βH(x) , in D′(R) , (2.3.3)

where H(x) is the Heaviside function (Section 1.3). Needless to say that (2.3.3)

should be always interpreted in the weak topology ofD′(R). We may also talk about

(2.3.3) in other spaces of distributions with a clear meaning. For instance, we will

consider (2.3.3) in D′(0,∞), not in D′(R), which means that we are, initially, only

in the right to evaluate (2.3.3) at test functions with support in (0,∞).

2.4 First Proof of the PNT

Our first proof is based on (2.2.3) and (2.2.13). We begin with the distribution v

given by (2.2.6).

Our first step is to show that

lim
h→∞

v(x+ h) = 1, in S ′(R) . (2.4.1)

Recall that H(x) denotes the Heaviside function. Let φ ∈ S(R). Consider φ1 ∈

S(R) such that φ = φ̂1 ; then as h→∞

〈v(x+ h), φ(x)〉 =

∫ ∞

−h
φ(x)dx+ 〈v(x+ h)−H(x+ h) , φ(x)〉

=

∫ ∞

−h
φ(x)dx+

〈
v̂(x)− i

(x+ i0)
, e−ihxφ1(x)

〉
=

∫ ∞

−h
φ(x)dx+

∫ ∞

−∞
e−ihxφ1(x)

(
v̂(x)− i

(x+ i0)

)
dx

=

∫ ∞

−∞
φ(x)dx+ o(1), h→∞ ,

where the last step follows in view of (2.2.13) and the Riemann-Lebesgue lemma.

This shows (2.4.1).

The second step is to show that

lim
λ→∞

ψ′(λx) = lim
λ→∞

∞∑
n=1

Λ(n)δ(λx− n) = H(x) , in D′(0,∞) , (2.4.2)
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here again H(x) is the Heaviside function and ψ is the Chebyshev function. Indeed

(2.4.1) implies that et+hv(t+h) ∼ et+h, as h→∞, in the weak topology of D′(R),

which readily implies that for each φ ∈ D(R)

∞∑
n=1

Λ(n)φ(log n− h) ∼ eh
∫ ∞

0

φ(log x)dx , h→∞ .

If φ1 ∈ D(0,∞), it can be written as φ1(x) = φ(log x) with φ ∈ D(R), changing

λ = eh in the above relation we obtain (2.4.2).

Here comes the final step in our argument, we evaluate (2.4.2) at suitable test

functions to deduce that ψ(x) ∼ x. Let σ > 0 be an arbitrary number; find φ1 and

φ2 ∈ D(0,∞) with the following properties: 0 ≤ φi ≤ 1, suppφ1 ⊆ (0, 1], φ1(x) = 1

on [σ, 1− σ], suppφ2 ⊆ (0, 1 + σ], and finally, φ2(x) = 1 on [σ, 1]. Evaluating φ2 in

(2.4.2) and using (2.2.3), we obtain that

lim sup
λ→∞

1

λ

∑
n<λ

Λ(n) ≤ lim sup
λ→∞

(
1

λ

∑
n<σλ

Λ(n) +
1

λ

∞∑
n=0

Λ(n)φ2

(n
λ

))

≤Mσ + lim
λ→∞

1

λ

∞∑
n=0

Λ(n)φ2

(n
λ

)
= Mσ +

∫ ∞

0

φ2(x)dx ≤ 1 + σ(M + 1) .

Evaluating at φ1, we easily obtain that

1− 2σ ≤ lim inf
λ→∞

1

λ

∑
n<λ

Λ(n) .

Since σ was arbitrary, we conclude that ψ(λ) ∼ λ and the PNT follows immediately.

2.5 Second Proof of the PNT

The second proof is based on (2.2.3) and (2.2.12). We present a variant of the

proof discussed in Section 2.4. In fact, we show how to avoid the use of the growth

properties of ζ(z) on <e z = 1.

We begin by observing that it is enough to establish (2.4.1). Indeed, once (2.4.1)

is obtained, one can proceed identically as in the Section 2.4 and prove the PNT.
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Therefore, we shall derive (2.4.1) from (2.2.3) and (2.2.12). In view of (2.2.12) and

the argument from the last section involving the Riemann-Lebesgue lemma, we

can still deduce that for each test function φ with supp φ̂ compact

lim
h→∞

〈v(x+ h), φ(x)〉 =

∫ ∞

−∞
φ(x)dx . (2.5.1)

The set of test functions having this property is dense in S(R). Then, if one were

able to show that v(x + h) = O(1) in S ′(R), that is, that the set of translates of

v is a weakly bounded set, then (2.4.1) would follow from the Banach-Steinhaus

theorem and the convergence over a dense subset of S(R). We now show this last

property. Let g(x) = e−xψ(ex). Because of (2.2.3), we have that g(x + h) = O(1)

in the weak topology of S ′(R). Consequently, we also have that g′(x + h) = O(1)

in S ′(R). Hence, v(x+h) = g′(x+h) + g(x+h) = O(1) in S ′(R), as required. The

boundedness of v(x+ h) together with (2.5.1) imply the PNT.

2.6 A Complex Tauberian Theorem

Our arguments given in the past two sections may be used to show the following

complex tauberian theorem. The proof is basically the same as our second proof

of the prime number theorem, but we give it for the sake of completeness.

Theorem 2.1. Let s be a non-decreasing function supported on [0,∞) satisfying

the growth condition s(x) = O(ex). Hence, the function

G(z) =

∫ ∞

0

e−ztds(t) (2.6.1)

is analytic on <e z > 1. If there exists a constant β such that

G(z)− β

z − 1
(2.6.2)

admits a boundary distribution on the line <e z = 1 which belongs to L1
loc(1 + iR),

then

s(x) ∼ βex , x→∞ . (2.6.3)
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Proof. By subtracting s(0)H(x), we may assume that s(0) = 0, so the deriva-

tive of s is given by the Stieltjes integral 〈s′(t), φ(t)〉 =
∫∞

0
φ(t)ds(t). Let M > 0

such that s(x) < Mex. Define v(x) = e−xs′(x). We have that e−xs(x) is a tem-

pered distribution and its set of translates is, in particular, weakly bounded; since

(e−xs(x))′ = −e−xs(x) + v(x), we conclude that v ∈ S ′(R) and v(x+ h) = O(1) in

S ′(R). The Fourier-Laplace transform of v on =m z is given by

〈
v(t), eizt

〉
=

∫ ∞

0

e(iz−1)tds(t) = G(1− iz) ,

Hence, v̂(x)− iβ/(x+ i0) is locally integrable, therefore e−ihx(v̂(x)− iβ/(x+ i0)) =

o(1) as h → ∞ in D′(R). Taking Fourier inverse transform, we conclude that

v(x+h) = β+ o(1) as h→∞ in F(D′(R)), the Fourier transform image of D′(R).

Using the density of F(D(R)) and the boundedness of v(x+ h), we conclude that

v(x+h) = β+o(1) actually in S ′(R). Multiplying by ex+h, we obtain s′(x+h) ∼ ex+h

in D′(R). Let g(x) = s(log x), then limλ→∞ g′(λx) = βH(x) in D′(0,∞); indeed,

〈g′(λx), φ(x)〉 = − 1

λ2

∫ ∞

0

s(log x)φ′
(x
λ

)
dx

= −1

λ

∫ ∞

−∞
s(t+ log λ)etφ′(et)dt

=
1

λ

〈
s′(t+ log λ), φ(et)

〉
=

∫ ∞

−∞
etφ(et)dt+ o(1)

=

∫ ∞

0

φ(x)dx+ o(1) , λ→∞ .

We now choose σ, φ1, and φ2 as in Section 2.4. Evaluating φ2 at the quasiasymptotic

limit of g′, we obtain that

lim sup
λ→∞

g(λ)

λ
= lim sup

λ→∞

1

λ

∫ λ

0

dg(t) ≤ lim sup
λ→∞

(
g(σλ)

λ
+

1

λ

∫ ∞

0

φ2

(
t

λ

)
dg(t)

)
≤Mσ + lim

λ→∞
〈g′(λx), φ(x)〉 = Mσ + β

∫ ∞

0

φ2(x)dx ≤ β + σ(M + β) .
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Evaluating at φ1, we easily obtain that

β − 2σβ ≤ lim inf
λ→∞

g(λ)

λ
.

Since σ was arbitrary, we conclude (2.6.3).

Theorem 2.1 implies the following result for Dirichlet series. It was obtained by

Korevaar [117] via purely complex variable methods; here we use purely distri-

butional methods! We remark that this result was used in [117] to conclude the

classical Wiener-Ikehara theorem.

Theorem 2.2. Let
∑∞

n=1 cn be a series with terms terms bounded from below, i.e.,

there exists K > 0 such that cn > −K for all n. Suppose that the partial sums

satisfy
∑N

n=1 cn = O(N). Let

G(z) =
∞∑
n=1

cn
nz

, (2.6.4)

it is analytic on <e z > 1. If there exists a constant β such that the distributional

boundary value of

G(z)− β

z − 1
(2.6.5)

on the line <e z = 1 belongs to L1
loc(1 + iR), then

N∑
n=1

cn ∼ βN , N →∞ . (2.6.6)

Proof. Set s(x) =
∑

n≤ex(cn +K). Then s(x) = O(ex), and∫ ∞

0

e−ztds(t) = Kζ(z) +
∞∑
n=1

cn
nz

;

thus, s satisfies the hypothesis of Theorem 2.1, and so

s(x) ∼ (β +K)ex,

from where (2.6.6) follows.
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Naturally, Theorem 2.2, applied to
∑∞

n=0 Λ(n) directly, implies the PNT; further-

more, the proof, as has been given here, is essentially the same as our distributional

method for the proof of the PNT itself.
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Chapter 3
Summability of the Fourier Transform
and Distributional Point Values

3.1 Introduction

The study of the relationship between the local behavior of a periodic function and

the convergence or summability of its Fourier series is an old and interesting prob-

lem. It has a long tradition [62, 256, 93, 92]. Since the convergence fails in many

interesting cases, the study is usually carried out by means of summability meth-

ods. In the famous monograph [256], it was said by A. Zygmund that the problem

of summability of Fourier series of classical functions at individual points could be

considered as a closed chapter in Mathematics. However, since the introduction of

the so called Generalized Functions, new problems were opened.

Interestingly, one can extend many results from the classical theory of Fourier se-

ries of functions to Fourier series of distributions. For example, one of the most basic

results in the classical theory is that of L. Fejér which asserts that the Fourier series

of a continuous functions, although not necessarily convergent, is (C, 1) summable;

furthermore, if f ∈ L1[0, 2π] then its (symmetric) Fourier series is (C, 1) summable

at every Lebesgue point [62, 93, 256]. This admits an extension. The first extension

to periodic distributions was given by G. Walter [236, 237].

A distributional point of view of Fourier series is sometimes more convenient be-

cause it provides new interpretations of summability of trigonometric series that the

classical point of view hides in somehow. For instance, it is possible to completely

characterize the value of periodic distributions at a point in terms of summability

of the Fourier series. For periodic distributions, that is, elements f of D′ (R) , it

was shown in [47] that if f has Fourier series
∑∞

n=−∞ cne
inx and x0 ∈ R, then

63



f(x0) = γ , distributionally, if and only if there exists k such that

lim
x→∞

∑
−x<n≤ax

cne
inx0 = γ (C, k) , (3.1.1)

for each a > 0. It should be stressed that the characterization holds in terms of the

slightly asymmetric means of (3.1.1), but it is not true for symmetric sums, i.e., if

we just take a = 1, leading to consider, as has been classically done, the cosines-

sines series. The characterization also fails if we consider the means
∑

0≤n≤x cne
inx0

and
∑

−x≤n<0 cne
inx0 , separately. It is remarkable that such a type of characteriza-

tion has not been given for classical functions but for generalized functions.

It is also to be observed that the characterization holds for the distributional

point value. The notion of the value of a function at a point is somewhat com-

plicated. Indeed, while it is clear what f (x0) is if f ∈ C (R) , the same question

becomes hard to answer if f ∈ Lp (R) since the elements of this space are not

functions but equivalence classes of functions equal almost everywhere. If f is a

distribution, the problem seems hopeless since distributions are not defined point-

wise, but are the elements of certain dual spaces, that is, global objects. It is

therefore very interesting that there is a notion of point value for distributions,

introduced by  Lojasiewicz in [128], that not only reduces to the usual one for

distributions locally equal to continuous functions, but that has many interest-

ing and useful properties. The concept of distributional point value has shown to

be of importance in several areas, such as abelian and tauberian results for inte-

gral transforms [139, 149, 231, 243], the study of local properties of distributions

[72, 74, 75, 78, 79, 215, 217, 223], spectral expansions [61, 216, 223, 236, 237],

the boundary behavior of solutions of partial differential equations [54, 238], the

summability of cardinal series [239, 240], or pointwise convergence of wavelet ex-

pansions [241, 242].
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In the case of Fourier integrals of classical functions the situation is similar to

that of Fourier series, summability methods must be employed as well. One has

also a Cesàro summability version for the Fourier inversion integral formula in

a theorem due to Plancherel [166, 206]. Other methods of summability are also

studied in classical books [17, 19]. Actually the approach given in [17, 19] is very

close to distributional point values. Indeed, what they do is to consider pointwise

inversion formulas of the type

lim
x→∞

1

2π

∫ ∞

−∞
f̂(t)eix0tφ

(
t

x

)
dt = φ(0)f(x0) , (3.1.2)

which is what one usually does in distribution theory when dealing with distribu-

tional point values.

The scope of this chapter is to investigate extensions of (3.1.1) to general tem-

pered distributions and their Fourier transforms. We will take a comprehensive

approach, it includes at the same time Fourier series and integral, and more gener-

ally, the Fourier transform of arbitrary tempered distributions. Therefore we first

show that the distributional point values of a tempered distribution are character-

ized by their Fourier transforms in a way similar to those of periodic distributions

are characterized by their Fourier series as in (3.1.1), that is, we show that they are

determined by a generalized Fourier inversion formula. In particular, it will follow

from our analysis that if f ∈ S ′ (R) and x0 ∈ R, and f̂ is locally integrable, then

f(x0) = γ distributionally if and only if there exists k such that

1

2π
lim
x→∞

∫ ax

−x
f̂(t)eix0tdt = γ (C, k) , (3.1.3)

for each a > 0.

It is worth to mention that these ideas are related to the classical problem of (C)

summability of Fourier series (see [256, Chap.XI] and references therein). The first

to formulate the problem were Hardy and Littlewood [89, 90]. It basically aims to
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characterize trigonometric series such that their sines and cosines series,

a0

2
+

∞∑
n=1

(an cosnx0 + bn sinnx0) ,

are Cesàro summable at a given point x0 and whose coefficients are of slow growth

(hence they are tempered distributions!). If we do not care about the order of (C)

summability, then distributional point values provide an easy and quick solution

to this problem [61, Thm.6.14.5]. A classical approach to this problem is presented

in [256, Chap.XI], where the problem of (C) summability of the symmetric partial

sums is investigated with generalized symmetric derivatives in the sense of de la

Vallée Poussin (notion which can be interpreted as distributional symmetric point

values as shown in Section 3.10).

We will also study conditions which allow us to conclude that the asymmetric

means in (3.1.1) converge to γ. In case of series of the power series type such

results are the so-called tauberian theorems. We show that in case the sequence

{cn}∞n=−∞ belongs to the space lp for some p ∈ [1,∞) and the tails satisfy the

estimate
∑∞

|n|≥N |cn|
p = O (N1−p) , as N → ∞, then the asymmetric partial sums

converge to f (x0) at any point x0 where the distributional point value exists.

We also give several other conditions that guarantee the convergence in (3.1.1).

We then proceed to obtain results on the convergence of the asymmetric partial

integral when f̂ belongs to Lp (R) and in other cases.

The author would like to mention that the main results of the chapter are al-

ready published by the author and R. Estrada in [216]; however, the exposition

presented here is more complete and contains some complementary results which

naturally arise from the context of our investigations of distributional point values

and summability of the Fourier transform.

The plan of the chapter is as follows. In Section 3.2 we review the  Lojasiewicz

notion of distributional point values and some of its properties. Section 3.3 is
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of preliminary character, we discuss several summability procedures for divergent

series and integrals; we then discuss how to extend the summability method to

distributional evaluations. The main results of the chapter are found in Sections

3.4 and 3.5, where we prove the characterization of the point values of tempered

distributions in terms of asymmetric evaluations of their Fourier transforms. The

crucial argument to obtain such a result is the structural characterization of the

quasiasymptotic behavior g(λx) ∼ γδ(λx). We also show that the correspond-

ing results for the symmetric evaluations or for the separate evaluations over the

positive and negative parts of the spectrum do not hold. The results for the con-

vergence of asymmetric partial sums of Fourier series are given in Section 3.6. Next

we show in Section 3.7 that our results have direct applications to the convergence

of asymmetric partial sums of lacunary Fourier series; in particular we show how

we can construct continuous functions whose derivatives do not have distributional

point values at any point. In Section 3.8 we extend the results of Section 3.6 to

the convergence of asymmetric partial integrals in the Fourier inversion formula.

Abel summability of the Fourier inversion formula is investigated in Section 3.9.

Finally, we formulate and solve the Hardy-Littlewood (C)-summability problem

for tempered distributions in Section 3.11; this is done in terms of distributional

symmetric point values, which will be introduced in Section 3.10.

3.2 Distributional Point Values

The notion of the of the value of distribution at point was introduced by S.

 Lojasiewicz in [128]. He defined the value of a distribution f ∈ D′(R) at the

point x = x0 as the limit

γ = lim
ε→0

f(x0 + εx) , (3.2.1)

if the limit exists in the weak topology of D′(R), that is, if

lim
ε→0

〈f(x0 + εx), φ(x)〉 = lim
ε→0

〈
f(x),

1

ε
φ

(
x− x0

ε

)〉
= γ

∫ ∞

−∞
φ(x) dx , (3.2.2)
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for each φ ∈ D(R). In such a case, one declares f(x0) := γ.

Observe that distributional point values in the sense of  Lojasiewicz forms part

of a more general notion of behavior of a distribution at a point, the notion of

quasiasymptotics, as defined in Section 1.8.1. In particular, this is a local concept.

So, in the notation of quasiasymptotics, the limit (3.2.1) may be written as

f(x0 + εx) = γ + o(1) as ε→ 0 in D′(R) . (3.2.3)

We will refer to  Lojasiewicz point values as distributional point values, and will use

the following notation for the existence of the distributional point value at x = x0

with value γ,

f(x0) = γ, distributionally. (3.2.4)

 Lojasiewicz gave himself a structural characterization of distributional point

values. It was shown by him [128] that the existence of the distributional point

value f(x0) = γ, distributionally, is equivalent to the existence of n ∈ N, and a

primitive of order n of f , that is, F (n) = f , which is continuous in a neighborhood

of x0 and satisfies

lim
x→x0

n!F (x)

(x− x0)
n = γ . (3.2.5)

Therefore, the existence of a distributional point value is actually an average no-

tion. Such a structural characterization allows us to relate distributional point

values with the the classical concept of Peano differentials ([34],[256, Chap.XI]. In-

deed, if F1 is another n-primitive of f , different form F , then there exist n constants

a0, a1, . . . , an−1 such that

F1(x) = a0+a1(x−x0)+· · ·+an−1(x−x0)
n−1+

γ

n!
(x−x0)

n+o(|x− x0|n), x→ x0 .

Hence, any n-primitive of F1 admits a Peano n-differential, and its Peano n-

derivative is actually equal to γ.
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A priori, relation (3.2.2) is only assumed to hold for φ ∈ D(R). Suppose now

that f ∈ S ′(R) and f(x0) = γ, distributionally; initially, (3.2.2) does not have to

be true for φ ∈ S(R). However, it is shown in [54, Corollary 1] and [153] that if

(3.2.2) holds for φ ∈ D(R), it will remain true for φ ∈ S(R). Actually, this fact

holds for any quasiasymptotic behavior, as will be seen in Chapter 10.

Let us provide some examples.

Example 3.1. (Lebesgue points) Recall the classical definition of Lebesgue points.

Let f ∈ L1
loc(R). We say that f has a Lebesgue point at x = x0 if

lim
h→0

1

h

∫ x0+h

x0

|f(x)− γx0| dx = 0 ,

for some constant γx0. Then, one can show [256] that f(x0) = γx0 a.e.; we refer to

the set of points where Lebesgue points exist as the Lebesgue set of f . Observe that at

a Lebesgue point, we have that f(x0) = γx0, distributionally. Hence, distributional

point values include the Lebesgue points, which is actually the notion of point value

used by analysts for Lp-functions.

Example 3.2. The functions xαei/x, where α ∈ R, have regularizations fα ∈

D′ (R) that have distributional point values at x = 0, and, in fact, fα (0) = 0,

distributionally. This fact was established by  Lojasiewicz in [128]. Observe that if

α < 0 then fα is unbounded near x = 0 in the ordinary sense.

Example 3.3. In general the behavior of distributional point values with respect to

non-linear operations could be very complicated. If f (x) = sinx−1, then f (0) = 0

distributionally, but f 2 (x) = (1− cos 2x−1)/2, and thus f 2 (0) = 1/2 distribution-

ally. If g (x) is the usual regularization of x−1 sin x−1 then g (0) = 0 distributionally,

but g2 (0) does not exist. It is not known if such behavior occurs at a small set of

points only. It would be very interesting to study the relationship of distributional

point values and the non-linear theories of generalized functions.
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3.3 Cesàro and Abel Summability

It is the intension of this section to introduce two methods of summability for

distributional evaluations. The are defined via the Cesàro behavior (Section 1.8.2).

We are only interested in the one-dimensional case; for the multidimensional case

we refer to Chapter 13 (see also [221]).

We start by presenting a very brief introduction to summability of divergent

series and integrals. It will serve as a motivation to the study of more general

notions applicable to Schwartz distribution. There is a very rich and extensive

literature on this traditional subject; for instance, the reader is referred to [28, 85,

91]. See also [93, 206, 256] for connections with Fourier series and integrals.

We will then discuss the Abel and Cesàro methods for distributional evaluations.

For the second part, we follow closely [61].

3.3.1 Cesàro, Riesz, and Abel Summability of Series and
Integrals

We shall discuss the summability methods by Abel, Cesàro and Riesz means for

series and integrals.

Let us start with Cesàro summability. In general we say that a numerical series∑∞
n=0 cn, possibly divergent, is summable to a complex number γ in the average,

or Cesàro sense of order 1, if the averages of its partial sums converge to γ, that

is,

lim
n→∞

s0 + s1 + s2 + · · ·+ sn
n+ 1

= γ , (3.3.1)

where sn =
∑n

j=0 cj, in such a case one writes

∞∑
n=0

cn = γ (C, 1) . (3.3.2)

It is elementary to check that if the series is convergent, then it is summable by

the (C, 1) method, but the converse is naturally false. For example, one may take
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∑∞
n=0(−1)n, which is evidently divergent; but its average converges to 1/2, hence∑∞
n=0(−1)n = 1/2 (C, 1).

The Cesàro method of summability is important in the analysis of several series

expansions of functions and generalized functions; in particular for Fourier series.

In fact, it is a famous result of Fejér that the Fourier series of a continuous function,

although not necessarily convergent, is (C, 1) summable to the value of the func-

tion at any point [62, 93, 256]. Furthermore, Kolmogorov proved [256, Chap.VIII]

that there are functions in the class L1[0, 2π] whose Fourier series diverge every-

where; therefore, even in the case of classical functions, it is imperative the use of

summability methods for the pointwise analysis of trigonometric series. In Section

3.5, we will generalize Fejér’s classical result to include periodic distributions, for

that we will use higher order Cesàro means.

We can extend the (C, 1) to higher order average means. There are several ap-

proaches, and all of them are equivalent. Perhaps the simplest, but analytically

inadequate, is that of Hölder means. We can define recursively the sequences,

skn := (
∑n

j=0 s
k−1
j )/(n + 1), with s0

n := sn =
∑n

j=0 cj. Then, we call skn the Hölder

means of order k of the series, and say that
∑∞

n=0 cn = γ (H, k), if skn → γ as

n → ∞. As we remarked before, Hölder means present serious difficulties associ-

ated with their analytical manipulation [85], we shall therefore avoid their use in

the future.

Another approach to the extension of (3.3.1) is via higher order Cesàro means.

Given a series
∑∞

n=0 cn we define its Cesàro means of order β, β > −1, by

Cβ
n =

Γ(β + 1)

nβ

n∑
j=0

(
β + j

β

)
cn−j , (3.3.3)

then we say that the series is Cesàro summable of order β to γ, and write
∑∞

n=0 cn =

γ (C, β), if Cβ
n → γ as n→∞. An interesting example is

∑∞
n=0(−1)nnα, α > −1,
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which is (C, β) summable whenever β > α, oscillates finitely when β = α, and

oscillates infinitely for β < α; we refer to [85] for a proof of this fact.

We shall also discuss the method of Marcel Riesz by typical means [28, 85, 91,

172]. Actually, the Riesz method will be the most important for us in the sub-

sequent sections. Let {λn}∞n=0 be an increasing sequence of non-negative numbers

such that λn → ∞ as n → ∞. We say that a series is summable by the Riesz

means, with respect to {λn}, of order β ≥ 0 if

lim
x→∞

∑
0≤λn<x

cn

(
1− λn

x

)β
= γ ; (3.3.4)

and then we write
∞∑
n=0

cn = γ (R, {λn} , β) . (3.3.5)

These three methods of summability can be compared. If β = m ∈ N, then the

(H,m) and the (C,m) methods are equivalent [85]. While if β ≥ 0 and λn = n, the

(C, β) and the (R, {n} , β) methods sum the same series to the same value, and so

they are also equivalent [100, 85, 94, 172]. Here the use of a continuous variable

in (3.3.5) is absolutely necessary for the equivalence [85]. The Riesz method has

an advantage over the other two methods, it is easily generalizable to integrals,

even to distributions as we shall see later in Section 3.3.2. Therefore, we advise the

reader that whenever we talk about Cesàro summability, even if we write (C, β),

the means should be thought as Riesz means.

Let now f be a locally integrable function supported in [0,∞). Let β > 0. We

write

lim
x→∞

f(x) = γ (C, β) , (3.3.6)

if

lim
x→∞

β

∫ x

0

f(t)

(
1− t

x

)β−1

dt = γ . (3.3.7)
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Note that (3.3.7) basically says that f−β(x), the β-primitive of f , is asymptotic

to γxβ/Γ(β + 1) as x → ∞. So (3.3.6) coincides with Definition 1.12, which is

applicable to distributions. Suppose that f is a function of local bounded variation,

then its distributional derivative is a Radon measure, a continuous linear functional

over the space of continuous functions with compact support, say f ′ = µ. Hence

integration by parts in (3.3.7) shows that it is equivalent to

lim
x→∞

∫ x

0

(
1− t

x

)β
dµ(t) = γ . (3.3.8)

The latter can be taken as the definition of the relation∫ ∞

0

dµ(x) = γ (C, β) . (3.3.9)

Observe that (3.3.5) holds if and only (3.3.9) holds for the Radon measure µ =∑∞
n=0 cnδ( · − λn).

We end this discussion by considering Abel summability of series [85]. For a series∑∞
n=0 cn, we consider its Abel means, that is, the power series

∑∞
n=0 cnr

n. We say

that the series is Abel summable to γ, if
∑∞

n=0 cnr
n is convergent for |r| < 1 and

the power series approaches to the limit γ at the boundary point r = 1, i.e.,

lim
r→1−

∞∑
n=0

cnr
n = γ , (3.3.10)

we write
∞∑
n=0

cn = γ (A) . (3.3.11)

It will be more convenient for us to write r = e−y, so that the power series becomes

a Dirichlet series. So, we have a natural extension for measures supported in [0,∞)

in terms of the Laplace transform. We say that
∫∞

0
dµ(x) is Abel summable to γ

and write ∫ ∞

0

dµ(x) = γ (A) , (3.3.12)
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if for any y > 0 the integral
∫∞

0
e−ytdµ(t) exists as an improper integral, and

lim
y→0+

∫ ∞

0

e−ytdµ(t) = γ. (3.3.13)

When the Radon measure is given by
∑∞

n=0 cnδ(x− λn), we write

∞∑
n=0

cn = γ (A, {λn}) , (3.3.14)

if (3.3.13) holds, that is, if the Dirichlet series
∑∞

n=0 cne
−yλn is convergent for y > 0

and it tends to γ as y → 0+.

We finally comment some inclusion between the Cesàro and Abel method of

summation, if (3.3.9) holds then (3.3.12) is satisfied, this fact is actually recovered

below (Corollary 3.10). In the case of power series this fact is the well known

Abel’s theorem [85]. Naturally, the converse is not true. The reader may wish to

verify that the series whose coefficients are given by those of the power series

e
1

1−r =
∑∞

n=0 cnr
n is an explicit example of a series which is (A) summable but not

(C, β) summable [85], no matter what value of β be taken. Furthermore, in [52],

it is constructed a series which is Abel summable with coefficients cn = O(nm),

but it is not (C, β) summable for any β. The study of additional hypotheses to

ensure the converse of Abel’s theorem motivated the beginning of the tauberian

theory. For instance, Littlewood tauberian condition cn = O(1/n) together with

Abel summability imply the convergence of the series [127, 85]. We will obtain a

simple and quick proof of Littlewood’s theorem in Section 4.4 of Chapter 4, as a

direct consequence of our distributional methods. In Section 3.6, we discuss some

tauberian conditions for Cesàro summability.

3.3.2 Summability of Distributional Evaluations

We now study two methods of summability for distributional evaluations, the two-

sided Cesàro method, and Abel summability. Two more methods will be introduced

in Sections 3.5 and 3.11 (Definitions 3.18 and 3.59).
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We start with summability in the Cesàro sense. First we assume that our dis-

tributions have support bounded at the left. Recall that H denotes the Heaviside

function (Section 1.3), i.e., the characteristic function of (0,∞).

Definition 3.4. Let f ∈ D′(R) have support bounded at the left. Let φ ∈ E(R) and

m ∈ N. We say the evaluation 〈f(x), φ(x)〉 has a value γ in the Cesàro sense of

order m, and write

〈f(x), φ(x)〉 = γ (C,m) (3.3.15)

if F = (φf)(−1) = (φf) ∗ H, the first order primitive of φf with support bounded

at the left, satisfies limx→∞ F (x) = γ (C,m).

Example 3.5. Let µ be a Radon measure with support on [0,∞). Then
∫∞

0
dµ(x) =

γ (C,m) if and only if 〈µ(x), 1〉 = γ (C,m). In particular

∞∑
n=0

cn = γ (R, {λn} ,m)

if and only if 〈
∞∑
n=0

cnδ(x− λn), 1

〉
= γ (C,m) .

If f has support bounded at the right then we say that 〈f(x), φ(x)〉 (C) exists

if and only if 〈f(−x), φ(−x)〉 = γ (C) exists and we define 〈f(x), φ(x)〉 = γ (C).

The distributional evaluations with respect to compactly supported distributions

can always be computed in the (C) sense, actually with order m = 0.

Lemma 3.6. Let f ∈ E ′(R) and φ ∈ E(R). Then 〈f(x), φ(x)〉 (C, 0) always exists.

Proof. We can assume that φ ≡ 1. Consider f (−1), it is obviously constant for

large arguments, we must show that satisfies f (−1) = 〈f(x), 1〉 (a constant distri-

bution) on certain interval (a,∞). Decompose f (−1)(x) = g(x) + cH(x− a), where

g has compact support and c and a are constants. Then 〈f(x), 1〉 = 〈g′(x), 1〉 +

〈cH ′(x− a), 1〉 = 0 + c 〈δ(x− a), 1〉 = c, from where the result follows.
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We now define two-sided Cesàro evaluations

Definition 3.7. Let f ∈ D′(R), φ ∈ E(R), and m ∈ N. We say the evaluation

〈f(x), φ(x)〉 exists in the Cesàro sense of order m if there is a decomposition f =

f− + f+, supp f− ⊆ (−∞, 0] and supp f+ ⊆ [0,∞), such that both evaluations

〈f±(x), φ(x)〉 = γ± (C,m) exist. In this case we write

〈f(x), φ(x)〉 = γ (C,m) , (3.3.16)

where γ = γ− + γ+.

We must check the consistence of Definition 3.7. Let f = f1 +f2 = g1 +g2 be two

decompositions such that f2 and g2 have supports bounded at the left, respectively,

f1 and g1 have supports bounded at the right. Then h = g1 − f1 = f2 − g2 has

compact support. If both 〈fj(x), φ(x)〉 = γj (C,m) exist, then, by Lemma 3.6,

both 〈gj(x), φ(x)〉 = βj (C,m) exist, and we have the two equalities β1 = γ1 + β

and β2 = γ2−β, where β = 〈fj(x), φ(x)〉. Hence the number γ = γ1 +γ2 = β1 +β2

is independent on the choice of the decomposition.

Let us now define Abel summability for distributional evaluations.

Definition 3.8. Let f ∈ D′(R) and φ ∈ E(R). We say the evaluation 〈f(x), φ(x)〉

exists in the Abel sense if there is a decomposition f = f−+f+, supp f− ⊆ (−∞, 0]

and supp f+ ⊆ [0,∞), such that both e∓yxφ(x)f± ∈ S ′(R), for each y > 0, and

lim
y→0+

(
〈φ(x)f−(x), eyx〉+

〈
φ(x)f+(x), e−yx

〉)
= γ , (3.3.17)

in this case we write 〈f(x), φ(x)〉 = γ (A) .

The notion of distributional evaluations in the Cesàro sense admits a character-

ization in terms of the quasiasymptotic behavior.

Proposition 3.9. Let f ∈ D′(R) and φ ∈ E(R). Then 〈f(x), φ(x)〉 = γ (C) if

and only if there exist a decomposition f = f− + f+, where supp f− ⊆ (−∞, 0]
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and supp f+ ⊆ [0,∞), and a constant β such that the following quasiasymptotic

behaviors hold

φ(λx)f+(λx) =
(γ

2
+ β

) δ(x)

λ
+ o

(
1

λ

)
as λ→∞ in S ′(R) (3.3.18)

and

φ(λx)f−(λx) =
(γ

2
− β

) δ(x)

λ
+ o

(
1

λ

)
as λ→∞ in S ′(R) . (3.3.19)

In particular, we obtain that φf ∈ S ′(R) and it has the quasiasymptotic behavior,

φ(λx)f(λx) = γ
δ(x)

λ
+ o

(
1

λ

)
as λ→∞ in S ′(R) . (3.3.20)

Proof. We may assume that φ ≡ 1. Put f
(−1)
− equal to the primitive of f−(−x)

with support on [0,∞). Because of the assumptions on the supports, note that

(3.3.18) and (3.3.19) are equivalent to limλ→∞ f
(−1)
± (λx) = ((γ/2) ± β)H(x) in

S ′(R). By Proposition 1.13, the latter are equivalent to limλ→∞ f
(−1)
± (x) = (γ/2)±

β (C), which are equivalent to 〈f±(x), 1〉 = (γ/2)± β (C). And so we obtain the

equivalence with 〈f(x), φ(x)〉 = γ (C).

We can use Proposition 3.9 to obtain Abel’s theorem in the context of distribu-

tional evaluations. The converse is false [52].

Corollary 3.10. Let f ∈ D′(R) and φ ∈ E(R). Suppose that 〈f(x), φ(x)〉 = γ (C),

then 〈f(x), φ(x)〉 = γ (A).

Proof. Using Proposition 3.9, we obtain that, as λ→∞,

〈
φ(x)f−(x), e

x
λ

〉
+
〈
φ(x)f+(x), e−

x
λ

〉
= λ 〈φ (λx) f− (λx) , ex〉

+ λ
〈
φ (λx) f+ (λx) , e−x

〉
=
(γ

2
− β

)
〈δ(x), ex〉

+
(γ

2
+ β

) 〈
δ(x), e−x

〉
+ o(1) .
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3.4 Distributional Point Values and Asymptotic

Behavior of the Fourier Transform

It is our intension to characterize distributional point values by summability of

the Fourier transform, to this end, we shall study in the present section the close

connection between the value of a distribution at a point and the quasiasymptotic

properties of the Fourier transform. The desired characterization will be given in

the next section, Section 3.5, by means of a pointwise Fourier inversion formula.

Let f ∈ S ′(R) have distributional point γ at x0. Then, we have the following

quasiasymptotic behavior.

f(x0 + εx) = γ + o(1) as ε→ 0+ D′(R) . (3.4.1)

As pointed out in Section 3.2, this quasiasymptotic behavior actually holds in

S ′(R). Therefore, we can take Fourier transform in (3.4.1) and obtain the equivalent

quasiasymptotic expression

eiλx0xf̂(λx) = 2πγ
δ(x)

λ
+ o

(
1

λ

)
as λ→∞ in S ′(R) . (3.4.2)

Let us state this simple, but useful, observation as a lemma

Lemma 3.11. Let f ∈ S ′(R). Then, f(x0) = γ, distributionally, if and only if the

Fourier transform satisfies the quasiasymptotic behavior (3.4.2).

Therefore, on the Fourier side, distributional point values look like (3.4.2). Since

our ultimate goal is to characterize distributional point values by certain type of

summability of the Fourier transform, it is clear that our summability method

should provide a characterization of the quasiasymptotic behavior

g(λx) = γ
δ(x)

λ
+ o

(
1

λ

)
as λ→∞ in S ′(R) . (3.4.3)

We now study the structure of (3.4.3). Before to go on, the author would like to

make some comments. In [231], many structural theorems are provided for quasi-

asymptotics. Actually, we already faced one of such results in Proposition 1.8,
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applicable to one-sided quasiasymptotics. However, the results of ([231]) do not

cover the case which we are interested in. Moreover, the general structural de-

scription of quasiasymptotics remained as an open question for long time. In this

section, we basically solve this question for (3.4.3), the solution was obtained by

the author and R. Estrada in [216]. Moreover, the method to be given, was actually

extended by the author in [212, 213, 227] in order to give a complete answer to the

structural problem for quasiasymptotic properties of distributions; we will discuss

this in detail in Chapter 10.

3.4.1 Asymptotically Homogeneous Functions

The concept of asymptotically homogeneous functions of degree zero will be needed

for the next theorems.

We say that a measurable function c, defined in an interval of the form [A,∞) ⊂

(0,∞), is asymptotically homogeneous of degree 0 if for each a > 0, we have

c(ax) = c(x) + o(1) as x→∞ . (3.4.4)

No uniformity on a is assumed. Such functions were used in [47] to characterize

distributional point values of Fourier series, and by the author and collaborators

to study the structure of quasiasymptotics [212, 213, 216, 227]. These functions

are also known as de Haan functions [15]. This class has been very well studied

for several authors; however, the author was not aware of this fact and learned

recently about the existence of such results. In the meantime, he rediscovered by

himself some already known results. Some of which are presented in this section.

We will extend this class of functions in Chapter 10.

Suppose c satisfies (3.4.4) for each a > 0, we may assume that c is real valued,

otherwise we consider its real and imaginary parts separately. Then L(x) = ec(x)
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is positive and measurable on [A,∞) and for each a > 0

lim
x→∞

L(ax)

L(x)
= 1 . (3.4.5)

Therefore, L is a slowly varying function. It is very well known that (3.4.5) must

hold uniformly for a in compact subsets of (0,∞) [183], so should (3.4.4). Actually,

if one only assumes that (3.4.4) holds in a set of positive measure, then it holds

for every a > 0; we will use this property implicitly sometimes in the future. From

the very well known representation formula for slowly varying functions (Section

1.7), we obtain two estimates for the growth of c, first,

c(x) = o (log x) , as x→∞ ; (3.4.6)

secondly, there are two constants A0 and A1 such that

|c(ax)− c(x)| ≤ A0 |log a|+ A1, (3.4.7)

for x ≥ B and ax ≥ B. The last inequality implies the following lemma.

Lemma 3.12. Let c be an asymptotically homogeneous function of degree 0 defined

on (0,∞). Let g be a function such that g(t)(1 + |log t|) is in L1(0,∞). Suppose

that at least one of the following two condition is satisfied:

i) c is bounded in each finite subinterval of (0,∞)

ii) c ∈ L1
loc([0,∞)) and g is bounded near the origin

then we have that∫ ∞

0

c(xt)g(t)dt = c(x)

∫ ∞

0

g(t)dt+ o(1) , as x→∞ .

Proof. Choose B as in (3.4.7), we keep x > B. Consider∫ ∞

0

(c(xt)− c(x)) g(t)dt = J1(x) + J2(x)− J3(x) ,
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where J1(x) =
∫∞
B/x

(c(xt)− c(x)) g(t)dt, J2(x) =
∫ B/x

0
c(xt)g(t)dt, and J3(x) =

c(x)
∫ B/x

0
g(t)dt. Because of (3.4.7) and the assumption over g, we can apply

Lebesgue Dominated Convergence Theorem to conclude that J1(x) = o(1) as

x→∞. That J2(x) = o(1) as x→∞ follows easily from the assumptions. Finally,

by using (3.4.6), we obtain that

|J3(x)| ≤ |c(x)|
log x+ 1− lnB

∫ ∞

0

(1 + |log t|) |g(t)| dt = o(1) , x→∞ .

In particular, we obtain

Corollary 3.13. Let c ∈ L1
loc(R). Suppose that c is asymptotically homogeneous

of degree 0. Then

c(λx)H(x) = c(λ)H(x) + o(1) as λ→∞ in S ′(R) .

Let us show that, when we are only interested the behavior for large arguments,

then c can be assumed to be C∞.

Lemma 3.14. Let c be an asymptotically homogeneous functions of degree zero.

Then there exists c1 ∈ C∞[0,∞) such that c(x) = c1(x) + o(1), x → ∞. In

particular, c1 is also asymptotically homogeneous functions of degree zero.

Proof. Suppose that c is defined and locally bounded on [A,∞), redefine c as 0 on

[0, B). Take φ ∈ D((0,∞)) with integral equal to 1. Set c1(x) =
∫∞
B/x

c(xt)φ(t)dt,

then, by Corollary 3.13, c1 satisfies the requirements.

Another tool that we will use is the behavior at infinity of a continuous function

defined in an interval of the form [A,∞), with A > 0, satisfying

τ(ax) = aατ(x) + o(1) , x→∞,
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for each a > 0. They are called asymptotically homogeneous of degree α. One can

show that if τ satisfies the last condition with α < 0, then τ(x) = o(1), x→∞ (for

the proof see [61, Lemma 6.15.1]). We will show a more general result in Chapter

10 (Proposition 10.16).

3.4.2 Structure of g(λx) ∼ γδ(λx)

In the next lemma, we study the asymptotic properties of the primitives of distri-

butions in D′(R) satisfying f(λx) = o (1/λ).

Lemma 3.15. Let f0 ∈ D′(R). For each n ∈ N, pick an n-primitive of f , fn in

D′(R). Suppose

f0(λx) = o

(
1

λ

)
as λ→∞ in D′(R). (3.4.8)

Then there exists an asymptotically homogeneous function of degree 0, c such that

fn(λx) =
λn−1xn−1c(λ)

(n− 1)!
+ o

(
λn−1

)
as λ→∞ (3.4.9)

in D′(R) for each n ≥ 1. There exists n0 such that the convergence in (3.4.9) is

uniform on [−1, 1] for n ≥ n0. Conversely, if (3.4.9) holds for some n ≥ 1, then

(3.4.8) holds in D′(R).

Proof. Suppose f0(λx) = o (1/λ). Then there exists a smooth function c(λ) such

that f1(λx) = c(λ) + o(1) as λ→∞ in S ′(R). Replacing λx by λxa and grouping

in two different ways, we obtain c(aλ) = c(λ) + o(1), as λ → ∞, for each a > 0.

Thus c is asymptotically homogeneous of degree 0. Hence (3.4.9) holds for n = 1.

Suppose now, it holds for some n ≥ 1. Then integrating again we obtain fn+1(x) =

λnxnc(λ)/n! + ρ(λ) + o(λn), λ → ∞, for some function ρ. Evaluating at λa, this

yields ρ(λa) = ρ(λ)+o(λn) and thus the function τ(λ) = λ−nρ(λ) satisfies τ(aλ) =

a−nτ(λ)+o(1) as λ→∞; it follows that τ(λ) = o(1) as λ→∞, thus ρ(λ) = o(λn),

and hence (3.4.9) is obtained for n + 1. That the convergence in (3.4.9) holds

uniformly on [−1, 1] sets if n is large enough follows from the definition of the
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convergence of distributions. The converse is obtained by differentiating (3.4.9)

n-times with respect to x.

We now aboard the general case. Let us state and proof the structural theorem

for the quasiasymptotic behavior (3.4.3).

Theorem 3.16. Let g ∈ D′(R), then,

g(λx) = γ
δ(x)

λ
+ o

(
1

λ

)
as λ→∞ in D′(R) , (3.4.10)

if and only if there exist m ∈ N and an (m+1)- primitive Gm+1 of g, i.e., G(m+1) =

g, which is locally integrable for large positive and negative arguments, and an

asymptotically homogeneous function c of degree zero, such that

Gm+1(x) =
γ sgnx

2m!
xm + c(|x|)x

m

m!
+ o(|x|m), |x| → ∞ , (3.4.11)

in the ordinary sense. Furthermore, (3.4.11) is equivalent to the limits

lim
x→∞

(G(ax)−G(−x) = γ (C,m) . (3.4.12)

for each a > 0. We also have that g is a tempered distribution and (3.4.10) holds

in S ′(R).

Proof. That (3.4.10) implies (3.4.11) follows from Lemma 3.15 applied to f0 =

g − γδ by taking m + 1 = n0, Gm+1(x) = (γ/(2m!)xm sgnx + fm+1, x = ±1

and replacing λ by x. The converse follows from Corollary 3.13, Lemma 3.14, and

(m + 1)-differentiations. The same results used for the equivalence show that g

is tempered and that the quasiasymptotic holds in S ′(R). Let us now show the

equivalence between (3.4.11) and (3.4.12).
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Set Fm(a, x) = a−mGm+1(ax) − (−1)mGm+1(−x), observe it is an m-primitive

of G(ax)−G(x). Assume (3.4.11), then

Fm(a, x) = a−mGm+1(ax)− (−1)mGm+1(−x)

=
γ sgn(x)xm

2m!
+
γ sgn(x)xm

2m!
+ o (xm)

=
γxm

m!
+ o (xm) , x→∞ ,

uniformly for a in compact sets. From where we obtain (3.4.12).

Conversely, suppose that (3.4.12) holds. So for each a

lim
x→∞

m!
Fm(a, x)

xm
= γ .

Define c(x) = m!x−mGm+1(x) − γ, for x > 0. A direct calculation shows that c is

asymptotically homogeneous of degree zero and that (3.4.12) holds.

3.5 Characterization of Distributional Point

Values in S ′(R)

In this section, we characterize the distributional point values of arbitrary tempered

distributions by proving the Fourier inversion formula in a generalized sense. This

is a pointwise inversion formula for the Fourier transform which holds at any point

where the tempered distribution has a point value in the distributional sense.

We want to find a suitable summability method for the Fourier transform which

characterizes distributional point values. Because of Lemma 3.6, the problem re-

duces to characterize the quasiasymptotic g(λx) ∼ γδ(λx). A naive first attempt

to this problem might lead us to consider directly Cesàro summability. However,

Proposition 3.9 tell us that it is not going to work: Cesàro summability is too

strong to give a characterization. Let us be more precise on this matter. Observe

that if 〈g(x), 1〉 = γ (C), then Proposition 3.9 implies that g(λx) ∼ γδ(λx) .

However the converse is not true.
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Example 3.17. Consider the regular distributions g(x) = (1/(x log |x|))H(|x|−3).

Note that for any m ≥ 0, x→∞∫ x

3

1

t log t

(
1− t

x

)m
dt = − 1

3 log 3
+
m

x

∫ x

3

log(log t)

(
1− t

x

)m−1

dt

∼ log(log x) .

Then, the evaluation 〈g(x), 1〉 does not exist in the Cesàro sense. However, g(λx) =

o(λ−1) as λ→∞ in S ′(R). In fact, if φ ∈ S(R), then

〈g(λx), φ(x)〉 =
1

λ

∫ ∞

3
λ

φ(t)− φ(−t)
t log(λt)

dt = o

(
1

λ

)
, λ→∞ .

Therefore, the Cesàro summability is not adequate for the characterization of

distributional point values. If we now think carefully, Theorem 3.16 implicitly

suggests the method of summability: it is implicit in (3.4.12). Hence, we have

found the right summability method!

Definition 3.18. Let g ∈ D′(R), φ ∈ E(R) and m ∈ N. We say that the special

value of 〈g (x) , φ (x)〉 exists in the Cesàro sense of order m (e.v. Cesàro sense),

and write

e.v. 〈g (x) , φ (x)〉 = γ (C,m) , (3.5.1)

if for some primitive G of φg, i.e., G′ = φg, and each a > 0 we have

lim
x→∞

(G(ax)−G(−x)) = γ (C,m) . (3.5.2)

As a corollary of Theorem 3.16, we obtain.

Corollary 3.19. Let g ∈ D′(R), φ ∈ E(R). Then

e.v. 〈g (x) , φ (x)〉 = γ (C) (3.5.3)

if and only if

φ(λx)g(λx) = γ
δ(x)

λ
+ o

(
1

λ

)
as λ→∞ in S ′(R) . (3.5.4)

In addition, we have that φg ∈ S ′(R).

85



As expected, the Cesàro method is strictly stronger than e.v Cesàro summability

(see also Example 3.17).

Proposition 3.20. Let g ∈ D′(R), φ ∈ E(R). Any evaluation summable (C,m) is

also summable in e.v.(C,m) sense, that is, the evaluation 〈g (x) , φ (x)〉 = γ (C,m),

implies e.v. 〈g (x) , φ (x)〉 = γ (C,m).

Proof. Let G be a first order primitive of φg. Decompose it as G = G− +G+, with

suppG− ⊆ (−∞, 0] and suppG− ⊆ [0,∞). Then, by Proposition 3.9,

lim
x→∞

±G±(±x) =
γ

2
± β (C,m) ,

for some β. Thus

lim
x→∞

(G(ax)−G(−x)) = lim
x→∞

(G+(ax)−G−(−x))

= (
γ

2
+ β) + (

γ

2
− β)

= γ (C,m) .

In summary, we succeeded characterizing distributional point values in terms of

the summability of the Fourier inversion formula.

Theorem 3.21. Let f ∈ S ′(R). We have f(x0) = γ, distributionally, if and only

if there exists an m ∈ N such that

1

2π
e.v.

〈
f̂ (x) , eix0x

〉
= γ (C,m) . (3.5.5)

Proof. Combine Lemma 3.11 with Corollary 3.19.

In order to obtain further results, let us introduce some notation. Let g = µ be

a Radon measure. It convenient in this case to write

e.v.

∫ ∞

−∞
φ(x)dµ(x) = γ (C,m) (3.5.6)
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for (3.5.1). When m = 0, we suppress (C, 0) from the notation, and just write

e.v.

∫ ∞

−∞
φ(x)dµ(x) = γ .

In particular, if µ =
∑∞

n=−∞ cnδ( · − n) and φ ≡ 1, we use the notation

e.v.
∞∑

n=−∞

cn = γ (C,m) , (3.5.7)

omitting again (C, 0) when m = 0.

Observe that if we use the family of summability kernels

φma (x) = (1 + x)m(H(−x)−H(−1− x)) +
(

1− x

a

)m
(H(x)−H(x− a)) , (3.5.8)

where H is the Heaviside function, then (3.5.6) holds if and only if

lim
x→∞

∫ ∞

−∞
φma

(
t

x

)
φ(t)dµ(t) = γ , for each a > 0 . (3.5.9)

For series we obtain that (3.5.7) holds if and only if

lim
x→∞

∞∑
n=−∞

φma

(n
x

)
cn = γ , for each a > 0 . (3.5.10)

Let us now discuss some immediate consequences of Theorem 3.21.

Corollary 3.22. Let f ∈ S ′(R) be such that f̂ = µ is a Radon measure. Then, we

have f(x0) = γ, distributionally, if and only if there exists an m ∈ N such that

1

2π
e.v.

∫ ∞

−∞
eix0xdµ(x) = γ (C,m) , (3.5.11)

or which amounts to the same,

lim
x→∞

1

2π

∫ ∞

−∞
eix0tφma

(
t

x

)
dµ(t) = γ , for each a > 0 . (3.5.12)

The next corollary is a result of R. Estrada [46], the characterization of Fourier

series having a distributional point value.
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Corollary 3.23. Let f ∈ S ′(R) be a 2π-periodic distribution having Fourier series

f(x) =
∞∑

n=−∞

cne
inx . (3.5.13)

Then, we have f(x0) = γ, distributionally, if and only if there exists an m ∈ N

such that

e.v.
∞∑

n=−∞

cne
inx0 = γ (C,m) , (3.5.14)

or which amounts to the same,

lim
x→∞

∞∑
n=−∞

φma

(n
x

)
cne

inx0 = γ , for each a > 0 . (3.5.15)

Proof. We have that f̂(x) = 2π
∑∞

n=−∞ cnδ(x−n), the rest follows from Corollary

3.22.

Let us state Corollary 3.22 when f̂ ∈ L1
loc(R). A particular case is obtained if

f ∈ Lp(R) with 1 ≤ p ≤ 2, since f̂ ∈ Lq(R) with q = p/(p− 1) [206, Thm.74].

Corollary 3.24. Let f ∈ S ′(R) be such that f̂ ∈ L1
loc(R). Then, we have f(x0) = γ,

distributionally, if and only if there exists an m ∈ N such that

1

2π
e.v.

∫ ∞

−∞
eix0xf̂(x)dx = γ (C,m) , (3.5.16)

or which amounts to the same,

lim
x→∞

1

2π

∫ ∞

−∞
φma

(
t

x

)
eix0tf̂(t)dt = γ , for each a > 0 . (3.5.17)

It is important to observe that the characterization of distributional point values

is given in terms of slightly asymmetric means and that the corresponding result

for symmetric means does not hold. The result for separate integration over both

the positive and negative parts of the spectrum does not hold either (we already

discussed the latter in Example 3.17). Let us provide two further examples.
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Example 3.25. If f ∈ S ′(R) and f(x0) = γ, distributionally, then by taking a = 1

we obtain that the symmetric means converge to γ, in the Cesàro sense, so that,

in case f̂(t)eix0t is locally integrable,

lim
x→∞

1

2π

∫ x

−x
f̂(t)eix0tdt = γ (C,m) , (3.5.18)

for some m. However, (3.5.18) does not imply, in general, the existence of the

distributional value f(x0). A simple example is provided by f (x) = δ′ (x) at x = 0,

since f̂(t) = −it, so that (3.5.18) exists and equals 0, but f (0) does not exist.

Example 3.26. If f ∈ S ′(R), f̂ ∈ L1
loc(R), and the two Cesàro limits

lim
x→+∞

1

2π

∫ x

0

f̂(t)eix0tdt = γ+ (C,m) , (3.5.19)

lim
x→+∞

1

2π

∫ 0

−x
f̂(t)eix0tdt = γ− (C,m) , (3.5.20)

exist then the distributional value f(x0) exists and equals γ = γ+ + γ−. However,

the existence of the distributional point value f(x0) does not imply the existence of

both Cesàro limits. For instance, if

f (x) =

∫ ∞

0

sin xt dt

t ln (t2 + a2)
, (3.5.21)

for some a > 1, then f is continuous and f (0) = 0, but we have that f̂(t) =

−πit−1(ln (t2 + a2))−1, and in that case both limits (3.5.19) and (3.5.20) give infi-

nite results, i.e., |γ+| = |γ−| = ∞.

There is one case in which the distributional point values can be characterized by

Cesàro summability of the Fourier inversion formula without using the asymmetric

means, that is, when the distribution has support on a half-ray. This result is an

earlier inversion formula for tempered distributions, essentially obtained in [243]

(with a different language from ours).
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Theorem 3.27. Let f ∈ S ′(R) have support bounded at the left . We have f(x0) =

γ, distributionally, if and only if there exists an m ∈ N such that

1

2π

〈
f̂ (x) , eix0x

〉
= γ (C,m) . (3.5.22)

Proof. The converse follows from Proposition 3.20. Let now F be the primitive of

(1/2π)eix0xf̂ with support bounded at the left. Then, by Theorem 3.21, we have

that

lim
x→∞

F (x) = ( lim
x→∞

F (x)− F (−x)) = γ (C,m) .

Corollary 3.28. Let f ∈ S ′(R) be such that f̂ = µ is a Radon measure supported

on [0,∞). Then, we have f(x0) = γ, distributionally, if and only if

1

2π

∫ ∞

0

eix0xdµ(x) = γ (C) . (3.5.23)

We also obtain a corresponding result for Riesz summability.

Corollary 3.29. Let f(x) =
∑∞

n=0 cne
iλnx in S ′(R), where λn ↗ ∞. Then, we

have f(x0) = γ, distributionally, if and only if

∞∑
n=0

cne
iλnx0 = γ (R, {λn}) . (3.5.24)

These ideas can be applied to study some types of multiple series. It is not our

scope to investigate problems in several variables in this chapter, but the next

theorem shows that some problems in summability of multiple series can be solved

using this theory. The next result is an example of that.

Theorem 3.30. Let f ∈ S ′(R) and ρ be a real-valued function defined on Rd which

only takes non-negative values at points j ∈ Nd. Suppose that

f(x) =
∑
j∈Nd

cje
iρ(j)x in S ′(R).
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Enumerate the image ρ(Nd) by an increasing sequence {λn}∞n=0. Then, f(x0) = γ,

distributionally, if and only if there exists an m ∈ N such that

∞∑
n=0

 ∑
ρ(j)=λn

cje
iρ(j)x0

 = γ (R, {λn} ,m) , (3.5.25)

or equivalently,

lim
λ→∞

∑
ρ(j)≤λ

cje
iρ(j)x0

(
1− ρ(j)

λ

)m
= γ . (3.5.26)

Proof. It follows immediately from Corollary 3.29, since

f(x) =
∞∑
n=0

 ∑
ρ(j)=λn

cje
iρ(j)x0

 eiλnx

If in particular we take ρ(y) = |y|2 (here y ∈ Rd and | · | is the standard

euclidean norm) in Theorem 3.30, we obtain that f(x0) = γ, distributionally, if

and only if the multiple series is Bochner-Riesz summable by spherical means [28].

3.6 Convergence of Fourier Series

We now analyze sufficient conditions under which the existence of the distributional

point value implies the convergence of the Fourier series at the point. Note that, in

particular, any result of this type gives a tauberian condition for Cesàro summa-

bility of series. The next theorem is our first result in this direction. We denote by

lp, 1 ≤ p <∞, the set of those sequences {cn}∞n=−∞ such that
∑∞

n=−∞ |cn|
p <∞.

Theorem 3.31. Let f(x) =
∑∞

n=−∞ cne
inx in S ′(R). Suppose that {cn} ∈ lp,

1 ≤ p <∞ and

rN,p =
∞∑

|n|≥N

|cn|p = O

(
1

Np−1

)
, N →∞ . (3.6.1)
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Then, f(x0) = γ, distributionally, implies

e.v.
∞∑

n=−∞

cne
inx0 = γ , (3.6.2)

or which amounts to the same

lim
x→∞

∑
−x≤n≤ax

cne
inx0 = γ , (3.6.3)

for each a > 0.

Proof. If p = 1, it is trivial. Let us assume 1 < p < ∞, and let us find q so that

1

p
+

1

q
= 1. If f(x0) = γ, we have

lim
ε→0+

∞∑
n=−∞

cne
ix0nψ(εn) = γψ(0) ,

for each ψ ∈ S(R). Choose φ ∈ D(R) such that 0 ≤ φ ≤ 1, and φ(x) = 1 for

x ∈ [−1, a]. Hence

∞∑
n=−∞

cne
inx0φ(nε) =

∑
− 1

ε
≤n≤a

ε

cne
ix0n+

∑
a
ε
<n

cne
ix0nφ(nε)+

∑
1
ε
<n

c−ne
−ix0nφ(−nε)+o(1) ,

as ε→ 0+. Therefore,

lim sup
ε→0+

∣∣∣∣∣∣
∑

− 1
ε
≤n≤a

ε

cne
inx0 − γ

∣∣∣∣∣∣ ≤ lim sup
ε→0+

∑
a
ε
<n

|cn| |φ(εn)|+
∑
1
ε
<n

|c−n| |φ(−εn)|

 .

But, ∑
a
ε
<n

|cn| |φ(εn)| ≤

∑
a
ε
<n

|cn|p


1
p
∑

a
ε
<n

|φ(εn)|q


1
q

,

By (3.6.1), we can find M > 0 such that

∑
a
ε
<n

|cn| |φ(εn)| ≤Ma−
1
q

ε∑
a
ε
<n

|φ(εn)|q


1
q

.

Then,

lim sup lim
ε→0+

∑
a
ε
<n

|cn| |φ(εn)| ≤Ma−
1
q

{∫ ∞

a

|φ(x)|q dx
} 1

q

.
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Similarly, ∃M ′ > 0 such that

lim sup lim
ε→0+

∑
1
ε
<n

|c−n| |φ(−εn)| ≤M ′a−
1
q

{∫ −1

−∞
|φ(x)|q dx

} 1
q

.

Now, we are free to choose φ such that the right sides of the last two inequalities

are both less than σ/2. Therefore,

lim sup lim
ε→0+

∣∣∣∣∣∣
∑

− 1
ε
≤n≤a

ε

cne
inx0 − γ

∣∣∣∣∣∣ < σ.

Since this can be done for each σ > 0, we conclude that

lim
x→∞

∑
−x≤n≤ax

cne
inx0 = γ ,

as required.

As an example of the use of Theorem 3.31, let us obtain a classical tauberian

result of Hardy for Cesàro summability of series [85, p.121].

Corollary 3.32. Suppose that
∑∞

n=0 cn = γ (C). The tauberian condition ncn =

O(1) implies the convergence of the series to γ.

Proof. We associate to the sequence a Fourier series, f(x) =
∑∞

n=0 cne
inx. The

(C) summability to γ implies f(0) = γ, distributionally. Now, Hardy’s tauberian

hypothesis obviously implies (3.6.1) for actually any p > 1, so Theorem 3.31 gives

the convergence.

We can generalize Theorem 3.31 to other norms.

Theorem 3.33. Let f(x) =
∑∞

n=−∞ cne
inx in S ′(R). Suppose that

∑
|n|≥N

|cn|p |n|−pr = O

(
1

N rp+p−1

)
(3.6.4)

for some r and p with 1 < p <∞. If f(x0) = γ, distributionally, then

e.v.
∞∑

n=−∞

cne
inx0 = γ , (3.6.5)
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or which amounts to the same

lim
x→∞

∑
−x≤n≤ax

cne
inx0 = γ , (3.6.6)

for each a > 0.

Proof. Use the inequality

∑
a
ε
<n

|cn| |φ(εn)| ≤

∑
a
ε
<n

|cn|p n−rp


1
p
∑

a
ε
<n

nrq |φ(εn)|q


1
q

and follow a similar argument as the one in the proof of Theorem 3.31.

If we take r = (1/p)− 1 in the last theorem, we obtain the following Hardy and

Littlewood tauberian condition for (C) summability [88, p.140-141].

Corollary 3.34. If
∞∑
n=0

cn = γ (C, k) , (3.6.7)

for some k ∈ N, then the tauberian condition (p ≥ 1)

∞∑
n=0

np−1 |cn|p <∞ (3.6.8)

implies that
∑∞

n=0 cn is convergent to γ.

Theorem 3.33 has an interesting generalization if we replace nr in (3.6.4) by a

regularly varying function of index r (Section 1.7).

Theorem 3.35. Let f(x) =
∑∞

n=0 cne
inx in S ′(R). Let ρ be a regularly varying

function of index r. Suppose that

∞∑
n=N

|cn|p

(ρ(n))p
= O

(
1

Np(r+σ)+p−1

)
, N →∞ , (3.6.9)

for some p, 1 < p < ∞, and σ > 0. If f(x0) = γ, distributionally, then for any

fixed ε > 0,
N∑
n=0

cne
ix0n = γ + o

(
1

Nσ−ε

)
, N →∞ . (3.6.10)
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Proof. Pick φ ∈ D(R) such that 0 ≤ φ ≤ 1, φ(x) = 1 for x ∈ [0, 1]. Then, we have

∑
λ<n

∣∣∣φ(n
λ

)∣∣∣ |cn| ≤ {∑
λ<n

|cn|p

(ρ(n))p

} 1
p
{∑
λ<n

∣∣∣φ(n
λ

)∣∣∣q (ρ(n))q

} 1
q

where q is so that
1

p
+

1

q
= 1. Then, we can find M1 > 0 such that

∑
λ<n

∣∣∣φ(n
λ

)∣∣∣ |cn| ≤ M1

λr+1/q+σ

{∑
λ<n

∣∣∣φ(n
λ

)∣∣∣q nrq (ρ(n)

nr

)q} 1
q

. (3.6.11)

Set

L(x) =
ρ(x)

xr
,

then L is a slowly varying function; hence (Section 1.7), there exists a positive

number B such that for all x ≥ B we have

L(x) = exp

{
u(x) +

∫ x

B

w(t)

t
dt

}
, (3.6.12)

where u is a bounded measurable function on [B,∞) such that u(x) → C (|C| <

∞), and w is a continuous function on [B,∞) such that w(x) → 0, x → ∞. Let

M2 > 0 such that that |u(x)| ≤M2, ∀ x ≥ B. In addition, given ε > 0 we can find

A > max {B, 1} such that |w(x)| < ε, ∀ x > A. Therefore, by (3.6.12), we have

that for x ≥ A,

L(x) ≤ exp

{
M2 +

∫ A

B

w(t)

t
dt

}
xε. (3.6.13)

Combining (3.6.11) and (3.6.13), we obtain that for λ > A

∑
λ<n

|cn|
∣∣∣φ(n

λ

)∣∣∣ < M3

λσ−ε

{
1

λ

∑
λ<n

∣∣∣φ(n
λ

)∣∣∣q (n
λ

)(r+ε)q
} 1

q

,

where M3 = M1 exp
(
M2 +

∫ A
B

(w(t)/t) dt
)

. So,

lim sup
λ→∞

λσ−ε
∑
n>λ

|cn|
∣∣∣φ(n

λ

)∣∣∣ < M3

(∫ ∞

1

|φ(x)|q x(r+ε)qdx

) 1
q

.
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Now, since the right side of the last inequality holds for every φ ∈ D(R) with

0 ≤ φ ≤ 1 and φ(x) = 1 for x ∈ [0, 1], we conclude that

lim sup
λ→∞

λσ−ε

∣∣∣∣∣ ∑
0≤n≤λ

cne
ix0n − γ

∣∣∣∣∣ = 0 ,

and our result follows.

Observe, in particular, that the last theorem can be applied to functions such

as ρ(x) = xr |lnx|α, which are regularly varying functions of index r.

Next, we would like to make some comments about the results we just discussed.

If {cn} ∈ lp for 1 ≤ p ≤ 2, then f(x) =
∑
cne

inx belongs to Lq[0, 2π], but the

converse is not true. Similarly, if f ∈ Lp[0, 2π], 1 ≤ p ≤ 2, then {cn}, belongs to lq,

but the converse is not necessarily true. Hence, the results for {cn} ∈ lp with 1 ≤

p ≤ 2 are about functions. However, for p > 2, these results are about distributions,

in general. For example, as follows from [256, Chapter V], if {cn} ∈ lp \ l2 for some

p > 2 then for almost all choices of signs ρn = ± the distribution
∑∞

n=0 ρncne
inx is

not locally integrable; or if {cn} ∈ lp \ l2 is lacunary then
∑∞

n=0 cne
inx is never a

regular distribution.

We conclude this section discussing a type of tauberian result in summability

of Fourier series of distributions, where the conclusion is not the convergence of

the series but the (C,m) summability for a specific m. As it has been mentioned

before, any result of this type gives a result in the theory of Cesàro summability

of series. Let us suppose that f is a periodic distribution of period 2π, and f(x) =∑∞
n=−∞ cne

inx. We want to find sufficient conditions under which the existence of

f(x0), distributionally, implies that

lim
x→∞

∑
−x≤n≤ax

cne
inx0 = f(x0) (C,m) , (3.6.14)

for an specific positive integer m. A partial answer to this question is given in

Theorem 3.36.
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Theorem 3.36. Let f ∈ S ′(R) such that f(x) =
∑∞

n=−∞ cne
inx. Suppose that

f(x0) = γ, distributionally. If for a fixed a∑
−x≤n≤ax

cne
inx0 = O(1) (C,m) , (3.6.15)

then

lim
x→∞

∑
−x≤n≤ax

cne
inx0 = γ (C,m+ 1) . (3.6.16)

Proof. For x > 0, set

ga(x) =
∑

−x≤n≤ax

cne
inx0 ,

and put ga(x) = 0 for x ≤ 0. Condition (3.6.15) means that there is an m-primitive

G of ga, such that suppG ⊆ [0,∞) and

G(x) = O (xm) , x→∞ .

In addition, since f(x0) = γ, we have that

G(λx) =
γλmxm+
m!

+ o (λm) as λ→∞ in D′(R),

i.e., for each φ ∈ D(R)∫ ∞

0

G(λx)φ(x) dx =
γλm

m!

∫ ∞

0

xmφ(x) dx+ o (λm) .

Pick φ ∈ D(R) such that φ(x) = 1 for x ∈ [−1, 1] and suppφ ⊆ [−1, 2]. Evaluating

G at φ, we obtain

1

λ

∫ λ

0

G(x) dx+
1

λ

∫ 2λ

λ

G(x)φ
(x
λ

)
dx

=
γλm

(m+ 1)!
+
γλm

m!

∫ 2

1

xmφ(x) dx+ o (λm) , λ→∞,

which implies∣∣∣∣(m+ 1)!

λm+1

∫ λ

0

G(x) dx− γ

∣∣∣∣
≤ o(1) + γ(m+ 1)

∫ 2

1

xmφ(x) dx+
(m+ 1)!

λm+1

∫ 2λ

λ

|G(x)|φ
(x
λ

)
dx

= o(1) + {γ(m+ 1) + (m+ 1)!O(1)}
∫ 2

1

xmφ (x) dx, λ→∞ ,
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since we can choose φ such that
∫ 2

1
xmφ(x) dx is as small as we want, we conclude

that

lim
λ→∞

(m+ 1)!

λm+1

∫ λ

0

G(x) dx = γ ,

and the result follows.

We obtain the following interesting corollary of Theorem 3.36, known as con-

vexity theorem [85, p.127].

Corollary 3.37. Let {cn}∞n=0 be a sequence of complex numbers. Suppose that

∞∑
n=0

cn = γ (C,m) , (3.6.17)

for some m ∈ N. If the m-Cesàro mean is bounded then

∞∑
n=0

cn = γ (C,m+ 1) . (3.6.18)

3.7 Series with Gaps

In this section we apply the ideas of the last section to series with gaps. In particu-

lar, we shall find examples of continuous functions whose distributional derivatives

do not have distributional point values at any point.

Theorem 3.38. Let f(x) =
∑∞

n=0 cne
inx, in S ′(R). In addition, suppose that

{cn}∞n=0 is lacunary, in the sense of Hadamard, i.e., cn = 0 except for a sequence

nk ∈ N with nk+1 > αnk for some α > 1. Then f(x0) = γ, distributionally, if and

only if
∞∑
n=0

cne
inx0 = γ . (3.7.1)

In particular, cnk
= o(1), k →∞.

Proof. Let φ ∈ D(R) such that 0 ≤ φ ≤ 1, φ(x) = 1 for x ∈ [0, 1] and suppφ ⊆

[−1, α]. Set bn = cne
inx0 , for each n ∈ N. We have that

M(λ) =
∑
nk≤λ

bnk
+

∑
λ<nk<αλ

bnk
φ
(nk
λ

)
− γ = o(1) , λ→∞ .
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Note that given λ > 0 there exists at most one kλ such that λ < kλ < αλ. Therefore

if λ = nm, we obtain

M(nm) = o(1) , m→∞ ,

which is the same as
m∑
k=0

bnk
− γ = o(1) , m→∞ .

This completes the proof.

Moreover, with a little modification of the last argument, we obtain the following

result.

Theorem 3.39. Let f(x) =
∑∞

n=−∞ cne
inx, in S ′(R). Suppose that {cn}n∈Z is

lacunary in both directions; then, f(x0) = γ, distributionally, if and only if

lim
x→∞

∑
−x≤n≤ax

cne
inx0 = γ ,

for each a > 0.

We obtain several interesting corollaries from the last two theorems. The second

part of the following corollary is a result of Kolmogorov [256].

Corollary 3.40. If f ∈ L1[0, 2π] and {cn}n∈Z lacunary, then the Fourier series of

f converges to f(x0) at every point where f(x0) exists distributionally in the sense

of  Lojasiewicz. In particular, it converges almost everywhere.

Proof. Indeed, the first part follows directly from Theorem 3.39, while the second

statement is true because f has distributional point values at every point of the

Lebesgue set of f .

Corollary 3.41. Let f(x) =
∑∞

n=−∞ cne
inx, in S ′(R). If {cn}n∈Z is lacunary, but

cn 6= o(1), then the distributional value f(x0) does not exist at any point x0.
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The next corollary allows us to find examples of continuous functions whose

distributional derivatives do not have point values anywhere.

Corollary 3.42. Let {cn}n∈Z be a lacunary sequence such that cn 6= o(1) but

cn = O(1), |n| → ∞. Then

g(x) =
∞∑

n=−∞

cn
n
einx, (3.7.2)

is continuous but g′(x) does not have distributional point values at any point; in

particular, g is nowhere differentiable.

That g′ does not have distributionally point values at any point is stronger than

the fact that g is nowhere differentiable. For example, consider g(x) = x sin x−1;

g′(0) does not exist in the usual sense, but g′ has the value 0 at x = 0, distribution-

ally [128]. As we mentioned in Section 3.2, the existence of a point value in implies

the existence of a continuous n-primitive having an n-differential at the point in

the Denjoy sense [34, 128]; however, even if a distribution has distributional point

values everywhere (and hence a function can be associated pointwise to it) the dis-

tribution does not correspond to a classical function (at least as far as is known).

It is interesting to see how this problems of global existence of distributional point

values is related with alternative integrals like the Denjoy-Perron-Henstock inte-

gral [76]. For instance, it is clear that if g is a function such that g′(x0) exists

(in the classical sense) for every x0 ∈ R, then g′ has distributional point values

at every point, however, the classical convention of declaring that a distribution

is a function if it corresponds to the distribution induced by a locally Lebesgue

integrable functions leads to the conclusion that g′ (as a distribution) is not a clas-

sical function, even though, g′ is a function in a wide sense of the word! Therefore

the concept should be reinterpreted. On the other hand, if we use the convention

that a distribution is a function if it corresponds to the distribution induced by
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a Denjoy-Perron-Henstock integral, then g′ can be interpreted as the distribution

induced by this process of integration. Under the same circumstances, other inter-

esting questions can be asked, for example if it is known that g is differentiable

for almost every point, is there any reasonable way to associate the distribution g′

to the function that assigns x0 −→ g′(x0) which is an almost everywhere defined

function? Well, the answer to this question is unknown, since these conditions are

not sufficient to deduce the Denjoy-Perron-Henstock integrability of the function

g′. In [215] (see also Chapter 7 below), we considered a global problem on the study

of distributions having distributional point values almost everywhere; furthermore,

the techniques employed there give some evidence of relation with Colombeau the-

ory of generalized functions. It seems that these kind of global problems in general

are extremely difficult and not too much is known about global properties of dis-

tributional point values. With this short discussion, the author’s intention is to

indicate some global problems in theory of distributional point values. We now

continue with our discussion of series with gaps.

A good illustration of Corollary 3.41 is obtained when we consider the two

Weierstrass functions

fα(x) =
∞∑
n=0

b−nα cos(bnx) , (3.7.3)

and

gα(x) =
∞∑
n=0

b−nα sin(bnx) , (3.7.4)

where b > 1 is an integer and α is a positive number less or equal to 1. Observe

that fα and gα are continuous. Weierstrass showed that for α small enough they

are nowhere differentiable. The extension to 0 < α ≤ 1 was first proved by Hardy.

Using Corollary 3.41, we obtain a stronger result for it, namely, f ′α and g′α do not

have distributional point values at any point.
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Sometimes, even if a distribution with a lacunary Fourier series does not have a

point value at a point, it is possible to obtain its local distributional behavior. For

example, we will find the behavior of

hα(x) =
∞∑
n=0

eiα
nx, in S ′(R), (3.7.5)

at x = 0, where α > 1.

Theorem 3.43. If hα is given by (3.7.5), then

hα(εx) = − log ε

logα
+O(1) as ε→ 0+ in S ′(R). (3.7.6)

Proof. It will be enough if we show that

∞∑
n=0

φ(εαn) = − log ε

logα
φ(0) +O(1) , ε→ 0+, (3.7.7)

for any fixed φ ∈ S ′(R); this is because if we replace φ by φ̂ in the last relation,

we obtain the conclusion of Theorem 3.43. Fix α and set

F (x) =
∑
αn≤x

1 = [log x/ logα] = log x/ logα +O(1) ,

where [·] stands for the integral part. It follows that

F (λx) =
log λx

logα
H(λx− 1) +O(1) as λ→∞ in S ′(R) ,

where H is the Heaviside function. Differentiating the last relation, we obtain

λ
∞∑
n=0

δ (λx− αn) =
1

x logα
H(λx− 1) +O(1) as λ→∞ in S ′(R) . (3.7.8)

Now, we take φ ∈ S ′(R) into (3.7.8),

∞∑
n=0

φ

(
αn

λ

)
=

1

logα

∫ ∞

1/λ

φ(x)

x
dx+O(1) , λ→∞.

Replacing 1/λ by ε,

∞∑
n=0

φ(εαn) =
1

logα

∫ ∞

1

φ(x)

x
dx+

1

logα

∫ 1

ε

φ(x)− φ(0)

x
dx
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+
1

logα

∫ 1

ε

φ(0)

x
dx+O(1) = − log ε

logα
φ(0) +O(1) , ε→ 0+.

Finally, if we replace φ by φ̂, we obtain

〈hα(εx), φ(x)〉 = − log ε

logα

∫ ∞

−∞
φ(x) dx+O(1) , ε→ 0+

for any φ ∈ S ′(R).

Theorem 3.43 allows to find the radial behavior at z = 1 of the analytic function

on the unit disk given by

Gα(z) =
∞∑
n=0

zα
n

, (3.7.9)

when r → 1−.

Corollary 3.44. If Gα is defined by (3.7.9), then

Gα(r) =
|log |log r||

logα
+O(1) , r → 1−, (3.7.10)

where r is taken real.

Proof. From Theorem 3.43,

∞∑
n=0

δ (x− εαn) = − log ε

logα
δ(x) +O(1) , ε→ 0+.

Define φ(x) = e−x for x ≥ 0 and extend it to R in any smooth way so that

φ ∈ S ′(R). Then,
∞∑
n=0

e−εα
n

= − log ε

logα
+O(1) , ε→ 0+.

Changing e−ε by r, we obtain

gα(r) =
|log |log r||

lnα
+O(1) , r → 1−,

as required.
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3.8 Convergence of Fourier Integrals

We now extend the results of Sections 3.6 and 3.7 to Fourier integrals.

Theorem 3.45. Let f ∈ S ′(R). Assume that f̂ ∈ Lp(R), 1 ≤ p <∞, and

rp,x =

∫ ∞

|t|≥x

∣∣∣f̂(t)
∣∣∣p dt = O

(
1

xp−1

)
, x→∞ . (3.8.1)

Then, f(x0) = γ, distributionally, if and only if

1

2π
e.v.

∫ ∞

−∞
f̂(t)eix0tdt = γ . (3.8.2)

Proof. We only consider the case 1 < p < ∞, since p = 1 is trivial. Assume that

f(x0) = γ, distributionally. Fix a > 0. Taking Fourier transform in

f
(
x0 +

x

λ

)
= γ + o(1) as λ→∞ , (3.8.3)

we obtain

eix0λxf̂(λx) =
2πγδ(x)

λ
+ o

(
1

λ

)
as λ→∞ in S ′(R). (3.8.4)

Set g(x) = eix0xf̂(x). Take φ ∈ D(R), such that φ(x) = 1 for x ∈ [−1, a] and

0 ≤ φ ≤ 1. Take q such that
1

p
+

1

q
= 1. Thus, we have∫ λa

−λ
g(t) dt− 2πγ = −

∫ −λ

−∞
g(t)φ

(
t

λ

)
dt−

∫ ∞

aλ

g(t)φ

(
t

λ

)
dt+ o(1) ,

as λ→∞. We show that

lim
λ→∞

∫ ∞

aλ

g(t)φ

(
t

λ

)
dt = 0 , (3.8.5)

and

lim
λ→∞

∫ −λ

−∞
g(t)φ

(
t

λ

)
dt = 0 . (3.8.6)

We have ∣∣∣∣∫ ∞

aλ

g(t)φ

(
t

λ

)
dt

∣∣∣∣ ≤ O
(
λ−

1
q

){
λ

∫ ∞

a

|φ(t)|q dt

} 1
q

= O(1)

{∫ ∞

a

|φ(t)|q dt

} 1
q

.
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Since
{∫∞

a
|φ(t)|q dt

} 1
q can be made arbitrarily small, we conclude (3.8.5). Simi-

larly, (3.8.6) follows.

Likewise, one can show.

Theorem 3.46. Let f ∈ S ′(R). Suppose that f̂ is locally integrable and∫
|t|≥x

∣∣∣f̂(t)
∣∣∣p |t|−rp dt = O

(
1

xpr+p−1

)
, x→∞ .

for some 1 < p <∞ and r ∈ R. Then, f(x0) = γ, distributionally, if and only if

1

2π
e.v.

∫ ∞

−∞
f̂(t)eix0tdt = γ .

Theorem 3.47. Let f ∈ S ′(R) so that f̂ is locally integrable with essential support

in [0,∞). Let ρ be a regularly varying function of index r. Suppose that

∫ ∞

x

∣∣∣f̂(t)
∣∣∣p

(ρ(t))p
dt = O

(
1

xp(r+σ)+p−1

)
, x→∞ ,

for some p, 1 < p < ∞, r and σ > 0. If f(x0) = γ, distributionally, and ε is any

positive number, then∫ x

0

f̂(t)eix0tdt = 2πγ + o

(
1

xσ−ε

)
, x→∞ .

If we take r = (1/p)− 1 in Theorem 3.46, we obtain the next corollary.

Corollary 3.48. If f ∈ S ′(R), f̂ is locally integrable, and∫ ∞

−∞
|t|p−1

∣∣∣f̂(t)
∣∣∣p dt = O(1) , (3.8.7)

then, f(x0) = γ, distributionally, if and only if

1

2π
e.v.

∫ ∞

−∞
f̂(t)eix0tdt = γ .

We conclude this section with a very simple result for integral with gaps, this

result generalizes Theorem 3.38.
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Theorem 3.49. Let f ∈ S ′(R). Let {λn}∞n=1 be a sequence of positive real numbers

such that

λn+1 − η

λn
≥ α > 1 ,∀n ≥ n0 , (3.8.8)

for some α, n0 and η > 0. Suppose that f̂ = µ, where µ is a Radon measure

supported in a set of the form

[a, b] ∪
∞⋃
n=N

[λn − η, λn]

where [a, b] is a compact interval in (0,∞). If f(x0) = γ, distributionally, then

lim
n→∞

1

2π

∫ λn

0

eix0tdµ(t) = γ .

Proof. The proof is very easy; take φ ∈ D(R) such that 0 ≤ φ ≤ 1, φ(x) = 1 for

x ∈ [0, 1] and suppφ ⊆ [−1, α]. Thus, we have

1

2π

∫ λn

0

eix0tdµ(t) +
1

2π

∫ αλn

λn

eix0tφ

(
t

λn

)
dµ(t) = γ + o(1) ,

as n→∞, but f̂(t) = 0 on [λn, αλn].

3.9 Abel Summability

We now analyze Abel summability of the Fourier inversion formula in the presence

of distributional point values. Some of the results of this section were previously

obtained in [54] by studying the Poisson kernel. Our approach will be via the

Fourier transform.

Let us first state an interesting theorem, which we may be regarded as a decom-

position theorem for the quasiasymptotic behavior (3.4.3).

Theorem 3.50. Let g ∈ S ′(R). Then

g(λx) = γ
δ(x)

λ
+ o

(
1

λ

)
as λ→∞ in S ′(R) (3.9.1)

if and only if there exist a decomposition g = g− + g+, where supp g− ⊆ (−∞, 0]

and supp g+ ⊆ [0,∞), and an asymptotically homogeneous function c of degree
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zero such that the following asymptotic relations hold

g+(λx) =
(γ

2
+ c(λ)

) δ(x)

λ
+ o

(
1

λ

)
as λ→∞ in S ′(R) (3.9.2)

and

g−(λx) =
(γ

2
− c(λ)

) δ(x)

λ
+ o

(
1

λ

)
as λ→∞ in S ′(R) . (3.9.3)

Proof. Theorem 3.16 implies the existence of an (m+1)-primitive of g, say G, such

that

G(x) =
γ sgnx

2m!
xm + c(|x|)x

m

m!
+ o(|x|m), |x| → ∞ . (3.9.4)

Set G±(x) = G(x)H(±x), where H is the Heaviside function. We have that (Corol-

lary 3.13),

c(λx)H(x) = c(λ)H(x) + o(1) as λ→∞ in S ′(R) ,

which implies

G±(λx) = (±1)m+1 γ

2m!
(λx)m± + (±1)mc(λ)

(λx)m±
m!

+ o(λm) as λ→∞ in S ′(R) .

If we set g± = G
(m+1)
± , differentiating (m+1)-times the last two asymptotic expres-

sions we obtain (3.9.2) and (3.9.3). Conversely, setting h±(x) = g±(x)∓(c(x)H(x))′,

an application of the structural theorem for the quasiasymptotic behavior of degree

−1 with one-sided support to each h± implies that there exists m such that (3.9.4)

is satisfied, and hence (3.9.1) follows.

Due to Corollary 3.19, Theorem 3.50 may also be stated in the following equiv-

alent form.

Theorem 3.51. Let g ∈ D′(R) and φ ∈ E(R). Then e.v. 〈f(x), φ(x)〉 = γ (C) if

and only if there exist a decomposition g = g− + g+, where supp g− ⊆ (−∞, 0] and
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supp g+ ⊆ [0,∞), and an asymptotically homogeneous function c of degree zero

such that the following asymptotic relations hold

φ(λx)g+(λx) =
(γ

2
+ c(λ)

) δ(x)

λ
+ o

(
1

λ

)
as λ→∞ in S ′(R) (3.9.5)

and

φ(λx)g−(λx) =
(γ

2
− c(λ)

) δ(x)

λ
+ o

(
1

λ

)
as λ→∞ in S ′(R) . (3.9.6)

We can now obtain the next abelian result.

Proposition 3.52. Let g ∈ D′(R) and φ ∈ E(R). Suppose that e.v. 〈g(x), φ(x)〉 =

γ (C). Then, 〈g(x), φ(x)〉 = γ (A). Moreover, Let g = g−+g+ be a decomposition

satisfying the support requirements of Theorem 3.51, then

lim
z→0

(〈
g−(t), φ(t)eiz̄

〉
+
〈
g+(t), φ(t)eiz

〉)
= γ , (3.9.7)

in any sector =m z ≥M |<e z|, with M > 0.

Proof. We may assume that φ ≡ 1. We use (3.9.2) and (3.9.3). Write z = (1/λ)(τ+

i), so |τ | ≤ (1/M), hence, as λ→∞,

〈
g−(t), eiz̄

〉
+
〈
g+(t), eiz

〉
= λ

(〈
g−(λt), e(iτ+1)t

〉
+
〈
g+(t), e(iτ−1)t

〉)
=
(γ

2
− c(λ)

)
+
(γ

2
+ c(λ)

)
+ o(1)

= γ + o(1) ,

with uniform convergence since
{
e(iτ−1)tH(t)

}
M |t|≤1

is compact in S[0,∞).

So, we obtain the Fourier inversion formula in the Abel sense.

Corollary 3.53. Let g ∈ S ′(R). Suppose f(x0) = γ, distributionally. Then the

Fourier inversion formula holds in the Abel sense, i.e.,

1

2π

〈
f̂(x), eix0x

〉
= γ (A) . (3.9.8)
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Moreover, let f̂ = f̂− + f̂+, with supp f̂− ⊆ (−∞, 0] and supp f̂+ ⊆ [0,∞), then

lim
z→x0

1

2π

(〈
f̂−(t), eiz̄

〉
+
〈
f̂+(t), eiz

〉)
= γ , (3.9.9)

in any sector =m z ≥M |<e z − x0|, with M > 0.

In the case of Fourier series, we obtain a result from [237].

Corollary 3.54. Let f ∈ S ′(R) be a 2π-periodic distribution having Fourier series

f(x) =
∞∑

n=−∞

cne
inx . (3.9.10)

Suppose f(x0) = γ, distributionally. Then

lim
z→x0

(
c0 +

∞∑
n=1

(
c−ne

−inz̄ + cne
inz
))

= γ , (3.9.11)

in any sector =m z ≥ M |<e z − x0|, with M > 0. In particular, if an = c−n + cn

and bn = i(cn − c−n), we obtain that

a0

2
+

∞∑
n=1

(an cosnx0 + bn sinnx0) = γ (A) . (3.9.12)

Proof. Relation (3.9.11) follows directly form Corollary 3.53. If we set z = x0 + iy

in (3.9.11), we obtain

lim
y→0+

(
a0

2
+

∞∑
n=1

(an cosnx0 + bn sinnx0) e
−ny

)
= γ

which gives (3.9.12)

Let now f ∈ D′(R) have f(x0) = γ, distributionally. We cannot longer talk about

Abel summability of the Fourier inversion formula, since the Fourier transform is

not available in D′(R). Nevertheless, there is a substitute of Abel summability, if

we interpreted it as the boundary limit at x = x0 of a harmonic representation

(Section 1.6).
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Theorem 3.55. Let f ∈ D′(R). Suppose that U is a harmonic representation of

f in the upper half-plane =m z > 0. If f(x0) = γ, distributionally, then

lim
z→x0

U(z) = γ, (3.9.13)

in any sector =m z ≥M |<e z − x0|, with M > 0.

Proof. We first see that we may assume f ∈ S ′(R). Indeed we can decompose

f = f1 + f2 where f2 is zero in a neighborhood of x0 and f1 ∈ S ′(R). Let U1

and U2 be harmonic representations of f1 and f2, respectively; then U2 represents

the zero distribution in a neighborhood of x0. Then by applying the reflection

principle to the real and imaginary parts of U2 ([11, Section 4.5], [206, Section

3.4]), we have that U admits a harmonic extension to a (complex) neighborhood

of x0, and so it is real analytic, therefore, U(z) − U1(z) = U2(z) = O (|z − x0|)

as z → x0. Additionally, f1(x0) = γ, distributionally, thus, we can assume that

f = f1. The same argument with the reflection principle shows that (3.9.13) is

independent of the choice of U . Therefore, we can assume that U is the Fourier-

Laplace representation [24] of f , that is, let f̂ = f̂+ + f̂− be a decomposition such

that supp f̂− ⊆ (−∞, 0] and supp f̂+ ⊆ [0,∞), we can assume that

U(z) =
1

2π

(〈
f̂−(t), eiz̄

〉
+
〈
f̂+(t), eiz

〉)
, =m z > 0.

But in this case, Corollary 3.53 yields (3.9.13)

Naturally, the converse of Theorem 3.55 is not true.

3.10 Symmetric Point Values

This section is devoted to the study of symmetric point values of distributions.

They are studied by means of the symmetric part of a distribution about at given

point x = x0, that is, the distribution

χfx0
(x) :=

f(x+ x0) + f(x0 − x)

2
(3.10.1)
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Notice that χfx0
is an even distribution.

Definition 3.56. Let f ∈ D′(R) and x0 ∈ R. We say that f has a (distributional)

symmetric point value γ at x = x0 if its symmetric part about x0 has a distributional

point value at x = 0, that is, χfx0
(0) = γ, distributionally. In this case we write

fsym(x0) = γ, distributionally.

Of course, the existence of the symmetric value at x0 is equivalent to the quasi-

asymptotic behavior

χfx0
(εx) =

f(x0 + εx) + f(x0 − εx)

2
= γ + o(1) as ε→ 0+ in D′(R) , (3.10.2)

in other words,

lim
ε→0+

1

2ε

〈
f(x), φ

(
x− x0

ε

)
+ φ

(
x0 − x

ε

)〉
= γ

∫ ∞

−∞
φ(x)dx , (3.10.3)

for each φ ∈ D(R).

Observe that if χfx0
∈ S ′(R), then (3.10.2) actually holds in the space S ′(R).

If f(x0) = γ, distributionally, then, obviously, fsym(x0) = γ, distributionally.

However, the existence of a symmetric point value is weaker than the existence

of a distributional point value. For example δ′sym(0) = 0, distributionally, but the

usual distributional point value of δ′ does not exist at x = 0.

We may use  Lojasiewicz characterization of distributional point values (3.2.5)

to characterize symmetric point values.

Theorem 3.57. Let f ∈ D′(R) and x0 ∈ R. We have that fsym(x0) = γ, distri-

butionally, if and only if there exists n ∈ N and an n-primitive F of f such that

F (x0 + x) + (−1)nF (x0 − x) is locally integrable in a neighborhood of the origin

and

F (x0 + h) + (−1)nF (x0 − h) = 2γ
hn

n!
+ o(hn), h→ 0. (3.10.4)
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Example 3.58. (Symmetric Lebesgue points) Let f ∈ L1
loc(R). We say that f has

a symmetric Lebesgue point value at x = x0 if

lim
h→0+

1

h

∫ h

0

|f(x+ x0) + f(x0 − x)− 2γx0| dx = 0 ,

for some constant γx0. Observe that at a Lebesgue point, we have that fsym(x0) =

γx0, distributionally. Hence, distributional symmetric point values include symmet-

ric Lebesgue points, which is usually the notion of symmetric point value used by

analysts for Lp-functions.

Using Theorem 3.57, we can also describe distributional symmetric point values

in terms of de la Vallée Poussin derivatives ([210],[256, Chapter XI]). Given a

distribution f define its jump distribution at x = x0 by

ψfx0
(x) = f(x0 + x)− f(x0 − x) . (3.10.5)

So that, (1/2)ψfx0
is the antisymmetric part of f about x = x0. Then in the case

that n is even in Theorem 3.57, we obtain that χFx0
(h) = γhn/n!+o(hn); but on the

other hand when n is odd ψFx0
(h) = 2γhn/n! + o(hn). Let now F1 be an arbitrary

n-primitive of f , then we obtain that F1 is de la Vallée Poussin n-differentiable at

x = x0, that is, either

χF1
x0

(h) = a0 + a2h
2 + · · ·+ γhn/n! + o(hn), as h→ 0 ,

for some constants a0, a2 . . . , when n is even, or

1

2
ψF1
x0

(h) = b1h+ b3h
3 + · · ·+ γhn/n! + o(hn), as h→ 0 ,

for some constants b1, b3 . . . , when n is odd.

3.11 Solution to the Hardy-Littlewood (C)

Summability Problem for Distributions

As an application of Theorem 3.21, we now formulate and solve the so called Hardy-

Littlewood (C) summability problem in the context of tempered distributions.
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This classical problem aims to characterize trigonometric series, in cosines-sines

form, which are (C) summable to some value at a point x = x0, that is,

a0

2
+

∞∑
n=1

(an cosnx0 + bn sinnx0) = γ (C,m) ,

for some γ and m ∈ N. One also imposes the restrictions an = O(nk) and bn =

O(nk), for some k; thus, the trigonometric series represents a tempered distribution!

The problem for trigonometric series was first formulated by Hardy and Littlewood

in [89]; a complete treatment with historical remarks is found in [256, Chap.XI];

see also [61, pp.357–361] for a quick distributional solution.

In order to formulate the problem for tempered distributions, we need the fol-

lowing summability notion for distributional evaluations.

Definition 3.59. Let g ∈ D′(R), φ ∈ E(R), and m ∈ N. We say that the principal

value evaluation p.v. 〈g(x), φ(x)〉 exists and is equal to γ in the Cesàro sense of

order m, and write

p.v. 〈g(x), φ(x)〉 = γ (C,m) , (3.11.1)

if some first order primitive G of φg, i.e., G′ = φg, satisfies

lim
x→∞

(G(x)−G(−x)) = γ (C,m) . (3.11.2)

Note that e.v. 〈g(x), φ(x)〉 = γ (C,m) implies p.v. 〈g(x), φ(x)〉 = γ (C,m), as

the reader can easily verify. On the other hand the converse is not true; take for

example p.v. 〈x, 1〉 = 0 (C, 0), but clearly the evaluation e.v. 〈x, 1〉 (C) does not

exist.

When g = µ is a Radon measure, we write

p.v.

∫ ∞

−∞
φ(x)dµ(x) = γ (C,m) , (3.11.3)

for (3.11.1). Observe that (3.11.3) explicitly means that

lim
x→∞

∫ x

−x
φ(t)

(
1− t

|x|

)m
dµ(t) = γ . (3.11.4)
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If µ =
∑∞

n=−∞ cnδ( · − n) and φ ≡ 1, then we write (3.11.3) as

p.v.
∞∑

n=−∞

cn = γ (C,m) , (3.11.5)

which is equivalent to have

c0 +
∞∑
n=1

(cn + c−n) = γ (C,m) . (3.11.6)

Example 3.60. Consider the trigonometric series
∑∞

n=−∞ cne
inx0 then

p.v.
∞∑

n=−∞

cne
inx0 = γ (C,m)

if and only if

a0

2
+

∞∑
n=1

(an cosnx0 + bn sinnx0) = γ (C,m) ,

with an = cn + c−n and bn = i(cn − c−n).

We can now formulate our problem: we want to characterize tempered distribu-

tions f such that

1

2π
p.v.

〈
f̂(x), eix0x

〉
= γ (C) . (3.11.7)

We study some properties of the principal value evaluations in the (C) sense.

They admit a quasiasymptotic characterization, but unlike e.v. Cesàro evaluations,

the existence of p.v. 〈g(x), φ(x)〉 = γ (C) does not imply that φg ∈ S ′(R). We first

need the following lemmas.

Lemma 3.61. Let g ∈ D′(R) be an even distribution. There exists h ∈ D′(R) such

that supph ⊆ [0,∞) and g(x) = h(x) + h(−x).

Proof. Decompose g = g− + g+, where supp g− ⊆ (−∞, 0] and supp g+ ⊆ [0,∞).

The parity of g implies that g+(x)− g−(−x) is concentrated at the origin, and so

there exist constants such that

g−(x) = g+(−x) +
n∑
j=0

ajδ
(j)(x) , (3.11.8)
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Since, g(x) − g+(−x) − g+(x) =
∑n

j=0 ajδ
(j)(x) is even, it follows that aj = 0

whenever j is odd. So, n = 2k, and hence h = g+ + (1/2)
∑k

j=0 a2jδ
(2j) satisfies the

requirements.

Lemma 3.62. Let g ∈ S ′(R) be an even distribution. Then

g(λx) = γ
δ(x)

λ
+ o

(
1

λ

)
as λ→∞ in S ′(R) (3.11.9)

if and only if any h ∈ S ′(R) such that supph ⊆ [0,∞), and g(x) = h(x) + h(−x),

satisfies

h(λx) =
γδ(x)

2λ
+ o

(
1

λ

)
as λ→∞ in S ′(R) . (3.11.10)

Proof. The converse is clear. On the other hand take h as in Lemma 3.61. Propo-

sition 3.16 implies the existence of m such that

h(−2m)(x) =
γx2m−1

2(2m− 1)!
+ c(x)

x2m−1

(2m− 1)!
+ o(x2m−1)

and

h(−2m)(x) =
γx2m−1

2(2m− 1)!
− c(|x|) x2m−1

(2m− 1)!
+ o(x2m−1) ,

x → ∞, but comparison between the last two expressions gives that c(x) = o(1),

and hence

h(−2m)(x) =
γx2m−1

2(2m− 1)!
, x→∞ ,

which implies (3.11.10).

Proposition 3.63. Let g ∈ D′(R) and φ ∈ E(R). Then,

p.v. 〈g(x), φ(x)〉 = γ (C) (3.11.11)

if and only if

φ(−λx)g(−λx)+φ(λx)g(λx) = 2γ
δ(x)

λ
+o

(
1

λ

)
as λ→∞ in S ′(R) . (3.11.12)
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if and only if for any decomposition g = g− + g+, where supp g− ⊆ (−∞, 0] and

supp g+ ⊆ [0,∞),

φ(−λx)g−(−λx)+φ(λx)g+(λx) = γ
δ(x)

λ
+o

(
1

λ

)
as λ→∞ in S ′(R) . (3.11.13)

In particular, we obtain that φ(−x)g(−x) + φ(x)g(x) ∈ S ′(R).

Proof. Assume that φ ≡ 1. We have that g(−x)+g(x) is an even distribution, then,

by Lemma 3.61, we can find h with supph ⊆ [0,∞) such that g(−x)+g(x) = h(x)+

h(−x). It is easy to see that (3.11.11) is equivalent to limx→∞ h(−1)(x) = γ (C)

which holds if and only if (3.11.10), and by Lemma 3.62, it is equivalent to (3.11.12).

The equivalence with (3.11.13) follows by taking h(x) = g−(−x) + g+(x).

The right notion to characterize (3.11.7) is that of distributional symmetric point

values from Section 3.10. We have already set the ground to solve our problem.

The following theorem is the solution to the Hardy-Littlewood (C)-problem for

tempered distributions.

Theorem 3.64. Let f ∈ S ′(R). Then

1

2π
p.v.

〈
f̂(x), eix0x

〉
= γ (C) (3.11.14)

if and only if fsym(x0) = γ, distributionally.

Proof. By definition fsym(x0) = γ, distributionally, if and only if,

f(x0 − εx) + f(x0 + εx) = γ + o(1) as ε→ 0+ in S ′(R) ,

which, by taking Fourier transform, is equivalent to

e−iλx0xf̂(−λx) + eiλx0xf̂(λx) = 2πγ
δ(x)

λ
+ o

(
1

λ

)
as λ→∞ in S ′(R) ,

and, by Proposition 3.63, the latter is equivalent to (3.11.14).
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We immediately obtain, by Theorem 3.64 and Example 3.60, the following result

of Hardy and Littlewood. Naturally, the language in the original statement differs

from ours, at that time distribution theory and quasiasymptotics did not even

exist!

Corollary 3.65. Let f ∈ S ′(R) be a 2π periodic distribution having Fourier series,

in cosines-sines form,

a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) . (3.11.15)

Then,

a0

2
+

∞∑
n=1

(an cosnx0 + bn sinnx0) = γ (C) (3.11.16)

if and only if fsym(x0) = γ, distributionally.

We end this section by showing three abelian results.

Theorem 3.66. Let g ∈ D′(R) and φ ∈ E(R). If

p.v. 〈g(x), φ(x)〉 = γ (C) , (3.11.17)

then,

〈g(x), φ(x)〉 = γ (A) . (3.11.18)

Proof. Take g− and g+ as in Proposition 3.63, then, by (3.10.2), as λ→∞,

(〈
φ(x)g−(x), e

x
λ

〉
+
〈
φ(x)g+(x), e−

x
λ

〉)
= λ

〈
φ(−λx)g−(−λx) + φ(λx)g+(λx), e−x

〉
= γ

〈
δ(x), e−x

〉
+ o(1)

= γ + o(1) .

For symmetric point values, we get a radial version of Theorem 3.55.
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Theorem 3.67. Let f ∈ D′(R). Let U be a harmonic representation of f on the

upper half-plane =m z > 0. If fsym(x0), then

lim
y→0+

U(x0 + iy) = γ. (3.11.19)

Proof. As in the proof of Theorem 3.55, we may assume that f is a tempered

distribution. If f̂ = f̂+ + f̂− is a decomposition such that supp f̂− ⊆ (−∞, 0] and

supp f̂+ ⊆ [0,∞), we can assume that

U(z) =
1

2π

(〈
f̂−(t), eiz̄

〉
+
〈
f̂+(t), eiz

〉)
, =m z > 0.

But in this case, Theorem 3.66 yields (3.11.19).

The next corollary extends a result of Walter from [237].

Corollary 3.68. Let f ∈ S ′(R) be a 2π periodic distribution having Fourier series,

in cosines-sines form,

a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) . (3.11.20)

If fsym(x0) = γ, distributionally, then,

a0

2
+

∞∑
n=1

(an cosnx0 + bn sinnx0) = γ (A). (3.11.21)

Proof. Notice that

U(z) =
a0

2
+

1

2

∞∑
n=1

(an − ibn) eizn +
1

2

∞∑
n=1

(an + ibn) e−iz̄n

is a harmonic representation of f , so by Theorem 3.67,

lim
y→0+

U(x0 + iy) = lim
y→∞

a0

2
+

∞∑
n=1

(an cosnx0 + bn sinnx0)e
−yn = γ .

Of course, we could have also used Corollary 3.65 to conclude (3.11.21), since (C)

summability implies (A) summability.
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Chapter 4
Tauberian Theorems for Distributional
Point Values

4.1 Introduction

The study of abelian and tauberian results for integral transforms of distributions

has attracted the attention of several authors, and has produced several important

generalizations of classical results [139, 149, 157, 159, 231]. These type of results

have historically stimulated important developments in the theory. Also, the study

of distributions as boundary values of analytic functions has shown to be quite

important in the understanding of generalized functions [11, 24, 230, 231].

The aim of this chapter is to present a tauberian theorem for distributional

point values. The following abelian result is well known, it was originally due to

Constantinescu [31]:

Suppose that f ∈ D′ (R) is the boundary value of a function F, analytic in the

upper half-plane, that is f (x) = F (x+ i0) ; if f (x0) = γ distributionally, then

F (x0 + iy) → γ as y → 0+.

Notice that the above result is a particular case of Theorem 3.55, which we

already remarked that can be viewed as Abel summability for non-tempered dis-

tributions. On the other hand [52], as pointed out in Section 3.9, the converse

result is false.

In Theorem 4.7 we give a tauberian condition under which the converse of the

abelian result holds, namely, we prove that the distribution has to be distribu-

tionally bounded at the point. The notions of distributional point values and dis-

tributional boundedness are reviewed in Section 4.2, we will use the approach

introduced by J. Campos Ferreira [26] . We also show that when the distribution

f is a bounded function near the point, then the distributional point value is of
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order 1. Furthermore, we give a general tauberian result of this kind for analytic

functions that have distributional limits on a contour.

In Section 4.4, we apply our tauberian theorem to obtain a simple proof of a

celebrated tauberian theorem of Hardy and Littlewood [5, 87, 88, 127].

Our results from Section 4.3 are used to give a tauberian theorem for the exis-

tence of distributional point values in terms of the Fourier transform, this is done

in Section 4.5. It is remarkable that such result is more than a tauberian one, it is

a characterization of distributional point values of tempered distributions whose

Fourier transform is supported on [0,∞); the tauberian characterization, Theo-

rem 4.5.4, is in terms of Abel summability of the Fourier inversion formula plus a

Littlewood-type O(1/λ) tauberian condition.

We study in Section 4.6 other related tauberian results related to boundary

values of analytic functions and distributional point values.

The author would like to remark that some of the results of the chapter have

been already published in [217].

4.2 Distributional Boundedness at a Point

Let us define distributional boundedness at a point. It was introduced by Z.

Zieleźny in [254].

Definition 4.1. Let f ∈ D′ (R). We say that f is distributionally bounded at

x = x0 if it is quasiasymptotically bounded with respect to the constant function,

that is,

f(x0 + εx) = O(1) as ε→ 0+ in D′ (R) . (4.2.1)

Observe the Definition 4.1 is meaningful if f is just defined in a neighborhood

of x = x0, since the quasiasymptotics are local properties. Because of the results

of [54], if f is tempered, then (4.2.1) holds actually in the space S ′(R); this fact

actually holds for general quasiasymptotic boundedness (see Chapter 10).
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We shall introduce the equivalent approach of J. Campos Ferreira to distribu-

tional point values and distributional boundedness [26]. It is in somehow connected

with the structure of these two quasiasymptotic concepts. Let us introduce the op-

erator µa which is defined on complex valued locally integrable functions defined

in R as

µa {f (t) ; x} =
1

x− a

∫ x

a

f (t) dt , x 6= a , (4.2.2)

while the operator ∂a is the inverse of µa,

∂a (g) = ((x− a) g (x))′ , (4.2.3)

and it is defined on distributions. Suppose first that f0 = f is real. Then if it is

bounded near x = a, we can define

f0 (a) = lim sup
x→a

f (x) , f0 (a) = lim inf
x→a

f (x) . (4.2.4)

Then f1 = µa (f) will be likewise bounded near x = a and actually

f0 (a) ≤ f1 (a) ≤ f1 (a) ≤ f0 (a) (4.2.5)

and, in particular, if f (a) = f0 (a) exists, then f1 (a) also exists and f1 (a) = f0 (a) .

The next lemma is not difficult to show, we leave the verification as an exercise to

the reader (see also [26]).

Lemma 4.2. A distribution f ∈ D′ (R) is distributionally bounded at x = x0 if

and only if there exist n ∈ N and fn ∈ D′ (R) , bounded in a pointed neighborhood

(x0 − ε, x0) ∪ (x0, x0 + ε) of x0, such that f = ∂nx0
fn.

If f0 is distributionally bounded at x = x0, then there exists a unique distribu-

tionally bounded distribution near x = x0, f1, with f0 = ∂x0f1. Therefore, ∂x0 and

µx0 are isomorphisms of the space of distributionally bounded distributions near

x = x0. Given f0 we can form a sequence of distributionally bounded distributions

{fn}∞n=−∞ with fn = ∂x0fn+1 for each n ∈ Z.
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We have an analogous result for distributional point values, again, we leave the

proof of the following lemma as an exercise for the reader (see also [26]).

Lemma 4.3. A distribution f ∈ D′ (R) satisfies f(x0) = γ, distributionally, if and

only if there exist n ∈ N and fn ∈ D′ (R) , continuous near x0, such that f = ∂nx0
fn

and fn(x0) = γ. We say that the point value is of order n.

Observe also that if f = ∂nx0
fn, and fn is bounded near x = x0, then f (x0) exists

distributionally, and equals γ, if and only if fn (x0) = γ, distributionally.

Example 4.4. The functions xαei/x, where α ∈ R, have regularizations fα ∈

D′ (R) that are distributionally bounded near x = 0, and, in fact, fα (0) = 0,

distributionally. Observe that if α < 0 then fα is unbounded near x = 0 in the

ordinary sense. Similarly, the functions xαei/|x|
β

have regularizations gα,β ∈ D′ (R)

with gα,β (0) = 0, distributionally, but if α < 0 and β > 0 is small, the order of the

point value can be very large.

Example 4.5. The function f (x) = |x|i is bounded in the ordinary sense, and thus

it defines a unique regular distribution which is distributionally bounded at x = x0.

It easy to see that f (0) does not exist distributionally. In general the evaluation

〈f (εx) , φ (x)〉 does not tend to a limit as ε→ 0 if φ ∈ D (R) .

These notions have straightforward extensions to distributions defined in smooth

contours of the complex plane.

4.3 Tauberian Theorem for Distributional Point

Values

We start with a tauberian result for bounded analytic functions.

Theorem 4.6. Let F be analytic and bounded in a rectangular region of the form

(a, b)× (0, R) . Suppose f (x) = limy→0+ F (x+ iy) in the space D′ (a, b) . Let x0 ∈
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(a, b) such that

lim
y→0+

F (x0 + iy) = γ . (4.3.1)

Then

f (x0) = γ , distributionally . (4.3.2)

In fact, (4.3.2) is a point value of the first order, and thus

lim
x→x0

1

x− x0

∫ x

x0

f (t) dt = γ . (4.3.3)

Proof. We shall first show that it is enough to prove the result if the rectangular

region is the upper half-plane H = {z ∈ C : =mz > 0} . Indeed, let C be a smooth

simple closed curve contained in (a, b)×[0, R) such that C∩(a, b) = [x0 − η, x0 + η] ,

and which is symmetric with respect to the line <e z = x0. Let ϕ be a conformal

bijection from H to the region enclosed by C such that the image of the line

<e z = x0 is contained in <e z = x0, so that, in particular, ϕ (x0) = x0. Then

(4.3.1) holds if and only if F ◦ϕ (x0 + iy) → γ as y → 0+, while (4.3.2) and (4.3.3)

hold if and only if the corresponding equations hold for a distribution given locally

as f ◦ ϕ near x = x0.

Therefore we shall assume that a = −∞, and b = R = ∞. In this case, f belongs

to H∞, the closed subspace of L∞ (R) consisting of the boundary values of bounded

analytic functions on H ([113]); moreover, one easily verifies that H∞ is a weak*

closed subspace of L∞, this fact will be used below. Let fε (x) = f (x0 + εx) . Then

the set {fε : ε 6= 0} is weak* bounded (as a subset of the dual space (L1 (R))
′

=

L∞ (R)) and, consequently, a relatively weak* compact set. Suppose that {εn}∞n=0

is a sequence of non-zero numbers with εn → 0 such that the sequence {fεn}
∞
n=0

is weak* convergent to g ∈ L∞ (R) . It will be shown that g ≡ γ. Since g ∈ H∞,

we can write it as g (x) = G (x+ i0) where G is a bounded analytic function in

H, then the weak* convergence of fεn to g implies that F (x0 + εnz) converges to
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G (z) uniformly on compacts of H, and thus G (iy) = γ for all y > 0. It follows

that G ≡ γ, and so g ≡ γ. Since any sequence {fεn}
∞
n=0 with εn → 0 has a weak*

convergent subsequence, and since that subsequence converges to the constant

function γ, we conclude that fε → γ in the weak* topology of L∞ (R) .

That f (x0) = γ, distributionally, is now clear, because D (R) ⊂ L1 (R) .

On the other hand, (4.3.3) follows by taking x = x0 + ε and φ (t) = χ[0,1] (t) ,

the characteristic function of the unit interval, in the limit limε→0 〈fε (t) , φ (t)〉 =

γ
∫∞
−∞ φ (t) dt, which in view of the previous argument holds now for φ ∈ L1(R).

We can now prove our tauberian theorem.

Theorem 4.7. Let F be analytic in a rectangular region of the form (a, b)×(0, R) .

Suppose f (x) = limy→0+ F (x+ iy) in the space D′ (a, b) . Let x0 ∈ (a, b) such that

limy→0+ F (x0 + iy) = γ. If f is distributionally bounded at x = x0 then f (x0) = γ,

distributionally.

Proof. There exists n ∈ N and a function fn bounded in a neighborhood of x0 such

that f = ∂nx0
fn; notice that f (x0) = γ, distributionally, if and only if fn (x0) = γ,

distributionally. But fn (x) = Fn (x+ i0), as distributional boundary value, where

Fn is analytic in (a, b) × (0, R) ; here Fn is the only angularly bounded solution

of F (z) = ∂nx0
Fn (z) (derivatives with respect to z). Since fn is bounded near

x = x0, Fn is also bounded in a rectangular region of the form (a1, b1) × (0, R1) ,

where x0 ∈ (a1, b1) . Clearly limy→0+ Fn (x0 + iy) = γ, so the Theorem 4.6 yields

fn (x0) = γ, distributionally, as required.

Observe that in general the result (4.3.3) does not follow if f is not bounded but

just distributionally bounded near x0.

The condition (4.3.1) may seem weaker than the angular convergence of F (z)

to γ as z → x0, however, if F is angularly bounded, which is the case if f is
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distributionally bounded at x = x0, then angular convergence and radial con-

vergence are equivalent. In fact [32, Thm. 13.5.4] both conditions are equivalent

to the existence of an arc κ : [0, 1] −→ (a, b) × [0, R) such that κ ([0, 1)) ⊂

{z ∈ C : =mz ≥ m |<e z − x0|} for some m > 0 and such that κ (1) = x0, for

which

lim
t→1−

F (κ (t)) = γ . (4.3.4)

Therefore, we may use a conformal map to obtain the following general form of

the Theorem 4.7.

Theorem 4.8. Let C be a smooth part of the boundary ∂Ω of a region Ω of the

complex plane. Let F be analytic in Ω, and suppose that f ∈ D′ (C) is the dis-

tributional boundary limit of F. Let ξ0 ∈ C and suppose that κ is an arc in Ω

that ends at ξ0 and that approaches C angularly. If limt→1− F (κ (t)) = γ and f is

distributionally bounded at ξ = ξ0, then f (ξ0) = γ, distributionally.

4.4 Application: Proof of a Hardy-Littlewood

Tauberian Theorem

In this last section, we discuss an application of Theorem 4.7. Our application is

a new proof of a famous tauberian theorem of Hardy and Littlewood. In fact, the

version we prove here was conjectured by Littlewood in 1913 [127], but it was first

proved by Ananda Rau in 1928 [5].

We begin with a lemma whose proof can be tracked down to the proof of the

original first Tauber’s theorem ([85, p.149], [204]).

Lemma 4.9. Let {bn}∞n=0 be a sequence of complex numbers. Suppose that {λn}∞n=0

is an increasing sequence of positive real numbers such that λn →∞ as n→∞. If

bn = O

(
λn − λn−1

λn

)
, (4.4.1)

125



then,
∞∑
n=0

bne
−λny −

∑
λn<

1
y

bn = O(1) , as y → 0+. (4.4.2)

Proof. Choose M such that |bn| ≤Mλ−1
n (λn − λn−1), for every n. Then,∣∣∣∣∣∣∣

∞∑
n=0

bne
−λny −

∑
λn<

1
y

bn

∣∣∣∣∣∣∣ ≤
∑
λn<

1
y

|bn|
(
1− e−λny

)
+
∑
1
y
≤λn

|bn| e−λny

≤My
∑
λn<

1
y

(λn − λn−1) +My
∑
1
y
≤λn

(λn − λn−1) e
−λny

= O(1) +My

∫ ∞

1
y

e−ytdt = O(1) , y → 0+ ,

as required.

Recall that a series
∑∞

n=0 cn is (A, λn) summable to γ if
∑∞

n=0 cne
−λny → γ

as y → 0+, this was defined in Section 3.3.1 (see also [85]). When λn = n we

obtain the notion of Abel summability, and the tauberian condition (4.4.1) becomes

Littlewood’s tauberian hypothesis [127, 85], that is, ncn = O(1). Then we have the

ensuing Hardy-Littlewood tauberian theorem.

Theorem 4.10. Suppose that {λn}∞n=0 is an increasing sequence of non-negative

real numbers such that λn →∞, as n→∞. If

∞∑
n=0

cn = γ (A, λn) , (4.4.3)

and cn = O (λ−1
n (λn − λn−1)), then

∑∞
n=0 cn = γ.

Proof. The plan of the proof is to associate to the series the tempered distribution

f(x) =
∑∞

n=0 cne
iλnx and show that f(0) = γ, distributionally, based on this

conclusion, we will deduce the convergence of the series. Let us first verify that

f defines a tempered distribution; indeed from Lemma 4.9 and the assumption

(4.4.3), we have that G(x) =
∑

λn<x
cn is a bounded function, hence f is the

Fourier transform of its derivative g(x) = G ′(x) =
∑∞

n=0 cnδ(x− λn).
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Now, note that F (z) =
∑∞

n=0 cne
iλnz, for =m z > 0, is an analytic representation

of f and by hypothesis F (iy) → γ as y → 0+. We show that f(εx) = O(1) as ε→ 0

in S ′(R). Take φ ∈ S(R). Set ψ = φ̂. Then 〈f(εx), φ(x)〉 = (1/ε) 〈g (x/ε) , ψ(x)〉 ,

so to show that f(εx) = O(1) in S ′(R) is equivalent to show that λg(λx) = O (1)

as λ → ∞ in S ′(R). But from the Lemma 4.9 once again it follows that G(x) =∑
λn<x

cn = O(1), hence, by Proposition 1.9, G(λx) = O(1) in S ′(R), and therefore

by differentiating G(λx) with respect to x, we obtain that λg(λx) is bounded in

S ′(R). Therefore, by Theorem 4.7

f(εx) = γ + o(1) , in S ′(R) . (4.4.4)

As it is easily seen, condition (4.4.4) is equivalent to

lim
ε→0+

∞∑
n=0

cnφ(ελn) = γ , for each φ ∈ S(R) . (4.4.5)

To conclude the proof, we take in (4.4.5) suitable test functions. Let σ > 0 and

let us choose the test function φ ∈ D(R) such that 0 ≤ φ ≤ 1, φ(x) = 1 for

x ∈ [0, 1], suppφ ⊆ [−1, 2], φ is decreasing on the interval (1, 2), and such that∫ 2

1
φ(x) dx < σ where M . Then

lim sup
N→∞

∣∣∣∣∣
N∑
n=0

cn − γ

∣∣∣∣∣ ≤
(

lim sup
N→∞

∑
λN<λn≤2λN

λn − λn−1

λN
φ

(
λn
λN

))
O(1)

≤
(∫ 2

1

φ(x)dx

)
O(1) < σO(1) .

Since σ was arbitrary, we conclude that
∑∞

n=0 cn = γ.

4.5 A Fourier Transform Tauberian Condition

Theorem 4.7 may also be used to obtain Littlewood type tauberian results for dis-

tributions. The first corollary is also contained in the general theory of Vladimirov,

Drozhzhinov, and Zavialov [231]
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Corollary 4.11. Let g be a tempered distribution supported on [0,∞). Suppose

that

lim
y→0+

〈
g(x), e−yx

〉
= γ. (4.5.1)

Then, the tauberian condition

g(λx) = O

(
1

λ

)
as λ→∞ in D′(R) (4.5.2)

implies that g has the quasiasymptotic behavior

g(λx) = γ
δ(x)

λ
+ o

(
1

λ

)
as λ→∞ in S ′(R) . (4.5.3)

Proof. Let f be such that f̂ = g. Then (4.5.1) translates into F (iy) → γ as y → 0+,

where F (z) = 〈g(t), eizt〉 (hence f(x) = F (x + i0)) and (4.5.2) corresponds to the

statement f distributionally bounded at x = 0, by Theorem 4.7, we have that

f(0) = γ, distributionally. Thus, Fourier inverse transform yields (4.5.3).

Corollary 4.12. Let g be a tempered distribution supported on [0,∞) and φ ∈

E(R). Suppose that 〈g(x), φ(x)〉 = γ (A) . Then, the tauberian condition

φ(λx)g(λx) = O

(
1

λ

)
as λ→∞ in D′(R)

implies that 〈g(x), φ(x)〉 = γ (C) .

Proof. Corollary 4.11 gives that

φ(λx)g(λx) = γ
δ(x)

λ
+ o

(
1

λ

)
as λ→∞ in S ′(R) ,

which by Proposition 3.9 implies that 〈g(x), φ(x)〉 = γ (C) .

So, we obtain our Littlewood-type tauberian characterization for distributional

point values in terms of the Fourier transform.
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Theorem 4.13. Let f ∈ S ′(R) such that supp f̂ ⊆ [0,∞). The following two

conditions

1

2π

〈
f̂(x), eix0x

〉
= γ (A) . (4.5.4)

and

eiλx0xf̂(λx) = O

(
1

λ

)
as λ→∞ in D′(R) (4.5.5)

are necessary and sufficient for

f(x0) = γ , distributionally . (4.5.6)

Proof. The necessity of (4.5.4) and (4.5.5) is clear, while the sufficiency follows

from Theorem 3.27 and Corollary 4.12.

4.6 Other Tauberian Results

 Lojasiewicz introduced the definition of lateral limits of distributions at a point in

[128]. Here, we present an alternative definition following the ideas of Section 4.2.

Definition 4.14. A distribution f ∈ D′ (R) is said to have a distributional right

lateral limit at x0 if there exist n ∈ N and fn ∈ D′ (R \ x0) , locally bounded in

an interval (x0, x0 + ε), such that f = ∂nx0
fn in D′ (R \ x0) and limx→x+

0
fn(x) =

fn(x+
0 ) = γ+. In such a case we write f(x+

0 ) = γ, distributionally.

Left lateral limits are defined in a similar fashion. We use the notation f(x−0 ) =

γ−, distributionally. We say that the distributional limit of f exists at x = x0,

distributionally, if both f(x±0 ) = γ± exist and γ+ = γ− := γ, in such a case

we call γ the limit of the distribution at x = x0. Naturally, the existence of the

distributional point value at x0 implies the existence of the distributional limit

at x = x0, but the converse is not true; for example δ(0±) = 0, distributionally,

however, δ(0) does not exist.

The following abelian type result was shown in [55]:
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Suppose that f ∈ D′ (R) is the boundary value of a function F analytic in

the upper half-plane, that is f (x) = F (x+ i0) ; if the distributional lateral limits

f
(
x±0
)

= γ± both exist, then γ+ = γ− = γ, and so the distributional limit of f at

x = x0 exists and equals γ.

On the other hand, the results of [52], imply that there are distributions f (x) =

F (x+ i0) for which one distributional lateral limit exits but not the other. As we

pointed out before, the distributional point value does not have to exist in this

situation.

We give below a sort of tauberian condition under which the existence of the

distributional point value can be deduced, namely, if the distribution is distribu-

tionally bounded at the point, and just one lateral limit exists. Furthermore, we

give a general version of this kind for analytic functions that have distributional

limits on a contour. These results are used to give an interesting extension of

Theorem 4.7.

We shall need the following well-known fact [11].

Lemma 4.15. Let F be analytic in the half plane H, and suppose that the dis-

tributional limit f (x) = F (x+ i0) exists in D′ (R) . Suppose that there exists an

open, non-empty interval I such that f is equal to the constant γ in I. Then f = γ

and F = γ.

Proof. In fact, it follows from the edge of the wedge theorem (see Section 1.6).

Actually using the theorem of Privalov [167, Cor 6.14], it is easy to see that if

F is analytic in the half plane H, f (x) = F (x+ i0) exists in D′ (R) , and there

exists a subset X ⊂ R of non-zero measure such that the distributional point value

f (x0) exists and equals γ if x0 ∈ X, then f = γ and F = γ.

Our first result is for bounded analytic functions. The proof is almost the same

as that of Theorem 4.6, but we include it for completeness.
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Theorem 4.16. Let F be analytic and bounded in a rectangular region of the

form (a, b)× (0, R) . Suppose f (x) = limy→0+ F (x+ iy) in the space D′ (a, b) . Let

x0 ∈ (a, b) such that the lateral limit

f(x+
0 ) = γ , distributionally , (4.6.1)

exists. Then the distributional point value

f (x0) = γ , distributionally , (4.6.2)

also exists. In fact, (4.6.2) is a point value of the first order, and thus

lim
x→x0

1

x− x0

∫ x

x0

f (t) dt = γ . (4.6.3)

Proof. As in the proof of Theorem 4.6, we may assume that a = −∞, and b =

R = ∞. In this case, f belongs to H∞. Let fε (x) = f (x0 + εx) . Then the set

{fε : ε 6= 0} is weak* bounded (as a subset of the dual space (L1 (R))
′
= L∞ (R))

and, consequently, a relatively weak* compact set. If {εn}∞n=0 is a sequence of

positive numbers with εn → 0 such that the sequence {fεn}
∞
n=0 is weak* convergent

to g ∈ L∞ (R) , then g ≡ γ, since g ∈ H∞, and g (x) = γ for x > 0. Since any

sequence {fεn}
∞
n=0 with εn → 0 has a weak* convergent subsequence, and since

that subsequence converges to the constant function γ, we conclude that fε → γ

in the weak* topology of L∞ (R) . We obtain that f (x0) = γ, distributionally,

since D (R) ⊂ L1 (R) . On the other hand, (4.6.3) follows by taking x = x0 + ε

and φ (t) = χ[0,1] (t) , the characteristic function of the unit interval, in the limit

limε→0 〈fε (t) , φ (t)〉 = γ
∫∞
−∞ φ (t) dt.

Exactly the same argument used in the proof of Theorem 4.7, but applying

Theorem 4.16 instead of Theorem 4.6, gives us the next result.

Theorem 4.17. Let F be analytic in a rectangular region of the form (a, b)×(0, R) .

Suppose f (x) = limy→0+ F (x+ iy) in the space D′ (a, b) . Let x0 ∈ (a, b) such
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that f(x+
0 ) = γ, distributionally. If f is distributionally bounded at x = x0, then

f (x0) = γ, distributionally.

We may use a conformal map to obtain the following general form of the Theorem

4.17.

Theorem 4.18. Let C be a smooth part of the boundary ∂Ω of a region Ω of

the complex plane. Let F be analytic in Ω, and suppose that f ∈ D′ (C) is the

distributional boundary limit of F. Let ξ0 ∈ C and suppose that the distributional

lateral limit f
(
ξ+
0

)
= γ, distributionally, exists and f is distributionally bounded

at ξ = ξ0, then f (ξ0) = γ, distributionally.

We now use Theorem 4.17 to obtain an interesting generalization of Theorem

4.7.

Theorem 4.19. Let F be analytic in a rectangular region of the form (a, b)×(0, R) .

Suppose f (x) = limy→0+ F (x+ iy) in the space D′ (a, b) . Let x0 ∈ (a, b) such that

the distributional limit limy→0+ F (x0 + iy) = γ exists in the sense of Definition

4.14. If f is distributionally bounded at x = x0 then f (x0) = γ, distributionally,

and the ordinary limit exists: limy→0+ F (x0 + iy) = γ.

Proof. If we consider the curve C to be the union of the segments (a, x0] and

[x0, iR), then the distributional lateral limit of the boundary value of F on C

exists and equals γ as we approach x0 from the right along C and so the Theorem

4.17 yields that the distributional limit from the left, which is nothing but f
(
x−0
)

also exists and equals γ, distributionally. Then the Theorem 4.17, applied again,

gives us that f (x0) = γ, distributionally. The existence of the angular limit of

F (z) as z → x0 then follows, and, in particular, limy→0+ F (x0 + iy) = γ.
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Chapter 5
The Jump Behavior and Logarithmic
Averages

5.1 Introduction

In this chapter we study several notions for pointwise jumps of distributions. We

characterize them first by their structure and then by the asymptotic properties

of the Fourier transform.

We also study the jump by using logarithmic averages. In the case that f is an

ordinary function this is a classical subject, perhaps the place where this idea has

been widely applied is in Fourier series. Let f be a function of period 2π having

Fourier series,

a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) . (5.1.1)

Let
∞∑
n=1

(an sinnx− bn cosnx) (5.1.2)

be its conjugate series. A classical theorem of F. Lukács [131], [256, Thm. 8.13]

states that if f is L1[−π, π] and there is a number d such that

lim
h→0+

1

h

∫ h

0

|f(x0 + t)− f(x0 − t)− d| dt = 0 , (5.1.3)

then

lim
N→∞

1

logN

N∑
n=1

(an sinnx0 − bn cosnx0) = −d
π
. (5.1.4)

Relation (5.1.3) can be considered as a notion of jump at x = x0 for the function

f , we shall call it symmetric Lebesgue jump behavior, in analogy with the notion of

Lebesgue point. The formula (5.1.4) for symmetric Lebesgue jump behaviors was

extended later by A. Zygmund to the Abel-Poisson means of the conjugate Fourier

series [256].
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Recently many extensions of these results have been given [9, 54, 70, 118, 119,

120, 121, 140, 141, 248]. The study of the jump behavior and the determination

of jumps by logarithmic or other types of means has become an important area

because of its applications in edge detection [66, 67]. F. Móricz generalizes the

Abel-Poisson version of F. Lukács result in [140, 141] by extending the notion of

symmetric Lebesgue jump (5.1.3). He considered a more general notion for jump

of integrable functions, namely, the existence of the limit

d = lim
h→0+

1

h

∫ h

0

(f(x0 + t)− f(x0 − t)) dt , (5.1.5)

and he showed that

lim
r→1−

1

log(1− r)

∞∑
n=1

(an sinnx0 − bn cosnx0)r
n =

1

π
d . (5.1.6)

It was noticed by the author and R. Estrada in [54, 218] that the jump F. Móricz

considered is a particular case of a symmetric jump behavior in the sense of dis-

tributions, that is, one can define it in terms of the very well known  Lojasiewicz

notion of limits of distributions at points [128]. Because of that reason, we should

call (5.1.5) a first order symmetric jump. In the cited paper the author gave the

corresponding generalization of F. Móricz result to distributions in terms of loga-

rithmic Abel-Poisson means as well.

We will consider in this chapter two notions of jumps for distributions, the

distributional jump behavior and the distributional symmetric jump behavior of

distributions (Section 5.2). We will give a Fourier characterizations of these notions

in Section 5.3, we then proceed in Section 5.4 to study the non-tangential limits

of harmonic representations under the presence of a jump behavior. We will also

consider several logarithmic averages for both notions of jump. In Section 5.5,

we will give formulas for the jump occurring in the jump behavior case in terms

of Cesàro-logarithmic means of a decomposition of the Fourier transform; it is
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remarkable that these results are applicable to general tempered distributions.

Next, in Section 5.6 we study the boundary behavior of analytic representations

of distributions at approaching angularly from the upper and lower half-planes

to a point where the distribution possesses a jump behavior; it is shown they

have an asymptotic logarithmic behavior related to the jump. Then, in the same

section, we analyze harmonic conjugate functions in the upper half-plane having

distributional boundary values on the real axis; it turns out that they have also

a logarithmic angular asymptotic behavior related to the jump. Section 5.7 is

devoted to applications to Fourier series, we give formulas for the jump in terms

of logarithmic averages by using Cesàro-Riesz means and Abel-Poisson means of

the conjugate series; among our results, we recover (5.1.6) and a Cesàro version

of (5.1.4). The last section of this chapter is dedicated to study some properties

of the symmetric jump behavior of distributions, this notion is much more general

than the jumps in the sense of (5.1.3) and (5.1.5); furthermore, we discuss the case

of Fourier series of periodic distributions, generalizing the mentioned results from

[131, 256, 140, 141, 54].

The author wants to mention that some of the results of this chapter have already

appeared in publication form [216, 218].

5.2 Jump and Symmetric Jump Behaviors

In this section we explain the notions of jumps to be considered in the future. They

were introduced by the author and R. Estrada in [54, 215, 216, 218, 222].

Let us define the notions of jump behavior and symmetric jump behavior of

distributions at points. We begin with the jump behavior.

Definition 5.1. A distribution f ∈ D′(R) is said to have a distributional jump

behavior (or jump behavior) at x = x0 ∈ R if it satisfies the following distributional
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(quasi-) asymptotic relation

f (x0 + εx) = γ−H(−x) + γ+H(x) + o(1) , (5.2.1)

as ε → 0+ in D′(R), where H is the Heaviside function, i.e., the characteristic

function of (0,∞), and γ± are constants. The jump (or saltus) of f at x = x0 is

defined then as the number [f ]x=x0
= γ+ − γ− .

The meaning of (5.2.1) is in the weak topology of D′(R), in the sense that for

each φ ∈ D(R),

lim
ε→0+

〈f(x0 + εx), φ(x)〉 = γ−

∫ 0

−∞
φ(x) dx+ γ+

∫ ∞

0

φ(x) dx . (5.2.2)

Observe that when γ+ = γ− we recover the usual  Lojasiewicz notion of the value

of a distribution at a point [128]. It should be noticed that our notion includes the

jump of ordinary functions; indeed, if a locally integrable function has a disconti-

nuity of the first kind, that is, the right and left limits f(x±0 ) exist, then it satisfies

(5.2.2) with γ± = f
(
x±0
)
. In particular, jumps of functions of local bounded vari-

ation are distributional jump behaviors. We provide more examples of classical

notions for jumps in Examples 5.5 and 5.6 below.

The reader should also noticed that if f has the jump behavior (5.2.1), then, in

the sense of Definition 3.56, it satisfies fsym(x0) = (γ+ + γ−)/2.

Let us also point out the fact that if f ∈ S ′(R), then (5.2.2) actually holds

for each φ ∈ S(R); in other words, the quasiasymptotic behavior (5.2.1) is valid

in S ′(R). Indeed, if one considers g(x) = f(x) − ([f ]x=x0/2)sgn(x − x0), then

g(x0) = (γ+ + γ−)/2, distributionally; the last assertion holds for distributional

point values, and so does it for f and the jump behavior. This fact is important

because it allows us to apply Fourier transform to (5.2.1), as we shall do in the

next section.
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The jump behavior of distributions admits a structural characterization similar

to the  Lojasiewicz characterization of distributional point values discussed in Sec-

tion 3.2 (see (3.2.5)). The proof of the following theorem follows immediately from

the mentioned  Lojasiewicz theorem applied to g(x) = f(x)−([f ]x=x0/2)sgn(x−x0).

Theorem 5.2. Let f ∈ D′(R). Then, it has the jump behavior (5.2.1) if and only

if there exist m ∈ N and a function F , locally integrable on a neighborhood of x0,

such that F (m) = f near x0 and

lim
x→x±0

m!F (x)

(x− x0)m
= γ± . (5.2.3)

The minimum m such that we can find an F satisfying (5.2.3) is called the order

of the jump behavior. Obviously, if a locally integrable function has right and left

limits at x = x0, then it has a distributional jump behavior of order 0. Therefore,

as distributional point values, the jump behavior is actually an average notion.

Arbitrary m-primitives of f admit a Peano differential of order (m−1). Moreover,

let F1 be another m-primitive of f , different form F , then there exists a polynomial

of degree at most m− 1, depending on F1, such that, as x→ x0,

F1(x) = p(x−x0)+
γ−
m!

(x−x0)
mH(x0−x)+

γ+

m!
(x−x0)

mH(x−x0)+o(|x− x0|m) .

We now turn our attention to the symmetric jump behavior.

Definition 5.3. A distribution f ∈ D′(R) is said to have a distributional sym-

metric jump behavior (or symmetric jump behavior) at x = x0 ∈ R if the jump

distribution ψfx0
(x) = f(x0 + x)− f(x0 − x) has jump behavior at x = 0 . In such

a case, we define the jump of f at x = x0 as the number [f ]x=x0
=
[
ψfx0

]
x=0

/2 .

It is easy to see that the jump behavior of the jump distribution in Definition

5.3 must be of the form

ψfx0
(εx) = [f ]x=x0

sgnx+ o(1) as ε→ 0+ in D′(R) , (5.2.4)
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where sgnx is the signum function.

The order of the symmetric jump is defined as the order of the jump behavior

(5.2.4). We may also describe the structure of the symmetric jump behavior, by

applying Theorem 5.2 to the jump distributions.

Theorem 5.4. Let f ∈ D′(R). Then, it has symmetric jump behavior at x = x0 if

and only if there exist m ∈ N and a distribution F such that ψFx0
is locally integrable

on a neighborhood of x0, F (m) = f near x = x0, and

(i) if m is even

lim
h→0

m!ψFx0
(h)

hm
= [f ]x=x0 sgnh , (5.2.5)

(ii) if m is odd

lim
h→0

m!χFx0
(h)

hm
=

1

2
[f ]x=x0 sgnh , (5.2.6)

where χFx0
is the symmetric part of F about x = x0 defined by (3.10.1), Section

3.10.

In the form (5.2.5), the symmetric jump behavior has been employed in classical

works to study de la Vallée Poussin generalized jumps in terms of differentiated

Fourier series. For instance, see references [255] and [256, Chap.XI].

We now discuss two examples of particular types of jump behavior related to

classical functions. It is not difficult to see that both examples are particular cases

of our distributional notions for jumps. Also note that the two notions for ordinary

functions mentioned at the introduction are included in these two examples.

Example 5.5. (Lebesgue jumps) Let f be a locally (Lebesgue) integrable function,

then we say that f has a Lebesgue jump behavior if there are two numbers γ± such

that

lim
h→0±

1

h

∫ x0+h

x0

|f(x)− γ±| dx = 0 . (5.2.7)
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We say that f has a symmetric Lebesgue jump behavior if there is a numbers

d = [f ]x0
such that

lim
h→0+

1

h

∫ h

0

|f(x0 + x)− f(x0 − x)− d| dx = 0 . (5.2.8)

Example 5.6. (Jump behavior of the first order) Let µ be a Radon measure. Then

we say that µ has a jump behavior of the first order if there exist γ± such that

lim
h→0±

1

h

∫ x0+h

x0

dµ(x) = γ± . (5.2.9)

We say that µ has a symmetric jump behavior of the first order if there exists

d = [f ]x=x0
such that

lim
h→0+

1

h

(∫ x0+h

x0

dµ(x)−
∫ x0

x0−h
dµ(x)

)
= d . (5.2.10)

A particular case is obtained if f ∈ L1
loc(R). Moreover, the first order jump behavior

and symmetric jump behavior can still be defined by an integral expression even if

f is not locally (Lebesgue) integrable but just Denjoy locally integrable [76]. For

instance, in such a case the existence of the jump behavior of the first order is

equivalent to the existence of the limits

lim
h→0±

1

h

∫ x0+h

x0

f(x) dx = γ± , (5.2.11)

where the last integral is taken in the Denjoy sense, and similarly for the symmetric

jump,

lim
h→0+

(1/h)

∫ h

0

(f(x0 + x)− f(x0 − x)) dx = d .

The notions of Lebesgue jump and symmetric jump behaviors have been widely

used in Fourier series by many authors [63, 131, 256]. While the use of first order

jump and symmetric jump behaviors have become popular recently [140, 141, 142,

248] for locally integrable functions.

We give two more examples.
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Example 5.7. It is worth to provide the reader with an example of jump behavior

which is not included in last two cases. Consider the function

f(x) =
(
γ− + A | x|α ei/xβ

)
H(−x) +

(
γ+ +Bxαei/x

β
)
H(x) . (5.2.12)

For any choice of the constants, one can show that there is a tempered distribution

having the distributional jump behavior (5.2.1) at x = 0 and coinciding with f on

R \ {0} [128]. Observe that depending on the choice of the constants α and β the

function is not a function of local bounded variation. In addition, the choice of the

constants can be made so that f is not locally Denjoy integrable. One may also

find values for α and β such that the order of the jump behavior is arbitrarily large

[128].

Example 5.8. Note that jump behavior implies symmetric jump behavior, but the

converse is not true as shown by δ(x), which has a symmetric jump 0 at x = 0 but

does not have jump behavior at the origin.

5.3 Characterization of Jumps by Fourier

Transform

We want to characterize the jump behavior of tempered distributions by the Fourier

transform. Recall that we are fixing the constants in the Fourier transform so that

φ̂(x) =

∫ ∞

−∞
φ(t)e−ixtdt , (5.3.1)

for φ ∈ S(R).

Suppose then that f ∈ S ′(R) satisfies

f (x0 + εx) = γ−H(−x) + γ+H(x) + o(1) as ε→ 0+ inD′(R), (5.3.2)

Hence, since it holds in S ′(R), we are allowed to take Fourier transform in (5.3.2),

so that it transforms into the equivalent quasiasymptotic relation

eiλx0xf̂(λx) = 2πd1
δ(x)

λ
+

[f ]x=x0

i
p.v.

(
1

λx

)
+ o

(
1

λ

)
as λ→∞ (5.3.3)
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in S ′(R), where d1 = (γ− + γ+) /2, and p.v.(1/x) is the principal value distribution

given by 〈
p.v.

(
1

x

)
, φ(x)

〉
= p.v.

∫ ∞

−∞

φ(x)

x
dx , (5.3.4)

where p.v. stands for the Cauchy principal value of the integral at the origin

(Section 1.3). Notice that we have used here the formula Ĥ(x) = πδ(x)−ip.v. (1/x).

Needless to say that (5.3.3) is interpreted in the sense of quasiasymptotics, i.e.,

the asymptotic formula holds after evaluation at test functions.

Therefore, if we want to study (5.3.2) is enough to study (5.3.3). In the following,

we shall study the structure of the quasiasymptotic behavior

g(λx) = γ
δ(x)

λ
+ β p.v.

(
1

λx

)
+ o

(
1

λ

)
as λ→∞ in D′(R) . (5.3.5)

Recall the definition of asymptotically homogeneous functions of degree zero, in-

troduced in Section 3.4.1. They are measurable functions such that for each a > 0,

c(ax) = c(x) + o(1) , x→∞ .

We already showed in Section 3.4.1 that they satisfy c(x) = o(log x), x→∞.

We need to introduce some notation. Let lk(x) be the k-primitive of log |x|

satisfying the requirements l
(j)
k (0) = 0 for j < k. Observe that it satisfies

lk(ax) = aklk(x) +
(ax)k

k!
log a , a > 0 . (5.3.6)

We now state and show the structural theorem for (5.3.5), which actually follows

immediately from Theorem 3.16.

Theorem 5.9. Let g ∈ D′(R) have the following quasiasymptotic behavior in D′(R)

g(λx) = γ
δ(x)

λ
+ β p.v.

(
1

λx

)
+ o

(
1

λ

)
as λ→∞ . (5.3.7)
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Then, one can find a k ∈ N, a continuous function G such that G(k+1) = g, and

an asymptotically homogeneous function c of degree 0 such that,

G(x) = c (|x|) x
k

k!
+

γ

2k!
xk sgnx+ βlk(x) + o

(
|x|k
)

|x| → ∞ , (5.3.8)

in the ordinary sense. Moreover, g ∈ S ′(R) and (5.3.7) holds in S ′(R). Conversely

(5.3.8) implies (5.3.7).

Let G be a first order primitive of g. In addition, the quasiasymptotic behavior

(5.3.7) is equivalent the existence of k ∈ N such that

lim
x→∞

(G(ax)−G(−x)) = α + β log a (C, k) , (5.3.9)

for each a > 0.

Proof. Apply Theorem 3.16 to h(x) = f(x)− βp.v.(1/x).

As a corollary, we obtain a characterization of the jump behavior in terms of the

summability of the Fourier transform. We state this result as a theorem.

Theorem 5.10. Let f ∈ S ′(R). Then, it has the jump behavior

f (x0 + εx) = γ−H(−x) + γ+H(x) + o(1) as ε→ 0+ inD′(R) , (5.3.10)

if and only if for any first order primitive of eix0xf̂(x), say F , one has that there

is a k ∈ N such that

lim
x→∞

1

2π
(F (ax)− F (−x)) =

γ+ + γ−
2

+
[f ]x=x0

2πi
log a (C, k) , (5.3.11)

for each a > 0.

We now consider some consequences of Theorem 5.10. For that, we use the

summability kernels φka introduced in Section 3.5, i.e.,

φka(x) = (1 + x)k(H(−x)−H(−1− x)) +
(

1− x

a

)k
(H(x)−H(x− a)) .
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Corollary 5.11. Let f ∈ S ′(R) be such that f̂ = µ is a Radon measure. Then, f

has the jump behavior (5.3.10) if and only if there exists a k ∈ N such that

lim
x→∞

1

2π

∫ ax

−x
eix0tdµ(t) =

γ+ + γ−
2

+
[f ]x=x0

2πi
log a (C, k) , (5.3.12)

for each a > 0, or which amounts to the same,

lim
x→∞

1

2π

∫ ∞

−∞
eix0tφka

(
t

x

)
dµ(t) =

γ+ + γ−
2

+
[f ]x=x0

2πi
log a , (5.3.13)

for each a > 0.

Corollary 5.12. Let f ∈ S ′(R) be a 2π-periodic distribution having Fourier series

f(x) =
∞∑

n=−∞

cne
inx . (5.3.14)

Then, f has the jump behavior (5.3.10) if and only if there exists a k ∈ N such

that

lim
x→∞

∑
−x<n≤ax

cne
inx0 =

γ+ + γ−
2

+
[f ]x=x0

2πi
log a (C, k) , for each a > 0 , (5.3.15)

or which amounts to the same,

lim
x→∞

∞∑
n=−∞

φka

(n
x

)
cne

inx0 =
γ+ + γ−

2
+

[f ]x=x0

2πi
log a , for each a > 0 . (5.3.16)

Corollary 5.13. Let f ∈ S ′(R) be such that f̂ ∈ L1
loc(R). Then, f has the jump

behavior (5.3.10) if and only if there exists a k ∈ N such that

lim
x→∞

1

2π

∫ ax

−x
eix0tf̂(t)dt =

γ+ + γ−
2

+
[f ]x=x0

2πi
log a (C, k) , (5.3.17)

for each a > 0, or which amounts to the same,

lim
x→∞

1

2π

∫ ∞

−∞
φka

(
t

x

)
eix0tf̂(t)dt =

γ+ + γ−
2

+
[f ]x=x0

2πi
log a , (5.3.18)

for each a > 0.
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5.4 Angular Limits of Harmonic

Representations

Let U(z), =mz > 0, be a harmonic representation of a distribution having a jump

behavior at x = x0. In this section we obtain the angular behavior of U at the

boundary point x = x0. This problem has been discussed in [54] by studying the

Poisson kernel and by the author in [213] by using Fourier transform methods and

the structural theorem (Theorem 5.9). Here we present the proof of the following

theorem based on Theorem 3.55.

Theorem 5.14. Let f ∈ D′(R) have the jump behavior

f (x0 + εx) = γ−H(−x) + γ+H(x) + o(1) as ε→ 0+ in D′(R) . (5.4.1)

If U is a harmonic representation of f on the upper half-plane, then,

lim
z→x0, z∈lϑ

U(z) =
γ+ + γ−

2
+
ϑ

π
[f ]x=x0 , (5.4.2)

where lϑ is a ray in the upper half-plane starting at x0 and making an angle ϑ with

the ray x = x0. Actually (5.4.2) holds uniformly for |ϑ| < η < π/2.

Proof. Set d1 = (γ+ + γ−)/2 and d2 = [f ]x=x0 . Consider the distribution g(x) =

f(x) − (d2/2) sgn(x − x0). Then g(x0) = d1, distributionally. On the other hand

U1(z) = 1/2− (1/π) arg(z − x0), with 0 < arg z < π, is a harmonic representation

of (1/2) sgnx on the upper half-plane, then U2 = U − d2U1 is a harmonic rep-

resentation of g. So, by Theorem 3.55, U2(z) → d1 as z → x0, non-tangentially.

Therefore if z = x0 + ε sinϑ+ iε cosϑ = x0 + exp(i(π/2− ϑ)), we obtain

lim
ε→0+

U(x0 + εei(
π
2
−ϑ)) = d1 + d2 lim

ε→0+
U1(x0 + εei(

π
2
−ϑ)) = d1 + d2

ϑ

π
.

We consider an example involving Fourier series.
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Example 5.15. let f(x) =
∑∞

−∞ cne
inx, where the series is assumed to converge

in S ′(R). Let lϑ denote the ray in the upper half-plane starting from x0 and making

an angle ϑ with the line x = x0. Then, one has that

lim
ξ→x0, ξ∈lϑ

−1∑
−∞

cne
inξ̄ +

∞∑
0

cne
inξ =

γ+ + γ−
2

+
ϑ

π
[f ]x=x0 .

If we write the cos and sin series, f(x) =
∑∞

n=0 an cos(nx) + bn sin(nx), then the

last limit takes the form,

lim
ξ→x0, ξ∈lϑ

∞∑
n=0

an cos(nξ) + bn sin(nξ) =
γ+ + γ−

2
+
ϑ

π
[f ]x=x0 ,

both limits hold uniformly for ϑ in compact subsets of (−π/2, π/2). If one takes

ϑ = 0, one obtains

lim
r→1−

∞∑
n=0

(an cosnx0 + bn sinnx0)r
n =

γ+ + γ−
2

,

which generalizes the main result from [237] obtained by G. Walter.

5.5 Jump Behavior and Logarithmic Averages

in Cesàro Sense

In this section, we shall deal with tempered distributions having a jump at a point

and study the logarithmic average in the Cesàro sense of the Fourier transform.

We now state and show the main theorem of this section. It will enable us to

study the logarithmic average behavior of eix0 f̂(x) separately for any decomposition

as the sum of two tempered distributions having supports in (−∞, 0] and [0,∞),

respectively.

Theorem 5.16. Let g have the quasiasymptotic behavior

g(λx) = γ
δ(x)

λ
+ β p.v.

(
1

λx

)
+ o

(
1

λ

)
as λ→∞ S ′(R) . (5.5.1)

Then for any decomposition g = g+ + g−, where supp g− ⊆ (−∞, 0] and supp g+ ⊆

[0,∞), one has that

g±(λx) = ±β log λ

λ
δ(x) + o

(
log λ

λ

)
as λ→∞ in S ′(R). (5.5.2)
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Proof. Let k , c and G be as in Theorem 5.9. Then, to a decomposition g =

g+ +g−, corresponds a decomposition G = G+ +G−, with suppG− ⊆ (−∞, 0] and

suppG+ ⊆ [0,∞). Hence

G±(x) = βlk(x) + o
(
|x|k log |x|

)
, x→ ±∞ , (5.5.3)

= β
xk

k!
log |x|+ o

(
|x|k log |x|

)
, x→ ±∞ ,

since c(x) = o(log x) as x→∞. This implies the distributional relations

G±(λx) = βlk(λx)H(±x) + o
(
λk log λ

)
= βλklk(x)H(±x) + βλk log λ

xk

k!
H(±x) + o

(
λk log λ

)
= βλk log λ

xk

k!
H(±x) + o

(
λk log λ

)
as λ→∞ ,

and the last relation holds in S ′(R). Therefore if we differentiate (k+ 1)-times, we

obtain (5.5.2).

Notice that (5.5.3) gives a logarithmic average in the Cesàro sense. We collect

this fact in the next corollary for future reference.

Corollary 5.17. Let g, g+, g−, and k be as in the last theorem, then

g
(−k−1)
± (x) ∼ β

xk

k!
log |x| , x→ ±∞ , (5.5.4)

where g
(−k−1)
± are the (k + 1)-primitives of g± with supp g

(−k−1)
− ⊆ (−∞, 0] and

supp g
(−k−1)
+ ⊆ [0,∞).

We now summarize our results.

Theorem 5.18. Let f ∈ S ′(R) have the distributional jump behavior at x = x0,

f (x0 + εx) = γ−H(−x) + γ+H(x) + o(1) as ε→ 0+ in D′(R) . (5.5.5)
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Then for any decomposition f̂ = f̂+ + f̂−, where supp f̂− ⊆ (−∞, 0] and supp f̂+ ⊆

[0,∞), we have that

eiλx0xf̂± (λx) = ±[f ]x=x0

log λ

iλ
δ(x) + o

(
log λ

λ

)
as λ→∞ S ′(R) . (5.5.6)

Furthermore, there exists k ∈ N such that

(
eix0tf̂±(t) ∗ tk±

)
(x) ∼ ±[f ]x=x0

|x|k

i
log |x| , |x| → ∞ , (5.5.7)

in the ordinary sense.

Proof. The jump behavior implies the quasiasymptotic

eiλx0xf̂(λx) = π(γ+ + γ−)
δ(x)

λ
+

[f ]x=x0

i
p.v.

(
1

λx

)
+ o

(
1

λ

)
asλ→∞ in S ′(R) ,

and so (5.5.6) and (5.5.7) follow from Theorem 5.16 and Corollary 5.17.

A special case is obtained in the next corollary which follows directly from The-

orem 5.18.

Corollary 5.19. Let f ∈ S ′(R) have the distributional jump behavior (5.5.5) at

x = x0. Suppose that its Fourier transform is given by a Radon measure µ, then

there exists k ∈ N such that for any decomposition of µ = µ− + µ+, as two Radon

measures concentrated on (−∞, 0] and [0,∞), respectively,

lim
x→∞

i

log x

∫ x

0

e±ix0t

(
1− t

x

)k
dµ±(±t) = ±[f ]x=x0 . (5.5.8)

5.6 Logarithmic Asymptotic Behavior of

Analytic and Harmonic Conjugate

Functions

This section is devoted to the study of the local boundary behavior of analytic rep-

resentations and harmonic conjugates to harmonic representations of distributions

having a jump behavior. Recall that (Section 1.6) given f ∈ D′(R), we may see f
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as a hyperfunction, that is, f(x) = F (x+ i0)− F (x− i0), where F is analytic for

=m z 6= 0.

In the next theorem we obtain the angular behavior of F (z) when z approaches

a point where f has a jump behavior. We remark this is done separately when z

approaches angularly the point from the upper and lower half-planes.

Given 0 < η ≤ π/2 and x0 ∈ R, we define the subset of the upper half-plane

∆+
η (x0) as the set of those z such that η ≤ arg(z − x0) ≤ π − η ; similarly, we

define the subset of the lower half-plane ∆−
η (x0) as the set of those z such that

η − π ≤ arg(z − x0) ≤ −η .

Theorem 5.20. Let f ∈ D′(R) have the distributional jump behavior

f (x0 + εx) = γ−H(−x) + γ+H(x) + o(1) as ε→ 0+ in D′(R) . (5.6.1)

Suppose that F is an analytic representation of f . Then for any 0 < η ≤ π/2,

lim
z→z0, z∈∆±

η (x0)

F (z)

log |z − x0|
= − [f ]x=x0

2πi
. (5.6.2)

Proof. Note first that if (5.6.2) holds for one analytic representation, then it holds

for any analytic representation of f . In fact by the very well known edge of wedge

theorem, any two such analytic representations differ by an entire function, and

for entire functions (5.6.2) gives 0. Next, we see that we may assume that f ∈

S ′(R). Indeed we can decompose f = f1 + f2 where f2 is zero in a neighborhood

of x0 and f1 ∈ S ′(R). Let F1 and F2 be analytic representations of f1 and f2,

respectively; then F2 can be continued across a neighborhood of x0 (edge of wedge

theorem once again), hence F2(z) = F2(x0) + O (|z − x0|) = o (|log |z − x0||) as

z → x0. Additionally, f1 has the same jump behavior as f . Thus, we assume that

f ∈ S ′(R). Let f̂ = f̂+ + f̂− be a decomposition such that supp f̂− ⊆ (−∞, 0] and
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supp f̂+ ⊆ [0,∞). Then,

F (z) =


1

2π

〈
f̂+(t), eizt

〉
, =m z > 0 ,

− 1

2π

〈
f̂−(t), eizt

〉
, =m z < 0 ,

is an analytic representation of f (Section 1.6). Keep the number m on a compact

set and λ > 0, then

F

(
x0 +

m

λ
,
±1

λ

)
= ± 1

2π

〈
λeiλx0xf̂±(λx), ei(m+i)x

〉
=

[f ]x=x0

2πi
log λ+ o (log λ)

as λ→∞, where here we have used (5.5.6).

Our next goal is to study the angular behavior of harmonic conjugate functions.

This is the content of the next theorem.

Theorem 5.21. Let f ∈ D′(R) have the jump behavior (5.6.1) and U be a har-

monic representation of f in the upper half-plane. Then if V is a harmonic conju-

gate to U , one has that

lim
z→x0, z∈∆+

η (x0)

V (z)

log |z − x0|
=

1

π
[f ]x=x0 , (5.6.3)

for each 0 < η ≤ π/2.

Proof. Since harmonic conjugates to U differ by a constant, it is enough to show

(5.6.3) for any particular harmonic conjugate to U .

We now show that we may work with any harmonic representation U of f we

want. Suppose that U1 and U2 are two harmonic representations of f , then U =

U1−U2 represents the zero distribution. Then by applying the reflection principle to

the real and imaginary parts of U [11, Section 4.5], [207, Section 3.4], we have that

U admits a harmonic extension to a (complex) neighborhood of x0. Consequently,

if V1 and V2 are harmonic conjugates to U1 and U2, we have that V = V1 − V2 is
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harmonic conjugate to U , and thus it admits a harmonic extension to a (complex)

neighborhood of x0 as well. Therefore V (z) = O (1) = o (− log |z − x0|), which

shows that V1 satisfies (5.6.3) if and only if V2 does.

Let F be an analytic representation of f on =m z 6= 0. We can assume then

that U(z) = F (z) − F (z̄), =m z > 0. We have that V (z) = −i (F (z) + F (z̄)),

=m z > 0, is a harmonic conjugate to U . Therefore, an application of Theorem

5.20 yields to (5.6.3).

Example 5.22. As an example, we discuss our results in the context of the spaces

Lp(R) with 1 < p < ∞. Let f ∈ Lp(R) and assume that it has the distribu-

tional jump behavior (5.6.1). A particular case is obtained when f has a Lebesgue

jump (Example 5.5), but we remark that our assumption is much weaker. A har-

monic representation of f is given by the Poisson representation, i.e., by integra-

tion against the Poisson kernel. Among all the harmonic conjugates to the Poisson

representation, the natural choice is

V (z) =
1

π

∫ ∞

−∞

<e z − t

|z − t|2
f(t) dt . (5.6.4)

As a corollary of Theorem 5.21, we obtain the angular asymptotic behavior of this

integral: it is indeed given by (5.6.3). Note that the harmonic function V (z) has

as boundary value a function f̃ ∈ Lp(R), which in fact is the Hilbert transform of

f [60, 113, 206]. The asymptotic behavior of V suggests that f̃ has the following

quasiasymptotic behavior at x = x0 in D′(R),

f̃(x0 + εx) =
1

π
[f ]x=x0 log ε+ o

(
log

(
1

ε

))
as ε→ 0+, (5.6.5)

which is actually the case. A proof of the last relation can be given by using the

fact that the Fourier transform of f̃ is −i
(
f̂+ − f̂−

)
, for a suitable decomposition

of f̂ , by using the Theorem 5.18, and then taking Fourier inverse transform. If we

work on the circle, i.e., on Lp(T), we obtain similar conclusions for the conjugate
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function; we will do this in Section 5.7 but in a more general distributional setting

obtaining several logarithmic asymptotic behaviors of the conjugate Fourier series.

5.7 Logarithmic Averages of Fourier Series

We now apply our results to the Fourier series of 2π-periodic distributions. Suppose

that f(x) =
∑∞

n=−∞ cne
inx, where the series converges in S ′(R). Assume also that

f has the jump behavior (5.2.1). Then Theorem 5.18 implies at once that there

exists k ∈ N such that

lim
x→∞

1

log x

∑
0≤n≤x

cne
inx0

(
1− n

x

)k
=

[f ]x=x0

2πi
, (5.7.1)

and

lim
x→∞

1

log x

∑
1≤n≤x

c−ne
−inx0

(
1− n

x

)k
= − [f ]x=x0

2πi
, (5.7.2)

which gives us a logarithmic average for the Cesàro-Riesz means of these two series.

The conjugate Fourier series is f̃(x) =
∑∞

n=−∞ c̃ne
inx, where c̃0 = 0 and c̃n =

−i sgn n cn. It follows from the above relations that it has the quasiasymptotic

behavior at x0,

f̃ (x0 + εx) =
1

π
[f ]x=x0 log ε+ o

(
log

(
1

ε

))
as ε→ 0+ in D′(R) . (5.7.3)

Moreover, since V (z), =m z > 0, given by

V (z) =
−1∑

n=−∞

c̃ne
iz̄n +

∞∑
n=1

c̃ne
izn , (5.7.4)

is a harmonic conjugate to a harmonic representation of f , one deduces from

Theorem 5.21 that for 0 < η ≤ π/2

lim
z→x0, z∈∆+

η (x0)

1

log |z − x0|

(
−1∑

n=−∞

c̃ne
iz̄n +

∞∑
n=1

c̃ne
izn

)
=

1

π
[f ]x=x0 . (5.7.5)

Hence we obtain the jump as the logarithmic angular average of the harmonic

representation of the conjugate series. In particular, if we take η = π/2,

lim
y→0+

1

log y

∞∑
n=1

(
c̃ne

ix0n + c̃−ne
−ix0n

)
e−yn =

1

π
[f ]x=x0 . (5.7.6)

151



If we now use the sines and cosines series for f , i.e.,

f(x) =
a0

2
+

∞∑
n=0

(an cosnx+ bn sinnx) , (5.7.7)

where an = cn + c−n, bn = i(cn − c−n), then c̃n = 1
2

(
−b|n| − i sgnn a|n|

)
and

f̃(x) =
∞∑
n=1

(an sinnx− bn cosnx) . (5.7.8)

Therefore (5.7.6) is equivalent to

lim
r→1−1

1

log(1− r)

∞∑
n=1

(an sinnx0 − bn cosnx0) r
n =

1

π
[f ]x=x0 , (5.7.9)

which exhibits the jump now as the Abel-Poisson logarithmic means of the con-

jugate Fourier series. In fact, also using the sines and cosines series expression for

the conjugate series and (5.7.1)-(5.7.2), one obtains the jump as the logarithmic

average of the symmetric partial sums of the conjugate series in the Cesàro-Riesz

means

lim
x→∞

1

log x

∑
0<n≤x

(an sinnx0 − bn cosnx0)
(

1− x

n

)k
= − 1

π
[f ]x=x0 . (5.7.10)

In the next section, we will obtain (5.7.9) and (5.7.10) under weaker assumptions,

namely, under a symmetric jump behavior.

5.8 Symmetric Jumps and Logarithmic

Averages

We conclude this chapter by analyzing the case when the distribution f has a

symmetric jump behavior at x = x0. We use the jump distribution

ψx0 := ψfx0
(x) = f(x0 + x)− f(x0 − x) ; (5.8.1)

so if f has a symmetric jump then

ψx0(εx) = [f ]x=x0 sgnx+ o(1) as ε→ 0+ in D′(R) , (5.8.2)

We use our results from Section 5.5 and Section 5.6, applied to the jump distribu-

tion, to deduce some logarithmic averages in the case of symmetric jump behavior.
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Theorem 5.23. Suppose that f ∈ S ′(R) has a symmetric jump at x = x0. Then for

any decomposition f̂ = f̂− + f̂+, where supp f̂− ⊆ (−∞, 0] and supp f̂+ ⊆ [0,∞),

we have that

eiλx0xf̂+(λx)− e−iλx0xf̂−(−λx) = 2 [f ]x=x0

log λ

iλ
δ(x) + o

(
log λ

λ

)
(5.8.3)

as λ→∞ in S ′(R). Consequently, there exists k such that

((
eix0tf̂+(t)− e−ix0tf̂−(−t)

)
∗ tk+

)
(x) ∼ 2

i
[f ]x=x0

xk log x (5.8.4)

as x→∞, in the ordinary sense.

Proof. We can apply Theorem 5.18 directly, since ψ̂x0(x) = eix0xf̂(x)−e−ix0xf̂(−x),

and a decomposition f̂ = f̂− + f̂+ leads to the decomposition

ψ̂x0(x) =
(
eix0xf̂+(x)− e−ix0xf̂−(−x)

)
+
(
eixoxf̂−(x)− e−ix0xf̂+(−x)

)
.

We now obtain the announced Cesàro-Riesz logarithmic version of F. Lukács

Theorem.

Corollary 5.24. Let f ∈ S ′(R) be a 2π-periodic distribution having the following

Fourier series

a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) . (5.8.5)

If f has a symmetric jump behavior at x = x0, then there is a k ∈ N such that

lim
x→∞

1

log x

∞∑
n=1

(an sinnx0 − bn cosnx0)
(

1− n

x

)k
= − 1

π
[f ]x=x0

. (5.8.6)

Proof. Notice that the jump distribution has Fourier series,

ψx0(x) = −2
∞∑
n=1

(an sinnx0 − bn cosnx0) sinnx ,

153



then

ψ̂x0(x) = 2πi
∞∑
n=1

(an sinnx0 − bn cosnx0) (δ (x− n)− δ (x+ n)) .

Therefore one has that

∞∑
n=1

(an sinnx0 − bn cosnx0) δ(λx− n) = − 1

π
[f ]x=x0

log λ
δ(x)

λ
+ o

(
log λ

λ

)
as λ→∞ in S ′(R), from where we deduce (5.8.6).

We now give the radial version of Theorem 5.21 in the case of symmetric jump

behavior.

Theorem 5.25. Let f ∈ D′(R) have a symmetric jump behavior at x = x0. Then

if V is any harmonic conjugate to a harmonic representation of f on =m z > 0,

one has that

lim
y→0+

V (x0, y)

log y
=

1

π
[f ]x=x0

. (5.8.7)

Proof. As is the proof of Theorem 5.20 and Theorem 5.21 we may assume that f

is tempered distribution and

V (z) = − i

2π

(〈
f̂+(t), eizt

〉
−
〈
f̂−(t), eiz̄t

〉)
,

where f̂ = f̂− + f̂+ is any decomposition with supp f̂− ⊆ (−∞, 0] and supp f̂+ ⊆

[0,∞). Hence by Theorem 5.23, we obtain that

V (x0, y) = − i

2π

〈
f̂+(t)eix0t − f̂−(−t)e−ix0t, e−yt

〉
= − i

2π

〈
2

i
[f ]x=x0

log

(
1

y

)
δ(t), e−yt

〉
+ o

(
log

1

y

)
=

1

π
[f ]x=x0

log y + o

(
log

1

y

)
as y → 0+ ,

as required.

In the case when f is the boundary value of an analytic function, one can get a

much better result. As was obtained in [54, Thm.5], one has the angular asymptotic

logarithmic behavior. We give a new proof of this fact.
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Theorem 5.26. Let F be analytic in the upper half-plane, with distributional

boundary values f(x) = F (x+ i0). Suppose f has a distributional symmetric jump

behavior at x = x0. Then, for any 0 < η ≤ π/2

F (z) ∼ i

π
[f ]x=x0 log(z − x0) as z ∈ ∆+

η (x0) → x0 . (5.8.8)

Proof. Let ψx0 be the jump distribution at x = x0. Then ψx0 has a jump behavior

at x = 0 and [ψx0 ]x=0 = 2[f ]x=x0 . Observe that U(z) = F (x0 + z) − F (x0 − z̄)

is a harmonic representation of ψx0 and V (z) = −i (F (x0 + z) + F (x0 − z̄)) is a

harmonic conjugate. Hence, we can apply (5.4.2) and Theorem 5.21 to U and V

and obtain that F (x0 − z̄) = F (x0 + z) +O(1) and so

F (x0 + z) + F (x0 − z̄) =
2i

π
[f ]x=x0 log |z|+ o (|log |z||) , z ∈ ∆+

η (0) → 0 ;

and therefore (5.8.8) follows.

We end this section with an immediate corollary of Theorem 5.25, this is the

result from [54] which generalizes F. Móricz result [140, 141], namely, we express

the symmetric jump as a logarithmic average of the Abel-Poisson means of the

conjugate series.

Corollary 5.27. Let f ∈ S ′(R) be a 2π-periodic distribution with Fourier series

a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) . (5.8.9)

If f has a symmetric jump behavior at x = x0, then its conjugate series has the

following logarithmic Abel-Poisson average value

lim
r→1−

1

log(1− r)

∞∑
n=1

(an sinnx0 − bn cosnx0) r
n =

1

π
[f ]x=x0

. (5.8.10)
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Chapter 6
Determination of Jumps by
Differentiated Means

6.1 Introduction

We continue in this chapter our study of jumps of distributions. New types of

summability means are introduced in order to find formulas for jumps, namely,

Differentiated Means. The result of the present chapter are to be published soon

in [222].

Our results are inspired in a classical result of L. Fejér ([63],[256, Vol.I, p.107]).

It states that if f is a 2π-periodic function of bounded variation having Fourier

series
∞∑

n=−∞

cne
inx (6.1.1)

then

lim
N→∞

1

N

N∑
n=−N

ncne
inx0 =

1

iπ

(
f(x+

0 )− f(x−0 )
)
, (6.1.2)

at every point x = x0 where f has a simple discontinuity. Therefore, the limit

(6.1.2) involving the differentiated Fourier series determines the jumps of the func-

tion. If one writes (6.1.1) in the cosines-sines form, i.e.,

a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) , (6.1.3)

then (6.1.2) takes the form

lim
N→∞

1

N

N∑
n=1

n(bn cosnx− an sinnx) =
1

π

(
f(x+

0 )− f(x−0 )
)
. (6.1.4)

Relation (6.1.4) is an example of what we call a differentiated mean. A. Zyg-

mund studied a more general problem in [255] (see also [256]), under an extended

notion of symmetric jump related to the notion of de la Vallée Poussin general-

ized derivatives, he obtained formulas for the jump in terms of Cesàro versions of

(6.1.4).
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The study of the jump behavior and the determination of jumps by different

types of means has become an important area because of its applications in edge

detection from spectral data [66, 67]. Results of this kind are important in applied

mathematics because they have direct consequences in computational algorithms

(consult references in [66]). Recently, it has attracted the attention of many authors

and some generalization of classical results have been given [9, 54, 66, 67, 70,

118, 119, 120, 121, 140, 141, 143, 186, 187, 215, 218, 222, 248, 253]. We already

faced some of such generalizations in Chapter 5. Basically, we could say that these

generalizations go in three directions: extensions of the notion of jump, enlargement

of the class of functions, and the use of different means to determine the jump.

In the present chapter we provide results of a general character. We leave the

usual classes of classical functions, and obtain results for very general distribu-

tions and tempered distributions, as we have been doing in the previous chapters.

The usual notions for jumps are extended to distributional notions for pointwise

jumps, the jump behavior and the symmetric jump behavior, as defined in Chapter

5 (Section 5.2). The distributional jumps include those of classical functions. In

order to determine the pointwise jumps of distributions, we define a new type of

means, the differentiated means in the Cesàro and Riesz sense; these means are

applicable to Fourier series and to the Fourier transform of tempered distributions.

We then obtain formulas of type (6.1.2) in terms of the differentiated means of the

Fourier transform of tempered distributions. Our results are applicable to Fourier

series, we therefore generalize some of the results mentioned above. The approach

we are taking has also a numerical advantage with respect to other approaches;

in the case of the jump occurring in the jump behavior, our formulas only use

partial part of the spectral data (either positive or negative part). For the case

of symmetric jumps, we recover some results from [255, 256]. When we deal only
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with distributions in D′(R), thus we do not have the Fourier transform available,

we can still use differentiated Abel-Poisson means in order to determine the jump,

that is, the jump can be calculated in terms of the asymptotic behavior of partial

derivatives of harmonic representations and harmonic conjugates.

6.2 Differentiated Riesz and Cesàro Means

In this section we shall define a new type of means, the differentiated Riesz and

Cesàro means. They will be the main tool of the next section when finding formulas

for jumps of distributions. We begin with the case of series.

Definition 6.1. Let {λn}∞n=0 be an increasing sequence of non-negative numbers

such that limn→∞ λn = ∞. Let k and m ∈ N. We say that a series
∑∞

n=0 cn is

summable to γ by the k-differentiated Riesz means of order m, relative to {λn}∞n=0,

if

lim
x→∞

k

(
m+ k

m

) ∑
λn<x

cn

(
λn
x

)k (
1− λn

x

)m
= γ . (6.2.1)

In such a case, we write

d.m.
∞∑
n=0

cn = γ
(
R(k), {λn} ,m

)
. (6.2.2)

When λn = n, we simply write
(
C(k),m

)
for
(
R(k), {n} ,m

)
, and say that the series

is summable by the k-differentiated Cesàro means of order m.

Notice that if k = 0, the means are trivial. So from now on, we assume that

k is always a positive integer, while m might be equal to 0. Observe also that it

is possible to take non-integral values for k and m; however, we will only use the

integral case and thus we shall always take k,m ∈ N. When we do not want to

make reference to m, we simply write
(
C(k)

)
or
(
R(k), {λn}

)
, respectively.

The first surprising fact about our means is that these methods of summation

are not regular [85]; that is, if
∑∞

n=0 cn is convergent to γ, we do not necessarily

have that
∑∞

n=0 cn is
(
R(k), {λn} ,m

)
summable to γ. However, our method is what
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Hardy calls Ic [85, p.43], it means that it sums convergent series but not necessarily

to the same value of convergence. That fact is presented in the next proposition:

Indeed, our method of differentiated Riesz means sums all convergent series to 0.

Proposition 6.2. Suppose that
∑∞

n=0 cn is convergent to some value γ, then

d.m.
∞∑
n=0

cn = 0
(
R(k), {λn} ,m

)
. (6.2.3)

Proof. We assume that m ≥ 1, when m = 0 the proof is similar. Define s(x) =∑
λn<x

cn . We have that s(x) → γ as x→∞. So,

∑
λn<x

cn
λkn
xk

(
1− λn

x

)m
=

∫ x

0

(
t

x

)k (
1− t

x

)m
ds(t)

=

∫ 1

0

((m+ k)t− k) tk−1(1− t)m−1s(xt) dt ,

and the last term converges to

γ

(
(m+ k)

∫ 1

0

tk(1− t)m−1dt− k

∫ 1

0

tk−1(1− t)m−1dt

)
= 0 ,

as required.

The fact that the differentiated Riesz means sum convergent series to 0 will be

reflected in their ability to detect the jump of Fourier series.

We now generalize Definition 6.1 to distributional evaluations.

Definition 6.3. Let g ∈ D′(R) be a distribution with support bounded on the left

and let φ ∈ E(R). We say that the evaluation 〈g(x), φ(x)〉 has a value γ in the

k-differentiated Cesàro sense (at order m) and write

d.m. 〈g(x), φ(x)〉 = γ
(
C(k),m

)
, (6.2.4)

if

xkφ(x)g(x) = γxk−1 + o
(
xk−1

)
(C,m+ 1) , x→∞ . (6.2.5)
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A similar definition applies if g has support bounded on the right; notice that

unlike the (C) sense, where 〈f(−x), φ(x)〉 = 〈f(x), φ(−x)〉 (C), in this case we

have that d.m. 〈f(−x), φ(x)〉 = −d.m. 〈f(x), φ(−x)〉
(
C(k)

)
. Again, if we do not

want to make reference to m, we simply write
(
C(k)

)
. Observe that one readily

verifies that

d.m.
∞∑
n=0

cn = γ
(
R(k), {λn} ,m

)
(6.2.6)

if and only if

d.m.

〈
∞∑
n=0

cnδ(x− λn), 1

〉
= γ

(
C(k),m

)
. (6.2.7)

More generally, if µ is a Radon measure concentrated on [0,∞), one writes

instead of (6.2.4)

d.m.

∫ ∞

0

φ(t)dµ(t) = γ
(
C(k),m

)
. (6.2.8)

Hence (6.2.8) holds if and only if

lim
x→∞

k

(
m+ k

m

)∫ x

0

φ(t)

(
t

x

)k (
1− t

x

)m
dµ(t) = γ . (6.2.9)

We want to define the k-differentiated Cesàro distributional evaluations for the

case of unrestricted supports.

Lemma 6.4. If g ∈ E ′(R) then for any k > 0, m ≥ 0 and φ ∈ E(R), one has that

d.m. 〈g(x), φ(x)〉 = 0
(
C(k),m

)
.

Proof. Since φ(x)g(x) ∈ E ′(R), one can assume that φ ≡ 1. It is enough to show

the result for m = 0. Next, let G ∈ D′(R) be a distribution with support bounded

at the left such that G′(x) = xkg(x), since G′ vanishes in a neighborhood of infinity,

then G is constant in that neighborhood of infinity, consequently, for x large enough

G(x) = o(xk), as x→∞, in the ordinary sense, as required.

We can now define the k-differentiated Cesàro distributional evaluations for dis-

tributions with unrestricted support.
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Definition 6.5. Let g ∈ D′ (R) and let φ ∈ E(R). Let g = g1 + g2 be a decom-

position of g where g1(x) and g2(−x) have supports bounded on the left. We say

that d.m. 〈g(x), φ(x)〉 = γ
(
C(k)

)
if both d.m. 〈gi(x), φ(x)〉 = γi

(
C(k)

)
exist and

γ = γ1 + γ2.

Observe that because of Lemma 6.4 the last definition is independent of the

decomposition of f .

We also have the analog to Proposition 6.2 for distributions.

Proposition 6.6. Let f ∈ D′(R) and let k be a positive integer. If 〈g(x), φ(x)〉 = γ

(C), for some γ, then d.m. 〈g(x), φ(x)〉 = 0
(
C(k)

)
.

Proof. It is enough to assume that g has support bounded on one side, say on the

left, and that φ ≡ 1. The condition, together with the assumption on the support,

implies that

g(λx) = γ
δ(x)

λ
+ o

(
1

λ

)
,

as λ→∞ in S ′(R). Hence multiplying by (λx)k, we see that

(λx)kg(λx) = o
(
λk−1

)
as λ→∞,

in S ′(R). Hence, since the support of g is bounded on the left, we can apply

Proposition 1.13 to conclude that xkg(x) = o
(
xk−1

)
(C).

We were not precise in the order of summability in Proposition 6.6. If we want to

obtain information about the order, then it requires a more elaborated argument.

Theorem 6.7. Let f ∈ D′(R) and k be a positive integer. If 〈g(x), φ(x)〉 = γ

(C,m), for some γ, then d.m. 〈g(x), φ(x)〉 = 0
(
C(k), n

)
, for n ≥ m.

Proof. We may assume that supp g is bounded at the left, φ ≡ 1 and n = m. Let

G be the (m+ 1)-primitive of g with support bounded at the left, then

G(x) ∼ γ

m!
xm , x→∞ , (6.2.10)
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We now calculate the (m + 1)-primitive of xkg(x) with support bounded at the

left. In the well known formula

φh(m+1) =
m+1∑
j=0

(−1)j
(
m+ 1

j

)(
φ(j)h

)(m+1−j)
, (6.2.11)

valid for φ ∈ E(R) and h ∈ D′(R), we take h = G and φ(x) = xk. This shows that

F (x) =
m+1∑
j=0

(−1)j
C(k, j)

(j − 1)!

(
m+ 1

j

)∫ x

0

(x− t)j−1tk−jG(t)dt ,

where C(k, j) = k(k− 1) . . . (k− j + 1), is the desired (m+ 1)-primitive of xkg(x).

Then, (6.2.10) implies

F (x) =
γ

m!

m+1∑
j=0

(−1)j
C(k, j)

(j − 1)!

(
m+ 1

j

)∫ x

0

(x− t)j−1tk−j+mdt+ o(xm+k)

=
γ

(m!)2

∫ x

0

(x− t)mtk
dm+1

dtm+1
(tm)dt+ o(xm+k) = o(xm+k) ,

as x→∞, here we have used again (6.2.11) but now with h(x) = xm.

6.3 Determining the Jumps of Tempered

Distributions by Differentiated Cesàro

Means

In this section we determine the jump, for the jump behavior and symmetric jump

behavior, of general tempered distributions. This is done in two ways, in terms

of the asymptotic behavior of its Fourier transform, and in terms of differentiated

Cesàro means.

Theorem 6.8. Let f ∈ S ′(R) have the distributional jump behavior at x = x0,

f (x0 + εx) = γ−H(−x) + γ+H(x) + o(1) as ε→ 0+ . (6.3.1)

Let k be a positive integer. Then for any decomposition f̂ = f̂−+f̂+, with supp f̂− ⊆

(−∞, 0] and supp f̂+ ⊆ [0,∞), one has that

d.m.
〈
f̂±(x), eix0x

〉
=

1

i
[f ]x=x0

(
C(k)

)
(6.3.2)
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In particular, d.m.
〈
f̂(x), eix0x

〉
= (2/i) [f ]x=x0

(
C(k)

)
, and

xkeiλx0xf̂±(λx) = (±1)k−1 1

λi
[f ]x=x0

xk−1
± + o

(
1

λ

)
as λ→∞ , (6.3.3)

where the last quasiasymptotic relation holds in the sense of weak convergence in

S ′(R).

Proof. Differentiating (6.3.1) k-times, one has that

f (k) (x0 + εx) = [f ]x=x0

δ(k−1)(x)

εk
+ o

(
1

εk

)
, (6.3.4)

as ε→ 0+ in D′(R). If we take Fourier transform in (6.3.4), we obtain the asymp-

totic behavior,

(λx)k eiλx0xf̂(λx) =
1

i
[f ]x=x0

(λx)k−1 + o
(
λk−1

)
as λ→∞ , (6.3.5)

in S ′(R) . Therefore xkeix0xf̂(x) has quasiasymptotic behavior at infinity with

respect to λk−1. The asymptotic relation (6.3.5) admits the splitting (6.3.3), due

to the general structural theorem for quasiasymptotic behaviors (see Chapter 10,

[212, Thm.2.6] or the decomposition theorem in [231, p.134]); and (6.3.3) yields

(6.3.2), by Proposition 1.8 (Section 1.8.1).

A particular case is obtained when f̂ is a Radon measure. Notice that this class

of distributions includes the so called pseudofunctions [71].

Corollary 6.9. Let f ∈ S ′(R) have the distributional jump behavior (6.3.1). Sup-

pose that its Fourier transform is given by a Radon measure µ. Then for each pos-

itive integer k there exists m ∈ N such that for any decomposition of µ = µ− + µ+

as two Radon measures concentrated on (−∞, 0] and [0,∞), respectively, one has

that

d.m.

∫ ∞

0

e±ix0tdµ± (±t) = ±1

i
[f ]x=x0

(
C(k),m

)
, (6.3.6)
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or which amounts to the same,

lim
x→∞

ik

(
m+ k

m

)∫ x

0

e±ix0t

(
t

x

)k (
1− t

x

)m
dµ± (±t) = ± [f ]x=x0

. (6.3.7)

Note that Theorem 6.8 and Corollary 6.9 provide us with formulas for the jump

by only considering the spectral data of f from either the left or right side of the

origin. In the case of symmetric jump behavior this is not longer possible; however,

we can still recover the jump by taking symmetric means.

Theorem 6.10. Suppose that f ∈ S ′(R) has a symmetric jump at x = x0. Let k

be a positive integer. Then for any decomposition f̂ = f̂− + f̂+, where supp f̂− ⊆

(−∞, 0] and supp f̂+ ⊆ [0,∞), we have that

d.m.
〈
eix0xf̂+(x)− e−ix0xf̂−(−x), 1

〉
=

2

i
[f ]x=x0

(
C(k)

)
. (6.3.8)

Proof. Let ψx0 := ψfx0
be the jump distribution (Section 5.2). It has the jump

behavior at x = 0

ψx0(εx) = [f ]x=x0
sgnx+ o(1) as ε→ 0+ in D′(R) ,

and so [ψx0 ]x=0 = 2 [f ]x=x0
. Since ψ̂x0(x) = eix0xf̂(x)− e−ix0xf̂(−x), a decomposi-

tion f̂ = f̂− + f̂+ leads to the decomposition ψ̂x0(x) = ψ̂−(x) + ψ̂+(x) where

ψ̂±(x) = eix0xf̂±(x)− e−ix0xf̂∓(−x) ,

and thus Theorem 6.8 implies (6.3.8).

When f̂ is a Radon measure, we can give formulas of type (6.3.7). Depending on

the parity of k, we should use the means of a Fourier type integral or a conjugate

type integral. This fact is given in the next two corollaries which follow immediately

from Theorem 6.10.
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Corollary 6.11. Let f ∈ S ′(R) have a distributional symmetric jump behavior at

x = x0. Suppose that its Fourier transform is a Radon measure µ. Let 2k − 1 be a

positive odd integer. Then there exists m ∈ N such that

lim
x→∞

i(2k − 1)

2x2k−1

(
m+ 2k − 1

m

)∫ x

−x
t2k−1eix0t

(
1− |t|

x

)m
dµ(t) = [f ]x=x0

. (6.3.9)

Corollary 6.12. Let f ∈ S ′(R) have a distributional symmetric jump behavior

at x = x0. Suppose that its Fourier transform is a Radon measure µ. Let 2k be a

positive even integer. Then there exists m ∈ N such that for any decomposition µ =

µ− +µ+, as two Radon measures concentrated on (−∞, 0] and [0,∞), respectively,

one has that

lim
x→∞

ik

x2k

(
m+ 2k

m

)∫ x

−x
t2keix0t

(
1− |t|

x

)m
dσ(t) = [f ]x=x0

, (6.3.10)

where σ = µ+ − µ− .

Sometimes is possible to single out a measure σ in (6.3.10). For certain distribu-

tions one can talk about a unique Hilbert transform [60], say f̃ , in such a case one

may take σ = i ˆ̃f . Actually, this will be done in Section 6.5 for the case of periodic

distributions.

6.4 Jumps and Local Boundary Behavior of

Derivatives of Harmonic and Analytic

Functions

In this section, we determine the jump of a distribution in terms of the asymp-

totic behavior of derivatives of analytic representations (Section 1.6); we also find

formulas for the jump in terms of partial derivatives of harmonic and harmonic

conjugate functions. Given 0 < η ≤ π/2 and x0 ∈ R, we define the subset of the

upper half-plane ∆+
η (x0) as the set of those z such that η ≤ arg(z − x0) ≤ π − η,

similarly, we define the subset of the lower half-plane ∆−
η (x0) as the set of those z

such that η − π ≤ arg(z − x0) ≤ −η .
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We start with the jump behavior and analytic representations.

Theorem 6.13. Let f ∈ D′(R) have the jump behavior at x = x0

f (x0 + εx) = γ−H(−x) + γ+H(x) + o(1) as ε→ 0+ . (6.4.1)

Suppose that F is an analytic representation of f on =m z 6= 0, then for each

positive integer k and 0 < η ≤ π/2, one has that

lim
z→z0, z∈∆±

η (x0)
(z − x0)

k F (k)(z) = (−1)k
(k − 1)!

2πi
[f ]x=x0

. (6.4.2)

Proof. We first show that if (6.4.2) holds for one analytic representation, then it

holds for any analytic representation of f . In fact by the very well known edge

of the wedge theorem, any two such analytic representations differ by an entire

function, and for entire functions (6.4.2) gives 0. Next, we prove that we may

assume that f ∈ S ′(R). Indeed we can decompose f = f1 + f2 where f2 is zero in a

neighborhood of x0 and f1 ∈ S ′(R). Let F1 and F2 be analytic representations of f1

and f2, respectively; then F2 can be continued across a neighborhood of x0 (edge

of the wedge theorem once again), hence F2(z) = F2(x0) +O (|z − x0|) = O (1) as

z → x0. Additionally, f1 has the same jump behavior as f . Thus, we may assume

that f ∈ S ′ (R). Consider the following analytic representation [24, p.83], where

f̂ = f̂− + f̂+ is a decomposition as in Theorem 6.8,

F (z) =


1

2π

〈
f̂+(t), eizt

〉
, =m z > 0 ,

− 1

2π

〈
f̂−(t), eizt

〉
, =m z < 0 ,

Keep the number z on a compact subset of ∆±
η (x0), then

F (k)
(
x0 +

z

λ

)
= ± ik

2π
λk+1

〈
tkeiλx0tf̂± (λt) , eizt

〉
= ±(±i)k−1

2π
[f ]x=x0

λk
∫ ∞

0

tk−1e±iztdt+ o
(
λk
)

= (−1)k
(k − 1)!

2πi
[f ]x=x0

(
λ

z

)k
+ o

(
λk
)
,
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as λ→∞, where we have used (6.3.3).

Next, we determine the jump, occurring in jump behavior, by finding the local

boundary asymptotic behavior of partial derivatives of harmonic and harmonic

conjugate functions.

Theorem 6.14. Let f ∈ D′(R) have the distributional jump behavior (6.4.1) at

x = x0. Let U be a harmonic representation of f on =mz > 0. Let V be a harmonic

conjugate to U . Suppose that k is a positive integer, then

∂kU

∂xk
(z) =

(k − 1)!

(−1)k π
[f ]x=x0

=m 1

(z − x0)
k

+ o
(
|z − x0|−k

)
, (6.4.3)

and

∂kV

∂xk
(z) =

(k − 1)!

(−1)k+1 π
[f ]x=x0

<e 1

(z − x0)
k

+ o
(
|z − x0|−k

)
, (6.4.4)

as z → x0 on any sector of the form ∆η
+(x0), 0 < η ≤ π/2 .

Proof. Notice that, since harmonic conjugates differ from each other by a con-

stant, we may use any specific V we want. We now show that we may work with

any harmonic representation U of f . Suppose that U and U1 are two harmonic

representations of f , then U2 = U − U1 represents the zero distribution. Then by

applying the reflection principle to the real and imaginary parts of U [11, Section

4.5], [207, Section 3.4], we have that U2 admits a harmonic extension to a (com-

plex) neighborhood of x0. Consequently, if V and V1 are harmonic conjugates to

U and U1, we have that V2 = V − V1 is harmonic conjugate to U2, and thus it

admits a harmonic extension to a (complex) neighborhood of x0 as well. Therefore

∂kU2

∂xk
(z),

∂kV2

∂xk
(z) = O(1) in a neighborhood of x0; consequently, we have that U

and V satisfy (6.4.3) and (6.4.4) if and only if U1 and V1 do it.

Let F be an analytic representation of f . We may assume that U(z) = F (z) −

F (z̄) and V (z) = −i (F (z) + F (z̄)). Notice that
∂kU

∂xk
(z) = F (k)(z) − F (k)(z̄) and
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∂kV

∂xk
(z) = −i

(
F (k)(z) + F (k)(z̄)

)
, and then an application of (6.4.2) gives (6.4.3)

and (6.4.4).

Observe that when k is odd it is possible to recover the jump from the radial

asymptotic behavior of
∂kU

∂xk
but not from the one of

∂kV

∂xk
; similarly, when k is

even we recover the jump from the radial behavior of
∂kV

∂xk
, but not from the one

of
∂kU

∂xk
. This is also true for the symmetric jump behavior.

Theorem 6.15. Let f ∈ D′(R) have symmetric jump at x = x0. Let k be a positive

integer. Suppose that U is a harmonic representation of f on =m z > 0 and V is

a harmonic conjugate to U . Then,

lim
y→0+

y2k−1∂
2k−1U

∂x2k−1
(x0 + iy) = (−1)k+1 (2k − 2)!

π
[f ]x=x0

, (6.4.5)

and

lim
y→0+

y2k ∂
2kV

∂x2k
(x0 + iy) = (−1)k+1 (2k − 1)!

π
[f ]x=x0

. (6.4.6)

Proof. We apply our results to the jump distribution ψx0 := ψfx0
(Section 5.2). Let

U be a harmonic representation of f and V be a harmonic conjugate. We have that

U (x0 + z)−U (x0 − z̄) and V (x0 + z) +V (x0 − z̄) are a harmonic representation

and a harmonic conjugate for ψx0 . The result now follows from Theorem 6.14 and

the fact [ψx0 ]x=0 = 2 [f ]x=x0
.

We remark that for distributions the radial behavior of its harmonic represen-

tations can be considered as Abel-Poisson means, while the radial behavior of

harmonic conjugate functions can be considered as conjugate Abel-Poisson means;

hence, one can say that Theorem 6.15 gives the jump in terms of differentiated

Abel-Poisson means. We will apply this useful observation to Fourier series in the

next section. We also want to point out that Theorem 6.13 and Theorem 6.14 are

much stronger than Theorem 6.15, and in the context of Fourier series, as we shall
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see, can be used to express the jump as differentiated Abel-Poisson means of only

a partial part of the spectrum.

If we assume that f is the boundary value of an analytic function on the upper

half-plane, we can get a better result than Theorem 6.15. This is the content of

the next theorem.

Theorem 6.16. Let F be analytic in the upper half-plane, with distributional

boundary values f(x) = F (x+ i0). Suppose f has a distributional symmetric jump

behavior at x = x0. Then, for any 0 < η ≤ π/2

F (k)(z) ∼ (k − 1)![f ]x=x0

(−1)kiπ(z − x0)k
as z ∈ ∆+

η (x0) → x0 . (6.4.7)

Proof. Let ψx0 be the jump distribution at x = x0. Then ψx0 has a jump behavior

at x = 0 and [ψx0 ]x=0 = 2[f ]x=x0 . Observe that U(z) = F (x0 + z) − F (x0 − z̄)

is a harmonic representation of ψx0 and V (z) = −i (F (x0 + z) + F (x0 − z̄)) is a

harmonic conjugate. Hence, we can apply Theorem 6.14 to U and V to obtain that

F (k)(x0 + z) = (−1)kF (x0 − z̄) + 2(−1)k
(k − 1)!

π
[f ]x=x0

=m 1

zk
+ o

(
|z|−k

)
and

F (k)(x0 + z) = (−1)k+1F (x0 − z̄) + 2(−1)k
(k − 1)!

iπ
[f ]x=x0

<e 1

zk
+ o

(
|z|−k

)
as z ∈ ∆+

η (0) → 0; and therefore (6.4.7) follows.

6.5 Applications to Fourier Series

This section is dedicated to applications of our results to Fourier series. We deter-

mine the jump of 2π-periodic distributions in terms of differentiated Cesàro-Riesz

and Abel-Poisson means.

Throughout this section f is a 2π-periodic distribution with Fourier series

f(x) =
∞∑

n=−∞

cne
inx , (6.5.1)

where the series converges in S ′(R).
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6.5.1 Jump Behavior and Fourier Series

Notice that the Fourier transform of f is given by

f̂(x) = 2π
∞∑

n=−∞

cnδ(x− n) , (6.5.2)

hence, as an immediate corollary of Theorem 6.8, we obtain,

Theorem 6.17. If f has a jump behavior at x = x0, with jump [f ]x=x0, then for

each positive integer k we have that

d.m.
∞∑
n=0

cne
ix0n =

1

2πi
[f ]x=x0

(
C(k)

)
, (6.5.3)

and

d.m.
∞∑
n=1

c−ne
−ix0n = − 1

2πi
[f ]x=x0

(
C(k)

)
. (6.5.4)

Notice that, as we have previously remarked, in our formulas we only need either

the positive or the negative part of the spectral data of f , having an advantage

over other approaches where the complete spectral data of f is used.

We now interpret Theorem 6.13 in the context of Fourier series; again notice

that only one part of the spectrum is used. Observe that

F (z) =



∞∑
n=0

cne
izn, =m z > 0 ,

−
1∑

n=−∞

cne
izn, =m z < 0 ,

(6.5.5)

is an analytic representation of f , from where we have immediately.

Theorem 6.18. If f has a jump behavior at x = x0, with jump [f ]x=x0, then for

each positive integer k we have that for 0 < η ≤ π/2,

lim
z→x0, z∈∆+

η (x0)
(z − x0)

k
∞∑
n=0

nkcne
inz = − (k − 1)!

2π(−i)k+1
[f ]x=x0

, (6.5.6)

and

lim
z→x0, z∈∆−

η (x0)
(z − x0)

k
1∑

n=−∞

nkcne
inz =

(k − 1)!

2π(−i)k+1
[f ]x=x0

. (6.5.7)
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Remark 6.19. We remark that we may also consider non-harmonic series and

obtain analog results. Indeed, suppose that {λn}∞n=0 is an increasing sequence such

that 0 ≤ λ0 and limn→∞ λn = ∞, let

g(x) =
∞∑

n=−∞

cne
iλ|n|x , (6.5.8)

convergent in S ′ (R). Then if g has a distributional jump behavior at x = x0, we

have that for each positive integer k

d.m.
∞∑
n=0

cne
ix0λn =

1

2πi
[g]x=x0

(
R(k), {λn}

)
, (6.5.9)

d.m.
∞∑
n=1

c−ne
ix0λn = − 1

2πi
[g]x=x0

(
R(k), {λn}

)
, (6.5.10)

lim
z→x0, z∈∆+

η (x0)
(z − x0)

k
∞∑
n=0

λkncne
iλnz = − (k − 1)!

2π(−i)k+1
[g]x=x0

, (6.5.11)

and

lim
z→x0, z∈∆−

η (x0)
(z − x0)

k
∞∑
n=1

λknc−ne
iλnz =

(k − 1)!

2π (−i)k+1
[g]x=x0

. (6.5.12)

6.5.2 Symmetric Jump Behavior and Fourier Series

As usual, we define the conjugate distribution of f as

f̃(x) =
∞∑

n=−∞

c̃ne
inx , (6.5.13)

with c̃n = −i sgnn cn, c̃0 = 0. Notice that f̃ is the Hilbert transform of f [60].

Since we will use symmetric means, it is convenient to use the sines and cosines

series for f , i.e.,

f(x) =
a0

2
+

∞∑
n=0

(an cosnx+ bn sinnx) , (6.5.14)
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where an = cn + c−n, bn = i(cn − c−n), then c̃n =
(
−b|n| − i sgnna|n|

)
/2 and

f̃(x) =
∞∑
n=1

(an sinnx− bn cosnx) . (6.5.15)

We obtain from Theorem 6.10.

Theorem 6.20. Let k be a positive integer. If f has a symmetric jump at x = x0,

then

d.m.
∞∑
n=1

(an sinnx0 − bn cosnx0) = − 1

π
[f ]x=x0

(
C(k)

)
. (6.5.16)

Proof. Observe that f̂ = f̂− + f̂+, where

f̂+(x) = a0π δ(x) + π
∞∑
n=1

(an − ibn) δ(x− n) ,

and

f̂−(x) = π
∞∑
n=1

(an + ibn) δ(x+ n) .

Thus, an easy calculation gives that eix0xf̂+(x)− e−ix0xf̂−(−x) is equal to

a0π δ(x) + 2πi
∞∑
n=1

(an sinnx0 − bn cosnx0) δ(x− n) ,

and therefore (6.5.16) is a direct consequence of Theorem 6.10.

Relation (6.5.16) can also be written in terms of the Fourier coefficients {cn}

and {c̃n}. By direct computation, or by applying Corollaries 6.11 and 6.12, one

obtains the following corollary.

Corollary 6.21. Let k be a positive integer. If f has a symmetric jump at x = x0,

then

lim
x→∞

(2k − 1)

(
m+ 2k − 1

m

) ∑
−x<n<x

cne
ix0n

(n
x

)2k−1
(

1− |n|
x

)m
=

1

iπ
[f ]x=x0

,

(6.5.17)
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and

lim
x→∞

2k

(
m+ 2k

m

) ∑
−x<n<x

c̃ne
ix0n

(n
x

)2k
(

1− |n|
x

)m
= − 1

π
[f ]x=x0

. (6.5.18)

We now express the jump in terms of differentiated Abel-Poisson means.

Theorem 6.22. If f has symmetric jump behavior at x = x0, then for any positive

k we have that

∞∑
n=1

(an sinnx0 − bn cosnx0)n
krn ∼ −

(k − 1)! [f ]x=x0

π(1− r)k
, (6.5.19)

as r → 1−.

Proof. Notice that

U(z) =
a0

2
+

1

2

∞∑
n=1

(an − ibn) eizn +
1

2

∞∑
n=1

(an + ibn) e−iz̄n

and

V (z) = −1

2

∞∑
n=1

(ian + bn) eizn +
1

2

∞∑
n=1

(ian − bn) e−iz̄n

are a harmonic representation of f and a harmonic conjugate. If k is odd, we obtain

that

∂kU

∂xk
(x0 + iy) = ik+1

∞∑
n=1

(an sinnx0 − bn cosnx0)n
ke−ny ,

on the other hand if k is even, we have that

∂kV

∂xk
(x0 + iy) = ik

∞∑
n=1

(an sinnx0 − bn cosnx0)n
ke−ny .

So, in any case we obtain from Theorem 6.15 that for each positive integer

lim
y→0+

yk
∞∑
n=1

(an sinnx0 − bn cosnx0)n
ke−ny = −(k − 1)!

π
[f ]x=x0

.

We end this section with a direct corollary of Theorem 6.16.
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Corollary 6.23. Suppose that the 2π-periodic distribution f is the boundary value

of analytic function, i.e., its Fourier series expansion is of the form

f(x) =
∞∑
n=0

cne
ixn . (6.5.20)

If f has symmetric jump behavior at x = x0, then for any positive integer k and

0 < η ≤ π/2, one has that

∞∑
n=0

nkcne
izn ∼ (−1)k

(k − 1)![f ]x=x0

πik+1(z − x0)k
as z ∈ ∆+

η (x0) → x0 . (6.5.21)

6.6 A Characterization of Differentiated Cesàro

Means

In this section we provide a characterization of the summability method by differ-

entiated Cesàro means in terms of the Cesàro behavior of the sequence
{
nkcn

}∞
n=1

.

This equivalence is stated in the next theorem. The proof adapts an argument from

the proof of [85, Thm.58, p.113] to our context; G. Hardy attributes the main ar-

gument to A.E. Ingham [100]. One may also adapt M. Riesz’s original proof of the

equivalence between the (R, {n}) and (C) methods of summation [94, 172].

Theorem 6.24. Let {cn}∞n=0 be a sequence of complex numbers. Let k be a positive

integer. Then

d.m.
∞∑
n=0

cn = γ
(
C(k),m

)
(6.6.1)

if and only if

nkcn = γnk−1 + o
(
nk−1

)
(C,m+ 1) . (6.6.2)

Proof. Set an = nkcn − γnk−1, since

lim
x→∞

(
m+ k

m

)
k

xk

∑
0<j<x

jk−1

(
1− j

x

)m
= k

(
m+ k

m

)∫ 1

0

tk−1(1− t)mdt

= 1 ,

174



we have that (6.6.1) holds if and only if

Tm(x) :=
∑

0<j<x

aj(x− j)m = o
(
xm+k

)
, x→∞ . (6.6.3)

Set

Am+1(n) =
n∑
j=0

(
m+ j

m

)
an−j . (6.6.4)

Observe that relation (6.6.2) is equivalent to

Am+1(n) = o(nm+k) , n→∞ . (6.6.5)

Therefore, we shall show that (6.6.3) and (6.6.5) are equivalent.

Assume first that Am+1(n) = o
(
nm+k

)
. Set x = n+ϑ, where n is an integer and

0 ≤ ϑ < 1. Since Tm(x) =
∑n

j=0 (n− j + ϑ)m aj, we have that for |z| < 1

∞∑
n=0

Tm(x)zn =
∞∑
n=0

(n+ ϑ)mzn
∞∑
n=0

anz
n

= (1− z)m+1

∞∑
n=0

(n+ ϑ)mzn
∞∑
n=0

Am+1(n)zn .

Now, it is easy to see [85, p.113] that

(1− z)m+1

∞∑
n=0

(n+ ϑ)mzn =
m∑
j=0

cj(ϑ)zj ,

where the coefficients cj(ϑ) are polynomials in ϑ of degree m. Thus,

Tm(x) =
m∑
j=0

cj(ϑ)Am+1(n− j) = o
(
xm+k

)
, x→∞ .

We now assume that Tm(x) = o(xm+k). We take m+ 1 numbers 0 < ϑ0 < ϑ1 <

. . . , < ϑm. The equation (
n+m

m

)
=

m∑
j=0

bj(n+ ϑj)
m

can be written as a system of m+ 1 equations with non-zero determinant, then it

has unique solutions b0, . . . , bm. Hence, we obtain

Am+1(n) =
n∑
j=0

(
n− j +m

m

)
aj =

m∑
j=0

bjTm(n+ ϑj) = o
(
nm+k

)
,

as n→∞, as required.
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It is convenient to spell out what (6.6.2) says. Recall the definition of the Cesàro

means [85, 256] of a sequence {bn}∞n=0. Given l ≥ 0, the Cesàro mean of order l of

the sequence (not to be confused with the means of a series) are

Cl {bj;n} :=
l!

nl

n∑
j=0

(
j + l − 1

l − 1

)
bn−j .

Notice that

n∑
j=0

(
m+ j

m

)
(n− j)k−1 ∼ 1

m!

n∑
j=1

jm(n− j)k−1

∼ (k − 1)!

(m+ k)!
nm+k , n→∞ .

Therefore if we define

C(k)
m {cj ;n} :=

(m+ k)!

(k − 1)! nm+k

n∑
j=1

(
n− j +m

m

)
jkcj (6.6.6)

=
k

m+ 1

(
m+ k

m

)
Cm+1

{
jkcj ; n

}
nk−1

,

we have then that (6.6.2) means

lim
n→∞

C(k)
m {cj ;n} = γ . (6.6.7)

So alternatively, we could use (6.6.7) to define the k-differentiated Cesàro means

instead of the means originally used in Definition 6.1. This also justifies the switch

of notation from
(
R(k), {n}

)
to
(
C(k)

)
in Definition 6.1.

Theorem 6.24 has an interesting distributional consequence which is presented

in the next corollary. We denote the integral part of a number x by [x]. Given a

sequence {an}∞n=0, we denote by a[x] the piecewise constant function equal to an

for n ≤ x < n+ 1.
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Corollary 6.25. Let {an}∞n=0 be a sequence of complex numbers and let k be a

non-negative integer. Then,

∞∑
n=0

anδ(x− n) = γxk + o
(
xk
)

(C,m) , x→∞ , (6.6.8)

if and only if

an = γnk + o
(
nk
)

(C,m) , n→∞ , (6.6.9)

and, in turn, if and only if

a[x] = γxk + o
(
xk
)

(C,m) , x→∞ . (6.6.10)

On combining Theorem 6.17 and Theorem 6.24, we obtain new formulas for the

jump of Fourier series occurring in the jump behaviors.

Corollary 6.26. Let f be a 2π-periodic distribution having Fourier series

∞∑
n=−∞

cne
inx .

If f has a jump behavior at x = x0, then

lim
n→∞

ncne
inx0 =

1

2πi
[f ]x=x0 (C) , (6.6.11)

and

lim
n→∞

nc−ne
−inx0 = − 1

2πi
[f ]x=x0 (C) . (6.6.12)

We end this chapter with a corollary that can be tracked down to the work

of A. Zygmund [81, 255], of course he stated it in a very different form; at that

time distribution theory did not even exist! The proof follows immediately from

Theorem 6.20 and Theorem 6.24.

Corollary 6.27. Let f be a 2π-periodic distribution having Fourier series

∞∑
n=0

(an cosnx+ bn sin x) .

If f has a symmetric jump behavior at x = x0, then

lim
n→∞

n (bn cosnx0 − an sinnx0) =
1

π
[f ]x=x0 (C) . (6.6.13)
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Chapter 7
Distributionally Regulated Functions

7.1 Introduction

In [128],  Lojasiewicz introduced and studied the class of distributions that have a

distributional value at every point. As he showed, these distributions deserve to be

called “functions” since the function given by its values is a well-defined measurable

function, and the correspondence between the distributions with values at every

point and the function of its values is a bijection. Although there is a notion,

that of regular distribution, that appears to apply exactly to those distributions

that correspond to functions, it is fair to say that the distributions introduced by

 Lojasiewicz, even if not “regular,” are objects that one would call “functions.”

The aim of this chapter is to introduce and study a generalization of the class of

 Lojasiewicz functions, namely the distributionally regulated functions, which are

those distributions that have a distributional lateral limit at every point without

having Dirac delta functions or derivatives at any point, i.e., they have jump be-

havior everywhere. We also consider the related class of distributionally regulated

functions with delta functions, which are those distributions that have a distribu-

tional lateral limit at every point; we show that in this case the set of points where

there are delta functions is countable at the most.

If f is a distributionally regulated function (without delta functions), with lateral

limits f (x+) and f (x−) at each x ∈ R then we introduce the function

f̃ (x) =
f (x+) + f (x−)

2
. (7.1.1)

The function f̃ is a well-defined measurable function, and the correspondence

f ↔ f̃ is one-to-one and onto. Therefore, it is justified to identify the distribution
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f and the function f̃ , and call f a “function.” When f is a distributionally regu-

lated function with delta functions, then f̃ captures the ordinary function part of

f, and f− f̃ is a singular distribution that consists of sums of Dirac delta functions

and derivatives on some countable at the most set. The distributionally regulated

functions also generalize the classical regulated functions, which are those func-

tions that have ordinary lateral limits at every point [36]. The classical regulated

functions play a role in many areas of mathematics such as conformal mapping

theory [167], in the description of curves by their radius of curvature [53] and the

application of these ideas to the study of crystals [247], and in the study of theories

of integration more general than the Lebesgue integral, a subject that has received

increased attention in recent years [10, 76]. Actually,  Lojasiewicz proved that there

is a descriptive integral that can be defined for distributions that have a value at

every point, and as it is easy to see, this integral is also defined for distributionally

regulated functions. For this integral one has

〈f (x) , φ (x)〉 =

∫ ∞

−∞
f̃ (x)φ (x) dx , (7.1.2)

for any test function φ ∈ D (R) .

The chapter is organized as follows. In Section 7.2 we give some preliminary

notions on lateral limits of distributions at points. Distributionally regulated func-

tions are defined in Section 7.3. The next section introduces the φ−transform, a

function of two variables F (x, y) , x ∈ R, y > 0, that satisfies F (x, 0+) = f (x)

distributionally and that allows us to study the local behavior of a distribution f.

In sections 7.4 and 7.5 we consider the pointwise boundary behavior of F (x, y)

as (x, y) approaches the point (x0, 0) in the cases when the distributional value

f (x0) exists and when just the distributional limits f
(
x±0
)

exist. We give several

formulas for the distributional jumps of f in terms of the φ−transform and related

functions; these formulas complement those from Sections 5.4, 5.6, and 6.4, (Chap-
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ters 5 and 6), which were given in terms of the boundary behavior of harmonic

representations and harmonic conjugates. Our formulas apply to distributions with

arbitrary support and are given not only in terms of conjugate harmonic functions

but in terms of more general solutions of partial differential equations, as follows

from the results of Section 7.8.

In Section 7.6 we show that the set of singular points of a distributionally reg-

ulated function, namely where the lateral limits do not coincide, or where there

are delta functions, is countable at the most; this result is easily proved for clas-

sical regulated functions, but a new proof is required in this case. Actually, our

arguments also apply to show that the set of points where a distribution may have

non-equal lateral limits is countable at most; the result holds for general distribu-

tions not necessarily being distributionally regulated functions. The last fact about

the size of the set of singular points is used in Section 7.7 to prove the one-to-one

correspondence between the functions and the distributions. In Section 7.8 we show

that the φ−transform is many times the solution of a partial differential equation,

such as the Laplace equation or the heat equation, and therefore our results be-

come results on the boundary behavior of solutions of partial differential equations.

Finally, in Section 7.9 we provide two characterizations of the Fourier transform

of tempered distributionally regulated functions. The results of this chapter have

already been published in [215].

7.2 Limits and Lateral Limits at a Point

In Section 4.6 we introduced lateral limits of distributions at points. Definition

4.14 differs from  Lojasiewicz original definition, but both are equivalent. We now

discuss  Lojasiewicz original approach [128], which will be more convenient for the

purposes of this chapter. We say that f ∈ D′(R) has a distributional limit γ at the

point x = x0 if f (x0 + εx) = γ + o(1) as ε → 0 in D′(R \ {0}). In this case we
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write

lim
x→x0

f(x) = γ , distributionally. (7.2.1)

Observe (7.2.1) means that

lim
ε→0

〈f(x0 + εx), φ(x)〉 = γ

∫ ∞

−∞
φ(x) dx , φ ∈ D(R \ {0}) . (7.2.2)

Notice that the distributional limit limx→x0 f(x) can be defined for f ∈ D′(R \

{x0}). If the distributional point value f(x0) exists then the distributional limit

limx→x0 f(x) exists and equals f(x0). On the other hand, if limx→x0 f(x) = γ,

distributionally, then [128] there exist constants a0, . . . , an such that f(x) = f0(x)+∑n
j=0 ajδ

(j)(x−x0), where the distributional point value f0(x0) = γ, distributional

We may also consider lateral limits. We say that the distributional lateral limit

f(x+
0 ) = γ+ exists if f(x+

0 ) = limε→0+ f(x0 + εx) in D′(0,∞), that is,

lim
ε→0+

〈f(x0 + εx), φ(x)〉 = f(x+
0 )

∫ ∞

0

φ(x) dx , φ ∈ D(0,∞) . (7.2.3)

We write f(x+
0 ) = γ+, distributionally. Similar definitions apply to f(x−0 ). Notice

that the distributional limit limx→x0 f(x) exists if and only if the distributional

lateral limits f(x−0 ) and f(x+
0 ) exist and coincide. If both lateral limits exist, then

the jump is defined as the number [f ]x=x0 = γ+ − γ−.

Suppose that f(x±0 ) = γ±, then there exists f0 and constants such that f(x) =

f0(x) +
∑n

j=0 ajδ
(j)(x− x0), and f0 has the jump behavior

f0(x0 + εx) = γ−H(−x) + γ+H(x) + o(1) as ε→ 0+ in D′(R) . (7.2.4)

If no delta and its derivatives occur, that is, f = f0, then we actually obtain that

f has jump behavior at x = x0. We will indistinctly used the phrases f has jump

behavior at x = x0 and the distributional lateral limits exist and f has no delta

functions at x = x0.
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7.3 Regulated Functions

In his pioneering work,  Lojasiewicz [128] introduced and studied the distributions

that have a distributional point value at every point. He proved that if one consid-

ers the function having those distributional values as values, then this function is

measurable and in a very precise sense, the distribution corresponds to the func-

tion. It is common usage to call a distribution “regular” if it arises from a locally

Lebesgue integrable function. The functions studied by  Lojasiewicz are more gen-

eral instances of what one should call “regular” distributions, namely those arising

from a function by integration. However, in general, the functions that arise from

the distributional point values are many times not locally integrable in the sense

of Lebesgue; sometimes they are locally integrable with respect to more general

integration processes such as the Denjoy-Perron-Henstock integral, as the function

f1 (x) = x−1 sin x−1, x 6= 0, f1 (0) = 0, but sometimes they are not, as the function

f2 (x) = x−2 sin x−1, x 6= 0, f2 (0) = 0.

In this section we shall study a somewhat bigger class, that of the distributionally

regulated functions. The definition is as follows.

Definition 7.1. A distribution f ∈ D′ (R) is called a distributionally regulated

function if at each point x0 ∈ R both distributional lateral limits f
(
x±0
)

exist and

f has no Dirac delta functions at x = x0. We say that f is a distributionally

regulated function with delta functions if at each point x0 ∈ R both distributional

lateral limits f
(
x±0
)

exist.

It will follow from our study that a distribution that is a distributionally reg-

ulated function actually corresponds to an actual function, the function given by

the distributional point value f (x0) , which is defined whenever f
(
x+

0

)
= f

(
x−0
)
,

an equation that holds for all x0 except for those of an exceptional set that is

countable at the most.
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On the other hand a distributionally regulated function with delta functions is

a distribution, and the name “function” is used in the way the name function is

used for the Dirac delta function.

Sometimes we shall refer to distributionally regulated functions as “distribution-

ally regulated functions without delta functions.”

The distributionally regulated functions that have no distributional jump at any

point are the functions studied in [128], and therefore we shall call them  Lojasiewicz

functions.

Our definitions were given for a distribution f ∈ D′ (R) , defined over the whole

real line. However, one can consider any of these notions over finite intervals in the

obvious way, namely, a distribution is, say, a distributionally regulated function

over the interval (a, b) if its distributional lateral limits exist at each point, and no

delta functions are present.

It is worth to point out that the classical regulated functions are those classical

functions that have lateral limits at every point. They are precisely the uniform

limits of step functions [36]. Observe that the classical analogue of the  Lojasiewicz

functions are the continuous functions.

7.4 The φ−transform

Our main tool to study the local behavior of distributions is the φ−transform, a

function of two variables that we now define.

Let φ ∈ D (R) be a fixed test function that satisfies

∫ ∞

−∞
φ (x) dx = 1 . (7.4.1)

If f ∈ D′ (R) we introduce the function of two variables F = Fφ {f} by the

formula

F (x, y) = 〈f (x+ yξ) , φ (ξ)〉 , x ∈ R, y > 0 , (7.4.2)
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the distributional evaluation being taken with respect to the variable ξ. We call F

the φ−transform of f.

The φ−transform can also be defined if φ does not belong to D (R) as long as

we consider only distributions f of a more restricted class. Indeed, we can consider

the case when φ ∈ A (R) and f ∈ A′ (R) for any suitable space of test functions

A (R) , such as S (R) , K (R) , or E (R) . Observe that we assume (7.4.1) in every

case.

Our first result shows that f (x) is the distributional boundary value of F (x, y)

as y → 0.

Theorem 7.2. If f ∈ D′ (R) and F is its φ−transform defined by (7.4.2) then

lim
y→0

F (x, y) = f (x) , (7.4.3)

distributionally in the space D′ (R) , that is,

lim
y→0

〈F (x, y) , ψ (x)〉 = 〈f (x) , ψ (x)〉 , ∀ψ ∈ D (R) . (7.4.4)

Proof. If ψ ∈ D (R) then

〈F (x, y) , ψ (x)〉 = 〈Ψ (yξ) , φ (ξ)〉 , (7.4.5)

where

Ψ (z) = 〈f (x) , ψ (x− z)〉 , (7.4.6)

is a smooth function of z. Therefore, Ψ (0) exists in the ordinary sense and conse-

quently in the distributional sense of  Lojasiewicz. Hence,

lim
y→0

〈Ψ (yξ) , φ (ξ)〉 = Ψ (0) = 〈f (x) , ψ (x)〉 , (7.4.7)

and (7.4.4) follows.

The result will also hold when f ∈ E ′ (R) and φ ∈ E (R) if φ ∈ L1 (R) . In that

case (7.4.7) follows from the Lebesgue dominated convergence theorem, since Ψ
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would belong to D (R) . Another case when f (x) is the distributional boundary

value of F (x, y) as y → 0 is if

f (x) = O
(
|x|β

)
(C) , as |x| → ∞ , (7.4.8)

φ (x) = O (|x|α) , strongly as |x| → ∞ , (7.4.9)

and

α < −1 , α + β < −1 , (7.4.10)

as follows from [54, Theorem 1]. Actually, we will show a multidimensional version

of such result later in Section 12.3. Recall that (7.4.9) means that it holds after

differentiation, i.e., φ(k)(x) = O(|x|α−k), for all k ∈ N. It is true in particular if

f ∈ S ′ (R) and φ ∈ S (R) .

For future reference, we say that if f ∈ D′ (R) and φ ∈ D (R) we are in Case I.

If (7.4.8), (7.4.9), and (7.4.10) are satisfied, we say that we are in Case II. When

f ∈ S ′ (R) and φ ∈ S (R) we say that we are in Case III. Most of our results will

hold in any of these three cases. However, the results are usually false when we

just assume that f ∈ E ′ (R) and φ ∈ E (R) .

Theorem 7.3. Suppose

f (x0) = γ , (7.4.11)

distributionally. In any of the cases I, II, or III, we have

lim
(x,y)→(x0,0)

F (x, y) = γ , (7.4.12)

in any sector y ≥ m |x− x0| for any m > 0.
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Proof. Let us show that if |x1| ≤ 1/m then limε→0+ F (x0 + εx1, ε) = γ. Indeed, if

φ ∈ D (R) , then

F (x0 + εx1, ε) = 〈f (x0 + εx1 + εξ) , φ (ξ)〉

= 〈f (x0 + εω) , φ (ω − x1)〉

= 〈f (x0 + εω) , φx1 (ω)〉 ,

where φx1 (ω) = φ (ω − x1) also belongs to D (R) and
∫∞
−∞ φx1 (ω) dω = 1. Thus

(7.4.12) follows. The limit is uniform with respect to x1 for |x1| ≤ 1/m since

{φx1 : |x1| ≤ 1/m} is a compact set in D (R) . The proof in cases II and III is

similar.

Angular convergence of F (x, y) to γ = f (x0) is obtained when the distributional

point value exists. On the other hand, the radial limit, limy→0+ F (x0, y) exists

under weaker hypothesis, namely, under symmetric point values (Section 3.10).

Theorem 7.4. Suppose case I, II, or III holds, and the test function φ is even.

Let χfx0
(s) = (f (x0 + s) + f (x0 − s)) /2, that is, the even part of f about the point

x = x0. If

fsym(x0) = γ , distributionally , (7.4.13)

i.e., χfx0
(0) = γ, distributionally, then

lim
y→0+

F (x0, y) = γ . (7.4.14)

Proof. The fact that φ is even yields

lim
y→0+

F (x0, y) = lim
y→0+

〈f (x0 + yξ) , φ (ξ)〉

= lim
y→0+

〈f (x0 + yξ) , (φ (ξ) + φ (−ξ)) /2〉

= lim
y→0+

〈χx0 (yξ) , φ (ξ)〉

= γ ,
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as required.

Remark 7.5. The above result does not hold if f ∈ E ′ (R) and φ ∈ E (R) . Indeed,

if

φ (x) =
3 sin x3

πx
, (7.4.15)

then φ ∈ E(R) and
∫∞
−∞ φ (x) dx = 1. If f (x) = δ (x) , then

F (x, y) =

(
3

πx

)
sin

(
x

y

)3

. (7.4.16)

If x0 6= 0 then f (x0) = 0 but not even the radial limit limy→0+ F (x0, y) exists.

Suppose now that the distribution f ∈ D′ (R) has lateral distributional limits

f
(
x±0
)

= γ± as x→ x0 from the right and from the left, respectively, and no delta

functions at x = x0. This means that f has the following jump behavior: for each

ψ ∈ D (R) ,

lim
ε→0+

〈f (x0 + εξ) , ψ (ξ)〉 = γ−

∫ 0

−∞
ψ (ξ) dξ + γ+

∫ ∞

0

ψ (ξ) dξ . (7.4.17)

Then we have the ensuing result.

Theorem 7.6. Suppose case I, II, or III holds and f satisfies (7.4.17). Then for

each ϑ ∈ (0, π) there exits α = α (ϑ) ∈ [0, 1] such that

lim
(x,y)→(x0,0)

(x,y)∈lϑ

F (x, y) = α (ϑ) γ+ + (1− α (ϑ)) γ− , (7.4.18)

where lϑ is the line y = tanϑ (x− x0) .

In cases II or III, limϑ→0 α (ϑ) = 1, limϑ→π α (ϑ) = 0. In case I actually there

exist ϑ0, ϑ1 ∈ (0, π) such that α (ϑ) = 1 for ϑ ≤ ϑ0 while α (ϑ) = 0 for ϑ ≥ ϑ1.

When φ is even then α (π/2) = 1/2.

Proof. The limit of F (x, y) as (x, y) → (x0, 0) along lϑ is given as

lim
ε→0+

〈f (x0 + ε cosϑ+ ε sinϑ ξ) , φ (ξ)〉 = lim
ε→0+

〈f (x0 + εω) , φϑ (ω)〉

= γ−

∫ 0

−∞
φϑ (ω) dω + γ+

∫ ∞

0

φϑ (ξ) dω ,
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where

φϑ (ω) =
1

sinϑ
φ

(
ω − cosϑ

sinϑ

)
. (7.4.19)

The result follows by taking

α (ϑ) =

∫ ∞

0

φϑ (ω) dω =

∫ ∞

− cotϑ

φ (ω) dω , (7.4.20)

which has the stated properties.

Remark 7.7. If f
(
x±0
)

= γ± exist distributionally, then

f (x) = f0 (x) +
m∑
j=0

cjδ
(j) (x− x0)

where f0 has no delta functions at x = x0. It follows that

F (x, y) = F0 (x, y) +
m∑
j=0

cj
yj+1

φ(j)

(
x0 − x

y

)
. (7.4.21)

Therefore (7.4.18) is still valid for the finite part of the limit:

F.p. lim
(x,y)→(x0,0)

(x,y)∈lϑ

F (x, y) = α (ϑ) γ+ + (1− α (ϑ)) γ− . (7.4.22)

Remark 7.8. If φ is even and f
(
x±0
)

= γ± exist distributionally while f has no

delta functions at x = x0 then (7.4.18) shows that the radial limit limy→0+ F (x0, y)

exists and equals (γ+ + γ−) /2. However, Theorem 7.4 is a stronger result, since

the lateral limits may not exist if χfx0
(s) has the distributional limit γ at s = 0.

More generally, if

lim
s→0+

χfx0
(s) = γ , (7.4.23)

distributionally, then

F.p. lim
y→0+

F (x0, y) = γ . (7.4.24)

Remark 7.9. If f is a distributionally regulated function with delta functions

then the finite part limit F.p. limy→0+ F (x, y) exists for each x ∈ R, and equals(
f
(
x+

0

)
+ f

(
x−0
))
/2. It will follow from the results of Section 7.6 that the set
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of points where the limit is not an ordinary limit is countable at the most. If f

is a distributionally regulated function without delta functions then the limit is

an ordinary limit for each x ∈ R. On the other hand, if f is a distributionally

regulated function without delta functions then lim(x,y)→(x0,0),(x,y)∈l F (x, y) exists

for each non-horizontal line l, the set of points where the limit is not independent

of l is countable at the most, while if f is a  Lojasiewicz function then the limit is

independent of l for each x0 ∈ R.

7.5 Determination of Jumps by the

φ−transform

Suppose f ∈ D′ (R) is such that the lateral limits f
(
x±0
)

= γ± exist distribution-

ally. In this section we consider certain formulas for the jump d = [f ]x=x0
= γ+−γ−

in terms of the radial limits of some functions related to F (x, y) .

Let us start with the case when f does not have delta functions at x = x0. Ob-

serve that sometimes we shall use the notation F,x or F,y for the partial derivatives

∂F/∂x and ∂F/∂y, respectively.

Theorem 7.10. Let f be a distribution and φ a test function that satisfies (7.4.1).

Suppose case I, II, or III holds. Suppose the distributional lateral limits f
(
x±0
)

= γ±

exist and f has no delta functions at x = x0. Let d = γ+ − γ− be the jump of f at

x = x0 and let ν = φ (0) . Then

lim
y→0+

yF,x (x0, y) = νd . (7.5.1)

Proof. The hypotheses yield the jump behavior

f (x0 + εx) = γ+H (x) + γ−H (−x) + o (1) as ε→ 0+ (7.5.2)

in the space D′ (R) , where H is the Heaviside function. Since distributional ex-

pansions can be differentiated, we obtain the quasiasymptotic behavior

f ′ (x0 + εx) =
d

ε
δ (x) + o

(
1

ε

)
as ε→ 0+ in D′(R). (7.5.3)
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Observe now that F,x is precisely the φ−representation of f ′ (x) . Thus (7.5.3)

yields

F,x (x0, y) =
dφ (0)

y
+ o

(
1

y

)
, y → 0+, (7.5.4)

and (7.5.1) follows.

If we just assume that the distributional lateral limits f
(
x±0
)

= γ± exist, then f

may have delta functions at x = x0 and thus the formula (7.5.1) can be modified

by using the finite part of the limit:

F.p. lim
y→0+

yF,x (x0, y) = νd . (7.5.5)

Actually, to obtain (7.5.5) and in particular (7.5.1) there is no need to assume that

the distributional lateral limits f
(
x±0
)

exist; it is enough to suppose that the jump

distribution

ψx0 (s) := ψfx0
(s) = f (x0 + s)− f (x0 − s) , (7.5.6)

has a distributional limit as s→ 0.

Theorem 7.11. Let f be a distribution and φ a test function that satisfies (7.4.1).

Suppose case I, II, or III holds. Suppose

ψx0

(
0+
)

= d , (7.5.7)

distributionally. If φ is even then

F.p. lim
y→0+

y
∂F

∂x
(x0, y) = νd . (7.5.8)

When ψx0 (s) does not have delta functions at s = 0 then (7.5.8) is an ordinary

limit.
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Proof. Indeed, the result follows by applying (7.5.5) or (7.5.1) to Ψ (x, y) , the

φ−representation of ψx0 (x) and by observing that

F,x (x0, y) = 〈f ′ (x0 + yξ) , φ (ξ)〉

= 〈f ′ (x0 + yξ) , (φ (ξ) + φ (−ξ))/2〉

= 〈(f ′ (x0 + yξ)− f ′ (x0 − yξ))/2, φ (ξ)〉

=
1

2

〈
ψ′x0

(yξ) , φ (ξ)
〉

=
1

2
Ψ,x (0, y) ,

since ψx0 (0+) = −ψx0 (0−) = d, and hence [ψx0 ]x=0 = 2d.

Another formula for the jump is given in terms of logarithmic averages. Observe

that in case II, that is f (x) = O
(
|x|β

)
(C) , as |x| → ∞, and φ (x) = O (|x|α)

strongly as |x| → ∞, we need to assume not only that α < −1 and α + β < −1,

but also that β < 0.

Theorem 7.12. Let f be a distribution and φ a test function that satisfies (7.4.1).

Suppose case I or case II with β < 0 holds. If ψx0 (0+) = d, then

F.p. lim
y→0+

1

log y

〈
f (x0 + yξ) ,

φ (ξ)− φ (0)

ξ

〉
= νd . (7.5.9)

Proof. Observe that the condition β < 0, or case I, guarantee that the Cesàro eval-

uation 〈f (x0 + yξ) , ρ (ξ)〉 , where ρ (ξ) = (φ (ξ)− φ (0)) /ξ is well-defined. Notice

also that if f
(
x±0
)

= γ± exist and f has no delta functions at x = x0 then one

may argue that 〈f (x0 + yξ) , ρ (ξ)〉 approaches γ−
∫ 0

−∞ ρ (ξ) dξ+ γ+

∫∞
0
ρ (ξ) dξ as

y → 0+; however, both integrals diverge:
∣∣∣∫ 0

−∞ ρ (ξ) dξ
∣∣∣ =

∣∣∫∞
0
ρ (ξ) dξ

∣∣ = ∞.
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On the other hand,

∂

∂y

〈
f (x0 + yξ) ,

φ (ξ)− φ (0)

ξ

〉
=

〈
ξf ′ (x0 + yξ) ,

φ (ξ)− φ (0)

ξ

〉
= 〈f ′ (x0 + yξ) , φ (ξ)− φ (0)〉

= 〈f ′ (x0 + yξ) , φ (ξ)〉

=
∂F

∂x
(x0, y) .

Thus we may use L’Hôpital rule to obtain

F.p. lim
y→0+

1

log y

〈
f (x0 + yξ) ,

φ (ξ)− φ (0)

ξ

〉
= F.p. lim

y→0+
y
∂F

∂x
(x0, y)

= νd ,

as required.

Remark 7.13. The function F̃ (x, y) = 〈f (x+ yξ) , (φ (ξ)− φ (0)) /ξ〉 is a type

of “conjugate” function to the φ−transform F (x, y) . Actually if φ (x) = π−1(1 +

x2)−1 then F (x, y) is a harmonic function and F̃ (x, y) is precisely its harmonic

conjugate.

Example 7.14. Let us consider the distributional behavior of the distribution fα,

α > 0, given by the nonharmonic series

fα (x) =
∞∑
n=1

sinnαx

n
, (7.5.10)

as x → 0. Observe that fα (x) = O
(
|x|−∞

)
(C) as |x| → ∞. Let us consider the

conjugate function F̃ (x, y) with φ (x) = π−1(1 + x2)−1 as in the remark above.

Then

F̃ (x, y) =
∞∑
n=1

e−n
αy cosnαx

n
, (7.5.11)

and thus F̃ (0, y) ∼ (1/α) ln y, since
∑

nα≤N 1/n ∼ (1/α) lnN as N → ∞, and it

follows that νd = 1/α, or d = π/α, since φ (0) = 1/π. Therefore, since fα is odd,
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we obtain the distributional lateral limits

fα
(
0+
)

=
π

2α
, fα

(
0−
)

=
−π
2α

. (7.5.12)

Observe that this is easy to see for α = 1 from the well-known formula

f1 (x) =
π − x

2
, 0 < x < π , (7.5.13)

and for α = 1/2 from the formula

f1/2 (x) = π +
∞∑
j=0

(−1)j ζ (1/2− j)x2j+1

(2j + 1)!
, x > 0 , (7.5.14)

obtained by Boersma [20] when solving a problem proposed by Glasser [69]; see also

[45]. It is not hard to see that if α > 1 then (7.5.12) are not ordinary limits, since

fα is unbounded as x→ 0.

7.6 The Number of Singularities

In this section we show that if f is a distributionally regulated function, with or

without delta functions, then the distributional point value f (x) exists for all x

save for those of an exceptional set which is countable at the most. Actually, the

result holds without assuming that f is distributionally regulated, that is, we will

show that for a general distribution the set where the lateral limits exist but the

distributional point value do not exist is countable at most.

The corresponding result for ordinary regulated functions is well-known, and

actually very easy to prove. Indeed, if f (x) is a regulated function in some interval I

then for any λ > 0 the set Sλ consisting of the points x where |f (x+)− f (x−)| ≥ λ

is discreet in I, since at an accumulation point of Sλ at least one of the lateral limits

cannot exist. Thus Sλ is countable at the most, and hence so is S =
⋃
λ>0 Sλ =⋃∞

n=1 S1/n. When f is a regulated function of bounded variation, then one can even

bound the nλ (K) , the number of elements of Sλ ∩K for any compact interval K

by nλ ≤ V/λ, where V is the total variation of f over K.
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This argument does not work if f is distributionally regulated, since in that case

the set Sλ could have limit points, as the next example shows.

Example 7.15. Let us consider the function f with support in [0,∞) with deriva-

tive

f ′ (x) =
∞∑
n=1

(−1)n nqδ

(
x− 1

n

)
(C) , (7.6.1)

where q ∈ R. Then f is a distributionally regulated function, constant in all the

intervals (1/ (n+ 1) , 1/n) for n ∈ N, and in (−∞, 0) where it vanishes. The set of

points where f has a non-zero jump is exactly S = {1/n : n ∈ N}. In particular,

0 /∈ S, since the function has the distributional point value f (0) = 0. If q > 0 then

Sλ = S for λ ≤ 1, and thus 0 is an accumulation point of Sλ. Actually, we may

replace the sequence {(−1)n nq}∞n=1 by any distributionally small sequence {cn}∞n=1 ,

that is, a sequence with the property that
∑∞

n=1 cnδ (x− n) belongs to K′ (R) [61,

Section 5.4] and still obtain that f (0) = 0. Indeed,

〈f ′ (εx) , φ (x)〉 =

〈
∞∑
n=1

cnδ (εx− 1/n) , φ (x)

〉

=
∞∑
n=1

cn
ε
φ

(
1

εn

)
=

∞∑
n=1

ncnτ (εn)

= o (ε∞) as ε→ 0+ ,

where τ (x) = (1/x)φ (1/x) belongs to K (R) if φ ∈ D (R) , and where all series

are considered in the Cesàro sense. Hence f is “distributionally smooth” at x = 0

since it follows that f (m) (0) = 0 ∀m ≥ 0.

We have the following result on the number of jump singularities of an arbitrary

distribution.

194



Theorem 7.16. Let f ∈ D′ (R). Let

S = {x ∈ R : the lateral limits exist but f (x) does not exist distributionally} .

Then S is countable at the most.

Proof. Let us consider first the set S0 of those elements of S where f does not have

delta functions. Then if x0 ∈ S0 it follows that f
(
x+

0

)
6= f

(
x−0
)
. Let φ ∈ D (R)

that satisfies (7.4.1), and let F (x, y) be the φ−representation of f. There exists

θ ∈ (0, π/2) such that

lim
x→x±0

F (x, tan θ |x− x0|) = f
(
x±0
)
, ∀x0 ∈ R . (7.6.2)

Let U0 = {(r,∞) : r ∈ Q} ∪ {(−∞, r) : r ∈ Q} and let U = {(I+, I−) ∈ U0 × U0 :

I+ ∩ I− = ∅}. If x0 ∈ S0 then there exists (I+, I−) ∈ U and n ∈ N such that

F (x, tan θ (x− x0)) ∈ I+ for x0 < x < x0 + 1/n , (7.6.3)

F (x, tan θ (x0 − x)) ∈ I− for x0 − 1/n < x < x0 . (7.6.4)

For fixed (I+, I−) ∈ U and fixed n ∈ N the family of intervals (x0− 1/n, x0 + 1/n),

where x0 ∈ S0 satisfies (7.6.3) and (7.6.4) is pairwise disjoint and, consequently,

there is an at most countable number of such intervals. Hence

S0 =
⋃

(I+,I−)∈U

∞⋃
n=1

{x0 ∈ R : x0 satisfies (7.6.3) and (7.6.4)} , (7.6.5)

is also countable at the most.

The analysis at points where f has delta functions of a given order follows by

integrating f a suitable number of times. Indeed, let SN be the set of points of

S where f has no delta function of order greater than N. Let F be a primitive of

f of order N + 1, i.e., F (N+1) (x) = f (x) . Then SN \SN−1 is exactly the set of

points where F has a jump but no delta functions; hence SN \SN−1 is countable

at the most, and thus so is SN . It follows that S is countable at the most.
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We immediately obtain that distributionally regulated functions have distribu-

tionally point values except perhaps for a countable set.

Theorem 7.17. Let f ∈ D′ (R) be distributionally regulated, with or without delta

functions. Let

S = {x ∈ R : f (x) does not exist distributionally} . (7.6.6)

Then S is countable at the most.

7.7 One-to-one Correspondence

We now show that if f ∈ D′(R) is distributionally regulated then the correspon-

dence f ↔ f̃ is one-to-one, where f̃(x) = (f(x−) + f(x+))/2.

Theorem 7.18. Let f ∈ D′(R) be distributionally regulated. If f̃(x) = 0, for all

value of x except perhaps for a countable set, then f ≡ 0.

Proof. Notice that, by Theorem 7.17, the distributional point value of f exists ex-

cept for set which is countable at most. Next, since f is distributionally regulated,

then it is distributionally bounded everywhere, hence its primitive has distribu-

tional point values everywhere.  Lojasiewicz showed in [128, p.31] that these two

facts together with the hypothesis f̃(x) = 0, except perhaps on a countable set,

imply that f ≡ 0.

7.8 Boundary Behavior of Solutions of Partial

Differential Equations

The results of the previous sections apply to general distributions and test func-

tions. When the test function φ is of certain special forms, however, we have that

the φ−transform becomes a particular solution of a partial differential equation,

and those results become results on the boundary behavior of solutions of partial

differential equations.
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Suppose first that φ = φ1 where

φ1 (x) =
p (x)

q (x)
, (7.8.1)

p and q are polynomials, α = deg q − deg p ≥ 2, q does not have real zeros, and∫∞
−∞ φ1 (x) dx = 1. Let

q (x) =
n∑
k=0

akx
k. (7.8.2)

Then if f ∈ D′ (R) satisfies the estimate f (x) = O
(
|x|β

)
(C) , |x| → ∞, where

α + β < −1, then the φ−transform

F1 (x, y) = 〈f (x+ yξ) , φ1 (ξ)〉 , x ∈ R, y > 0 , (7.8.3)

is a solution of the partial differential equation

n∑
k=0

an−k
∂nF

∂xk∂yn−k
= 0 , (7.8.4)

with F (x, 0+) = f (x) distributionally, since

n∑
k=0

an−k
∂nF

∂xk∂yn−k
=

n∑
k=0

an−k
〈
f (n) (x+ yξ) ξn−k, φ1 (ξ)

〉
=
〈
f (n) (x+ yξ) q (ξ) , φ1 (ξ)

〉
=
〈
f (n) (x+ yξ) , p (ξ)

〉
= 0 .

In the particular case when q (x) = x2 + 1, p (x) = 1/π, we obtain

φ2 (x) =
1

π (x2 + 1)
, (7.8.5)

and F2 (x, y) is the Poisson “integral” of f, which in case f (x) = O
(
|x|β

)
(C) ,

|x| → ∞, for some β < 1, is the harmonic function with F2 (x, 0+) = f (x) distri-

butionally that satisfies F2 (x, y) = O
(
|x|β

)
(C) , |x| → ∞, for each fixed y > 0.

Observe that

F2 (x, y) =
y

π

∫ ∞

−∞

f (ξ) dξ

(x− ξ)2 + y2
, (7.8.6)
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if f is locally integrable.

Let us now take φ = ϕν where its Fourier transform is given by

ϕ̂ν (u) = e−u
ν

, (7.8.7)

where ν = 2p is an even positive integer. Alternatively, ϕν is the only solution in

S(R) of the ordinary differential equation

ϕ(ν−1) (ξ) = (−1)p
ξ

ν
ϕ (ξ) , (7.8.8)

with
∫∞
−∞ ϕ (ξ) dξ = 1. Then if f ∈ S ′ (R) , and F is the φ−transform correspond-

ing to ϕν , the function

Gν (x, t) = F
(
x, t1/ν

)
, x ∈ R, t > 0 , (7.8.9)

is a solution of the initial value problem

∂G

∂t
= (−1)p−1 ∂

νG

∂xν
, (7.8.10)

G
(
x, 0+

)
= f (x) , distributionally.

In particular, if ν = 2, then

ϕ̂ν (u) = e−u
2

, ϕν (ξ) =
1

2
√
π
e−ξ

2/4, (7.8.11)

and G2 (x, t) is the solution of the heat equation G,t = G,xx that satisfies the initial

condition G (x, 0+) = f (x) , distributionally, and with G (x, t) ∈ S ′ (R) for each

fixed t > 0. If f is a locally integrable function then G2 (x, t) takes the familiar

form

G2 (x, t) =
1

2
√
πt

∫ ∞

−∞
f (ξ) e−

(ξ−x)2

4t dξ . (7.8.12)

If the distributional value f (x0) = γ exists, then F1 (x, y) , and in particular

F2 (x, y) , satisfies that F1 (x, y) → γ as (x, y) → (x0, 0) in any sector y ≥ m |x− x0|

for m > 0. Also Gν (x, t) → γ in any region of the type t ≥ m (x− x0)
ν for
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m > 0. Actually, if χx0 (s) = (f (x0 + s) + f (x0 − s)) /2, and the distributional

value χx0 (0) = γ exists, then F1 (x0, y) → γ as y → 0+ and Gν (x0, t) → γ as

t → 0+. If instead of the existence of the distributional value one just has the

existence of the distributional limit f
(
x±0
)

= γ, then the finite part of the limit

of F1 (x, y) as (x, y) → (x0, 0) in any sector y ≥ m |x− x0| exist and equals γ;

similarly, one obtains the existence of the finite part of the limits in the other

cases.

Example 7.19. It is interesting to observe that if f is almost periodic or periodic,

then

f (x) =
∞∑

n=−∞

cne
iαnx, (7.8.13)

where αn → ±∞ as n→ ±∞. It follows that

F (x, y) =
∞∑

n=−∞

cne
iαnxφ̂ (−αny) , (7.8.14)

so that in particular

F2 (x, y) =
∞∑

n=−∞

cne
iαnxe−|αn|y =

∞∑
n=−∞

cne
iαnxr|αn|, (7.8.15)

where r = e−y → 1− as y → 0+. The study of the behavior of the φ−transform in

this case becomes the study of the series (7.8.13) in the Abel sense. Also

Gν (x, t) =
∞∑

n=−∞

cne
iαnxe−|αn|νt. (7.8.16)

The problem of finding the (ordinary) jumps of a Fourier series was first solved

by Fejér [63] in terms of the partial sums of the differentiated series, and was later

consider by Zygmund [256, 9.11, Chapter III, pg. 108] in terms of the differentiated

Abel-Poisson means of the Fourier series. A different formula using logarithmic

means was given by Lukács [131], [256, Thm. 8.13]. We considered in Chapters

5 and 6 extensions of such results; in particular formulas were given in terms of

the boundary asymptotic behavior of analytic, harmonic, and harmonic conjugates
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functions. The Theorems 7.11 and 7.12 provide very general results of the Fejér

and Lukács type, respectively, for a general test function φ (which provides many

different types of summability means, such as (7.8.15) or (7.8.16)) and not only for

Fourier series, but also for nonharmonic series and actually for any distribution,

these summability means can be related to the boundary behavior of solutions to

partial differential equations, as we have seen in the present section.

7.9 The Fourier Transform of Regulated

Functions

In this section we shall characterize the Fourier transform of distributionally reg-

ulated functions, with or without delta functions. We first start by reformulating

Theorem 5.10, notice that the next theorem shows that if we merely assume the

existence of the limits (5.3.11), they are forced to be of the form α + β log a.

Theorem 7.20. Let f ∈ S ′ (R) . If x0 ∈ R then the distributional lateral limits

f
(
x±0
)

= γ± exist and f has no Dirac delta function at x = x0 if and only if there

exists k such that whenever g (u) is a primitive of f̂ (u) eiux0 then the Cesàro limit

lim
u→∞

(g (au)− g (−u)) = Ix0 (a) (C, k) , (7.9.1)

exists ∀a > 0. If this is the case then

Ix0 (a) = π (γ+ + γ−)− i (γ+ − γ−) log a . (7.9.2)

Proof. Half of the statement is the content of Theorem 5.10. Conversely, suppose

that Ix0 (a) exists for each a > 0. Clearly Ix0 (a) is a measurable function of a.

Then an easy computation shows that Ix0 (a) satisfies the functional equation

Ix0 (ab) = Ix0 (a) + Ix0 (b)− Ix0 (1) . (7.9.3)

While this functional equation has many solutions, constructed using a suitable

Hamel basis, an analysis that can be traced back to Sierpinski shows that the only
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measurable solutions are

Ix0 (a) = Ix0 (1) + β log a , (7.9.4)

for some constant β. So, the result follows from Theorem 5.10 again.

We obtain the following characterization of the Fourier transforms of distribu-

tionally regulated functions.

Theorem 7.21. Let f ∈ S ′ (R) . The distribution f is a distributionally regulated

function with delta functions if and only if ∀x0 ∈ R, the distribution f̂ (u) eiux0

admits the decomposition

f̂ (u) eiux0 = px0 (u) + g′x0
(u) , (7.9.5)

where px0 (u) is a polynomial and where for some k

lim
u→∞

(g (au)− g (−u)) = Ix0 (a) (C, k) , (7.9.6)

exists ∀a > 0. The distribution f is a distributionally regulated function (without

delta functions) if px0 (u) = 0 for each x0 ∈ R; if also Ix0 (a) is a constant function

of a for each x0 ∈ R then f is a  Lojasiewicz function.

In any case, the set of points x0 where px0 (u) 6= 0 is countable, as is countable

the set of points x0 where Ix0 (a) is not a constant function of a.

We now give another characterization of distributions having lateral limits based

on a decomposition in terms of boundary limits of analytic functions from the

upper and lower half planes. Observe that only principal value Cesàro evaluations

are needed in the following theorem.

Theorem 7.22. Let f ∈ S ′ (R) . Let x0 ∈ R. Then the distributional lateral limits

f
(
x±0
)

= γ± exist and f has no Dirac delta function at x = x0 if and only if

f̂ (u) eiux0 = Hx0 (u+ i0) +Hx0 (u− i0) , (7.9.7)
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where Hx0 (z) is analytic for z ∈ C \ R, the distributional boundary distributions

Hx0 (u± i0) belong to S ′ (R) and the principal value Cesàro evaluations

p.v. 〈Hx0 (u± i0) , 1〉 = ν± (C) , (7.9.8)

both exist. In this case ν± = πγ∓.

Proof. If the distributional lateral limits f
(
x±0
)

= γ± exist and f has no Dirac

delta function at x = x0 we can write f = f+ + f− where f± do not have delta

functions at x = x0, supp f+ ⊂ [x0,∞), supp f− ⊂ (−∞, x0], f+

(
x+

0

)
= γ+, and

f−
(
x−0
)

= γ−. Then we define

Hx0 (z) =


〈
f+ (x) , e−iz(x−x0)

〉
, =mz < 0 ,

〈
f− (x) , e−iz(x−x0)

〉
, =mz > 0 ,

(7.9.9)

so that Hx0 (u± i0) = eix0uf̂∓ (u) , and consequently

p.v. 〈Hx0 (u± i0) , 1〉 = πγ∓ (C) . (7.9.10)

Conversely, if (7.9.7) holds, then f = f+ + f− where

f± (x) = F−1
{
e−iux0Hx0 (u∓ i0) , x

}
. (7.9.11)

But this implies that supp f+ ⊂ [x0,∞), while supp f− ⊂ (−∞, x0]. Then (7.9.8)

yields that the even parts of f± have the distributional values γ±/2 at x = x0. But

since the distributions f± vanish on one side of x0, it follows that the distributional

lateral limits exist and no delta function is present.

We immediately obtain the ensuing result.

Theorem 7.23. Let f ∈ S ′ (R) . The distribution f is a distributionally regulated

function with delta functions if and only if ∀x0 ∈ R, the distribution f̂ (u) eiux0

admits the decomposition

f̂ (u) eiux0 = px0 (u) +Hx0 (u+ i0) +Hx0 (u− i0) , (7.9.12)
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where px0 (u) is a polynomial and where Hx0 (z) is analytic for z ∈ C \ R, the

distributional boundary distributions Hx0 (u± i0) belong to S ′ (R) and the principal

value Cesàro evaluations

p.v. 〈Hx0 (u± i0) , 1〉 = ν± (C) , (7.9.13)

both exist. The distribution f is a distributionally regulated function (without delta

functions) if px0 (u) = 0 for each x0 ∈ R; if also ν+ = ν− for each x0 ∈ R then f

is a  Lojasiewicz function.

In any case the set of points x0 ∈ R where px0 (u) 6= 0 is countable, as is countable

the set of points where ν+ 6= ν−.

One can use these ideas to prove that if the distributional lateral limits of a

distribution that is the boundary value of an analytic function from the upper or

lower half plane exist, then they must coincide [50].
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Chapter 8
Order of Summability in Fourier
Inversion Problems

8.1 Introduction

In the chapter we study the order of summability in the pointwise Fourier inversion

formula for tempered distributions found in Chapter 3 and its implications in

the local behavior of distributions. We show that the order of summability and

the order of the point value are intimately related. We also analyze the order

of summability in other Fourier inverse problems such as the ones considered in

Chapter 5.

Recall the characterization of distributional point values of Fourier series: If

f ∈ D′(R) is 2π-periodic with Fourier series
∑∞

n=−∞ cne
inx, then f(x0) = γ, distri-

butionally, if and only if there exists k ∈ N such that

lim
x→∞

∑
−x<n≤ax

cne
inx0 = γ (C, k) ,

for each a > 0.

We shall notice that this result is merely existential, in the sense that it does

not provide information about k more than its existence. It is therefore interesting

to ask about the relation of k and the local properties of f . For instances, if f(x)

is continuous near x = x0, then Fejér’s theorem [62, 256] actually tells us that it

can be taken to be at least k = 1. On the other hand, a careful review of the work

of G. Walter [236] shows that a similar relation holds for distributions, at least

for the summability of the series in the principal value sense. Another indication

that such a relation should exist has been recently provided by F. González Vieli

in [72, 74], where a the multidimensional pointwise Fourier transform for some
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particular classes of tempered distributions is investigated using Bochner-Riesz

means.

In the general case, Theorem 3.21 provides a full characterization of the distri-

butional point values of tempered distributions. However, Theorem 3.21 has a gap,

namely, it does not establish a connection between the order of summability of the

Fourier inversion formula and the order of the point values (see Section 8.2 for

the definition of the latter). Our aim is to establish a relation between these two

orders. Among other results, we show that if a tempered distribution, with certain

restrictions of growth at ∞, has a point value of order k, then the special value

of the Fourier inversion formula is summable (C, k + 1) to the value. In the case

of Fourier series, these restrictions of growth do not appear, hence we generalized

the result from [236]. Furthermore, we also investigate the opposite problem, that

is, given the order of summability we estimate the order of the point value. We

will also analyze exactly the same order problem in the formulas for jumps given

in Chapter 5; observe that this information is valuable from a numerical point of

view. Indeed, the formulas for jumps can be used as numerical detectors for edges

of functions and distributions, but this only can be done as long as we give precise

information about the order of summability at which they hold.

The chapter is organized as follows. In Section 8.2, we define a notion of order for

distributional point values; it is slightly more restrictive than the one introduced

by  Lojasiewicz in [128], but it is more adequate for our framework with tempered

distributions and Fourier transform. In Section 8.3, we extend the definitions of

Cesàro limits and distributional evaluations in order to include fractional orders.

Section 8.4 is dedicated to the study of the order of summability of the Fourier

inversion formula upon the knowledge of the order of the point value, we show

that for certain tempered distributions having a point value of order k at a point,
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the special value of the Fourier inversion formula is summable (C, β) to the point

value for any β > k; then, we apply this result to cases of interest; at the end

of the section we calculate a bound for the order of summability of the Fourier

inversion formula in the general case. Next, in Section 8.5, we study the opposite

problem, namely, we estimate the order of the point value having the order of

Cesàro summability of pointwise Fourier inversion formula. Section 8.6 is dedicated

to the study of symmetric distributional point values; that is, we investigate order

problems in the solution of the Hardy-Littlewood (C) summability for tempered

distributions, on the way we recover and extend the classical results for Fourier

series [89, 81, 255]. Finally, we study jumps of distributions and find the order in

the various formulas for the jump originally found in [216, 218] and already studied

in Chapter 5.

8.2 Definition of Order of Point Values

In this section we shall define the order of distributional point values for tempered

distributions. Recall the structural average characterization of distributional point

values given in Section 3.2. It was shown by  Lojasiewicz [128] that the existence of

the distributional point value f(x0) = γ is equivalent to the existence of n ∈ N, and

a primitive of order n of f , that is F (n) = f , which is continuous in a neighborhood

of x0 and satisfies

lim
x→x0

n!F (x)

(x− x0)
n = γ . (8.2.1)

If f ∈ S ′(R), then n can be taken such that the function F is locally integrable and

of at most polynomial growth.  Lojasiewicz himself defined a notion of order for

distributional point values, but it is convenient to provide a reformulation of the

order of the value more suitable for tempered distribution and our purposes. For

the sake of convenience, we should adopt a little variant of  Lojasiewicz’s original

definition which differs from that given in [128].
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Definition 8.1. Let f be a tempered distribution. We say that f has a (distribu-

tional) point value γ at x = x0 in S ′(R) of order n, and write f(x0) = γ in S ′(R)

with order n, if n is the minimum integer such that there exists a locally bounded

measurable function F of polynomial growth at infinity such that F (n) = f and F

satisfies (8.2.1).

A similar definition has been also adopted in [242, Sect.8.3, Def.8.1] for studying

distributional point values of tempered distributions in relation with orthogonal

wavelet expansions and multiresolution analysis approximations for spaces of tem-

pered distributions.

8.3 Cesàro Limits: Fractional Orders

Recall that given a distribution f ∈ D′(R), with support bounded on the left, we

denote its β-primitive by the convolution

f (−β) = f ∗ x
β−1
+

Γ(β)
.

Since we will frequently use fractional primitives in long calculations, its convenient

to introduce some additional notation. Thus, we also denote the β-primitive by

Iβ {f(t);x} := f (−β)(x) ,

so that when f is locally integrable,

Iβ {f(t);x} =
1

Γ(β)

∫ x

0

f(t) (x− t)β−1 dt . (8.3.1)

In Section 1.8.2 we defined Cesàro limits of distributions for only integral orders,

we should now extend the definition in order to allow fractional orders.

Definition 8.2. Let f ∈ D′(R) and β ≥ 0 . We say that f has a limit ` at infinity

in the Cesàro sense of order β (in the (C, β) sense) and write

lim
x→∞

f(x) = ` (C, β) , (8.3.2)
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if for a decomposition f = f− + f+ as sum of two distributions with supports

bounded on the right and left, respectively, one has that the β-primitive of f+ is an

ordinary function (locally integrable) for large arguments and satisfies the ordinary

asymptotic relation

f
(−β)
+ (x) =

` xβ

Γ(β + 1)
+ o

(
xβ
)
, as x→∞ .

As usual, if we do not want to make reference to the order β in (8.3.2), we simply

write

lim
x→∞

f(x) = ` (C) .

We must check that the definition does not depend on the decomposition f =

f− + f+; this fact follows immediately from the next proposition.

Proposition 8.3. Suppose that f has compact support. If β ≥ 0 and α > −1,

then f (−β)(x) = o(xβ+α), x→∞; in particular, limx→∞ f(x) = 0 (C, β) for each

β ≥ 0.

Proof. If β is an non-negative integer, the conclusion is obvious. Assume β > 0 is

not a positive integer. We show that f (−β) is locally integrable for large arguments

and f−β(x) = o(xβ+α), x→∞. Let k be a positive integer such that f (−k) is contin-

uous over the whole real line. Then f (−k) = P +F , where P (x) =
∑k−1

j=0 aj(x
j
+/j!),

for some constants, and F is continuous on certain compact interval, say [a, b], and

0 off [a, b]. We have that f = P (k) + F (k). Note first that

P (k) ∗ x
β−1

Γ(β)
=

k−1∑
j=0

ajδ
(k−1−j) ∗ x

(β−1)
+

Γ(β)
=

k−1∑
j=0

aj
x

(β+j−k)
+

Γ(β + 1 + j − k)

= O
(
xβ−1

)
= o

(
xβ+α

)
, x→∞.

So, it is enough to show that

F (k) ∗
(
xβ−1/Γ(β)

)
= F ∗

(
xβ−k−1/Γ(β − k)

)
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is locally integrable for large arguments and satisfies an estimate o(xβ+α) as x →

∞. Indeed, we show it is locally integrable on (b + 1,∞). If φ ∈ D(R) is so that

suppφ ⊆ (b+ 1,∞), then suppφ ∗ F (−t) ⊆ [1,∞), hence,

〈
F ∗ xβ−k−1, φ(x)

〉
=
〈
xβ−k−1, (F (−t) ∗ φ) (x)

〉
=

∫ ∞

1

xβ−k−1

(∫ ∞

−∞
F (t− x)φ(t)dt

)
dx

=

∫ ∞

−∞

(∫ ∞

1

tβ−k−1F (x− t)dt

)
φ(x)dx .

On the other hand if x > b+ 1, we obtain, as x→∞,∫ ∞

1

tβ−k−1F (x− t)dt =

∫ b

a

(x− t)β−k−1F (t)dt = O
(
xβ−1−k) = o

(
xβ+α

)
.

Therefore, our definition of Cesàro behavior has the following expected property.

Corollary 8.4. If f has Cesàro limit at infinity of order β, then it has Cesàro

limit of order β̃ > β.

We can also define Cesàro distributional evaluations of fractional orders by tak-

ing m = β in Definition 3.4. Observe that if µ is a Radon measure supported

on [0,∞) then 〈µ(t), φ(t)〉 = γ (C, β) if and only if
∫∞

0
φ(t)dµ(t) = γ (C, β).

In particular, the considerations in Example 3.5 are still applicable to fractional

orders.

We now want to discuss fractional orders for distributional evaluations in the

e.v. Cesàro sense, they were introduced in Definition 3.18 only for positive integral

orders.

Definition 8.5. Let g ∈ D′(R), φ ∈ E(R) and β ≥ 0. We say that the evaluation

〈g (x) , φ (x)〉 exists in the e.v. Cesàro sense (of order β), and write

e.v. 〈g (x) , φ (x)〉 = γ (C, β) , (8.3.3)
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if for some primitive G of gφ and ∀a > 0 we have

lim
x→∞

(G(ax)−G(−x)) = γ (C, β) .

For series, measures and integrals, we shall adopt a similar notation to the one

introduced in Section 3.5.

The last definition allows us to make sense out of the Fourier inversion formula

for fractional orders of summability; indeed from Theorem 3.21 we obtain that

f ∈ S ′(R) has a distributional point value γ at x = x0 if and only if

e.v.
〈
f̂(x), eix0x

〉
= 2πγ (C, β) , (8.3.4)

for some sufficiently large β. As we mentioned at the Introduction, this result does

not say anything about the relationship between the order of summability of this

inversion formula and the order of the distributional point value; this will be the

main subject of Section 8.4 and Section 8.5 in the present chapter.

8.4 Order of Summability

In this section we obtain a bound for the order of summability of the Fourier

inversion formula for tempered distributions in the general case. We also analyze

two particular cases, the case of Fourier series and the case of distributions with

compact support and in both cases we obtain the expected result: if the distribution

has a value of order k, then the order of summability of the Fourier inversion

formula is at least k + 1.

We will use indistinctly the notations f̂ , F(f) and F {f(t);x} to denote the

Fourier transform of f .

Suppose that f ∈ S ′(R) is so that f̂ ∈ L1
loc(R). Denote by θA the characteristic

function of a set A. Then note that (8.3.4) holds if and only if

lim
x→∞

1

2π

∫ ∞

−∞
f̂(t)eix0tφβa

(
t

x

)
dt = f(x0) , (8.4.1)
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where φβa is the summability kernel given by

φβa(t) = (1 + t)βθ[−1,0](t) +

(
1− t

a

)β
θ[0,a](t) . (8.4.2)

Indeed, this follows directly from Definition 8.5. Observe that we may consider

(8.4.2) as the summability kernels of asymmetric (C, β) means. Notice also that if

(8.4.1) holds for some β, then it holds for any β̃ ≥ β. We shall need some properties

of these kernels, they are stated in the next lemma.

Lemma 8.6. Suppose that 0 < β ≤ 1. Then,∣∣∣φ̂βa(t)
∣∣∣ ≤ 2 + 3β (1 + a−1)

tβ+1
, t > 1 .

Moreover,
∫∞
−∞ φ̂βa(t)dt = 2π.

Proof. Suppose the inequality is satisfied, then φ̂βa ∈ L1(R) ∩ L2(R), so the very

well known classical result [17, p.62] implies that the Fourier inversion formula

holds pointwise in this case, and thus we have
∫∞
−∞ φ̂βa(t)dt = 2πφβa(0) = 2π. Let

us now show the inequality.∣∣∣φ̂βa(t)
∣∣∣ =

∣∣∣∣∫ 1

0

(1− u)β(eitu + ae−iatu)du

∣∣∣∣
=
β

t

∣∣∣∣∫ 1

0

(1− u)β−1(e−iatu − eitu)du

∣∣∣∣
=

β

tβ+1

∣∣∣∣∫ t

0

uβ−1(e−iateiau − eite−iu)du

∣∣∣∣
≤ 2

tβ+1
+

β

tβ+1

∣∣∣∣∫ t

1

uβ−1(e−iateiau − eite−iu)du

∣∣∣∣
≤ 2

tβ+1
+

β

tβ+1
(a−1 + 1)

(
1 + tβ−1 + (1− β)

∫ ∞

1

uβ−2du

)
,

where in the last step we have used integration by parts.

The explicit value of the constant term in the bound from the last lemma is

unimportant, however, we will use the fact that this estimate holds uniformly for

a on compact subsets of (0,∞).
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We start to study the pointwise Fourier inversion formula. We first show a propo-

sition concerning the L2(R) case. The proof of the following proposition is similar

to that of [206, Thm.13], but we include it for the sake of completeness.

Proposition 8.7. Suppose that g ∈ L2(R). If g is continuous at x0, then we have

for any β > 0,

1

2π
e.v.

〈
ĝ(t), eix0t

〉
= g(x0) (C, β) ,

or, which amounts to the same,

lim
x→∞

1

2π

∫ ∞

−∞
ĝ(t)eix0tφβa

(
t

x

)
dt = g(x0) , (8.4.3)

uniformly for a on compact subsets of (0,∞).

Proof. By considering g(x+x0), we may assume that x0 = 0. We may also assume

that 0 < β ≤ 1, because if it holds for those values of β, then it holds for any

β > 0.

We have that ∫ ∞

−∞
ĝ(t)φβa

(
t

x

)
dt = x

∫ ∞

−∞
g(t)φ̂βa (xt) dt .

Therefore (8.4.3) holds if and only if

lim
x→∞

∫ ∞

−∞
g(t)Kβ

a (t, x) dt = g(0) ,

where Kβ
a (t, x) = xφ̂βa (xt) /(2π). Now, because of Lemma 8.6 and the boundedness

of φ̂βa , the kernel Kβ
a (t, x) satisfies the following properties

∫ ∞

−∞
Kβ
a (t, x)dt = 1,

∣∣Kβ
a (t, x)

∣∣ ≤Mx ,
∣∣Kβ

a (t, x)
∣∣ ≤ N

xβtβ+1
, (8.4.4)

for some positives constants M and N , and the last inequality being valid for

x |t| ≥ 1. The estimates are satisfied uniformly for a on compact sets. Pick σ > 0
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such that if |t| < σ then |g(t)− g(0)| < ε; keep x−1 < min {ε, σ}, then∣∣∣∣∫ ∞

−∞
(g(t)− g(0))Kβ

a (t, x)dt

∣∣∣∣
≤ ε

∫ 1
x

− 1
x

∣∣Kβ
a (t, x)

∣∣ dt+

∫
|t|≥ 1

x

|g(t)− g(0)|
∣∣Kβ

a (t, x)
∣∣ dt

≤ 2ε(M +Nβ−1) +
N

xβ

∫ ∞

|t|≥σ

|g(t)− g(0)|
tβ+1

dt

hence,

lim sup
x→∞

∣∣∣∣ 1

2π

∫ ∞

−∞
ĝ(t)φa

(
t

x

)
dt− g(0)

∣∣∣∣ ≤ 2ε(M +Nβ−1) ,

since ε is arbitrary, this completes the proof.

Remark 8.8. Proposition 8.7 still holds if one assumes that x0 is a Lebesgue

point of g instead of the continuity at x0. This proposition is also true for kernels

φ other than φβa ; in fact, the proposition is valid if K(t, x) = xφ(xt)/(2π) satisfies

(8.4.4), that is K(t, x) satisfies
∫∞
−∞K(t, x)dt = 1, |K(t, x)| ≤ Mx for |t|x < B

and |K(t, x)| < Nx−αt−α−1, for some positive constants B,M,N and α. For other

related results, the reader can consult Titchmarsh’s book [206, Chap.1].

In order to make further progress, we need two formulas. They are stated in the

next two lemmas.

Lemma 8.9. Let h ∈ D′(R) and m, k ∈ N. Suppose that m ≥ k, then

xkh(m)(x) =
k∑
j=0

(−1)j
k!

(k − j)!

(
m

j

)
dm−j

dxm−j
(
xk−jh(x)

)
.

Proof. It follows directly form the very well known formula [26, Lemm.1.3], valid

if ϕ ∈ C∞(R),

ϕh(m) =
m∑
j=0

(−1)j
(
m

j

)
dm−j

dxm−j
(
ϕ(j)h

)
applied to ϕ(x) = xk.

213



Lemma 8.10. Let h be a locally integrable function supported on [0,∞). For any

positive number β and positive integer k

Iβ
{
tkh(t);x

}
=

k∑
j=0

(−1)j
(
k

j

)
Γ(β + j)

Γ(β)
xk−jh(−β−j)(x) .

Proof. We proceed by induction over k. For k = 1,

Iβ {th(t);x} =
1

Γ(β)

∫ x

0

(x− t)β−1th(t)dt

= xh(−β)(x)− 1

Γ(β)

∫ x

0

(∫ t

0

(x− u)β−1h(u)du

)
dt

= xh(−β)(x)− 1

Γ(β)

∫ x

0

(x− u)βh(u)du

= xh(−β)(x)− βh(−β−1)(x) .

If the formula true for k, then

Iβ
{
tk+1h(t);x

}
=

k∑
j=0

(−1)j
(
k

j

)
Γ(β + j)

Γ(β)
xk−jIβ+j {th(t);x}

=
k∑
j=0

(−1)j
(
k

j

)
Γ(β + j)

Γ(β)
xk+1−jh(−β−j)(x)

−
k∑
j=0

(−1)j
(
k

j

)
Γ(β + j)

Γ(β)
(β + j)xk−jh(−β−j−1)(x)

=
k+1∑
j=0

(−1)j
(
k + 1

j

)
Γ(β + j)

Γ(β)
xk+1−jh(−β−j)(x) .

We begin to analyze the case of tempered distributions, by first imposing some

strong restrictions to the behavior of the distribution at infinity.

Theorem 8.11. Let f ∈ S ′(R). Suppose that there exists an m ∈ N such that every

m-primitive of f is a locally integrable function for large arguments and satisfies

an estimate O
(
|x|m−1), as x→∞. If f has a distributional point value f(x0) = γ

at x0 in S ′(R), whose order is n, then

1

2π
e.v.

〈
f̂(x), eix0x

〉
= γ (C, β) ,
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for any β > k = max {m,n} .

Proof. We can assume that x0 = 0. Take h, a k-primitive of f , such that h is a

locally bounded measurable function and h(x) = O
(
|x|k−1

)
, as |x| → ∞, and

h(x) = γxk/k! + o
(
|x|k
)

as x → 0. Set g(x) = h(x)/xk, then g ∈ L2(R) and g is

continuous at 0 with g(0) = γ/k! . Consider ĝ ∈ L2(R). Then,

(ĝ)(k) (x) = (−i)kF
{
tkg(t);x

}
= (−i)kF {h(t);x} = (−i)kĥ(x) .

Thus,

f̂(x) = F
{
h(k)(t);x

}
= ikxkĥ(x) = (−1)kxk (ĝ)(k) (x) . (8.4.5)

We now look at a k-primitive of f̂ . Indeed, by (8.4.5) and Lemma 8.9

F (x) =
k∑
j=0

(−1)k−j
k!

(k − j)!

(
k

j

)
Ij
{
tk−j ĝ(t)(t);x

}
(8.4.6)

is a k-primitive of f̂ . Let β > k and a > 0. Set β̃ = β − k. To show the theorem,

one should prove that

F1(x) :=
1

ak−1
F (ax) + (−1)kF (−x) =

2πγxk−1

(k − 1)!
+ o

(
xk−1

)
(C, β − k + 1)

as x→∞. Therefore, we have to show that

Iβ̃+1 {F1(t);x} =
1

Γ(β̃ + 1)

∫ x

0

(x− t)β̃F1(t)dt (8.4.7)

=
2πγxβ

Γ(β + 1)
+ o

(
xβ
)
, as x→∞ .

Notice that

a1−kIj
{
tk−j ĝ(t); ax

}
+ (−1)kIj

{
tk−j ĝ(at);−x

}
= Ij

{
tk−j(aĝ(t) + ĝ(−t));x

}
,
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So, setting g1(t) := aĝ(at) + ĝ(−t) for t ≥ 0 and g1(t) := 0 for t < 0 we obtain

from Lemma 8.9 and (8.4.6)

F1(x) =
k∑
j=0

(−1)k−j
k!

(k − j)!

(
k

j

)
Ij
{
tk−jg1(t);x

}
= (−1)kIk

{
tkg

(k)
1 (t);x

}
, for x > 0 ,

then, by Lemma 8.10, for x > 0

Iβ̃+1 {F1(t);x} = (−1)kIβ+1

{
tkg

(k)
1 (t);x

}
=

k∑
j=0

(−1)k−j
(
k

j

)
Γ(β + 1 + j)

Γ(β + 1)
xk−jg

(−β̃−1−j)
1 (x) ,

but

g
(−β̃−1−j)
1 (x) =

xβ̃+j

Γ(β̃ + 1 + j)

∫ ∞

−∞
ĝ(t)φβ̃+j

a

(
t

x

)
dt ∼ 2πγxβ̃+j

k!Γ(β̃ + 1 + j)
,

as x→∞, where the last asymptotic relation holds in view of Proposition 8.7, the

continuity of g at 0, and the fact g(0) = γ/k!. Therefore,

Iβ̃+1 {F1(t);x} =
2πγ xβ

k!Γ(β + 1)

k∑
j=0

(−1)k−j
(
k

j

)
Γ(β + 1 + j)

Γ(β − k + 1 + j)
+ o(xβ)

=
2πγ xβ

k!Γ(β + 1)

k∑
j=0

(
k

j

)
(−1)k−j

dk

dtk
(
tβ+j

)∣∣∣∣
t=1

+ o(xβ)

=
2πγ xβ

k!Γ(β + 1)

dk

dtk

(
tβ

k∑
j=0

(
k

j

)
(−1)k−jtj

)∣∣∣∣∣
t=1

+ o(xβ)

=
2πγ xβ

Γ(β + 1)

(
1

k!

dk

dtk
(
tβ(t− 1)k

)∣∣∣∣
t=1

)
+ o

(
xβ
)

=
2πγ xβ

Γ(β + 1)
+ o

(
xβ
)

as x→∞ ;

hence, we have established (8.4.7), as required.

Remark 8.12. It follows from the proof of the last theorem and Proposition 8.7

that (8.4.7) holds uniformly for a in compact subsets of (0,∞).
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The next corollary follows directly from equation (8.4.6).

Corollary 8.13. Under the hypothesis of Theorem 8.11, then f̂ is the kth derivative

of a locally integrable function.

Although it imposes conditions on the behavior at infinity of the tempered dis-

tribution, we may apply Theorem 8.11 to several cases of special interest. The

next two corollaries follow directly from Theorem 8.11 (for the direct application

of Theorem 8.11 in Corollary 8.15 one should argue that it is enough to assume

c0 = 0).

Corollary 8.14. Let f be a distribution with compact support. If f(x0) = γ in

S ′(R) with order k, then for each a > 0 and β > k,

lim
x→∞

1

2π

∫ ax

−x
f̂(t)eix0tdt = γ (C, β) ,

or which is the same

lim
x→∞

1

2π

∫ ∞

−∞
φβa

(
t

x

)
f̂(t)eix0tdt = γ . (8.4.8)

Moreover, relation (8.4.8) holds uniformly for a in compact subsets of (0,∞).

Corollary 8.15. Let f(x) =
∑∞

n=−∞ cne
ixn be a 2π-periodic distribution. Suppose

that f(x0) = γ in S ′(R) with order k ≥ 1. Then for each a > 0 and β > k,

lim
x→∞

∑
−x≤n≤ax

cne
ix0n = γ (C, β) ,

or equivalently

lim
x→∞

∑
−x≤n≤ax

φβa

(n
x

)
cne

ix0n = γ . (8.4.9)

Moreover, relation (8.4.9) holds uniformly for a in compact subsets of (0,∞).

As a particular case of Corollary 8.15, we obtain almost everywhere summability

of order β > 1 for Denjoy integrable functions [76, 94]. This result extends that

of Privalov (see [94, p.573]) which only considers the symmetric series. The reader
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should notice that Privalov theorem is included in the much stronger result of

Marcinkiewicz [135], [256, Chap.XI, Thm.5.4].

Corollary 8.16. Let f be a 2π-periodic function which is Denjoy integrable on

[−π, π]. Let β > 1. If its Fourier series is
∑∞

n=−∞ cne
ixn, then we have for almost

every x0

lim
x→∞

∑
−x≤n≤ax

φβa

(n
x

)
cne

ix0n = f(x0) , for all a > 0 .

We now aboard the case of general behavior at infinity. For that, we need the

following two lemmas.

Lemma 8.17. Let g ∈ L2(R). Suppose that x0 /∈ supp g, then,

lim
x→∞

∫ ax

−x
ĝ(t)eix0tdt = 0 ,

uniformly for a in compact subsets of (0,∞).

Proof. The proof is trivial, just apply Parseval’s relation and then use Riemann-

Lebesgue lemma.

Lemma 8.18. Let f ∈ S ′(R). Suppose that x0 /∈ supp f and that

f(x) = O(|x|α) (C) , as |x| → ∞ ,

for some α > −1. Let m be the minimum integer such that any m-primitive of f

is locally bounded and O(|x|m+α) as |x| → ∞. Then

e.v.
〈
f(x), eix0x

〉
= 0 (C, k) ,

where k = [m+ α + 1
2
] + 1 ( [ · ] stands for the integral part of a number).

Proof. The proof is completely analogous to that of Theorem 8.11. We may assume

that x0 = 0. Let h be an m-primitive of f such that h is 0 in a neighborhood of 0

and

h(x) = O(|x|m+α) as |x| → ∞.
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Set g(x) = h(x)/xk, then g satisfies the hypothesis of Lemma 8.17. Define G(x) =∫ x
0
ĝ(t)dt; by Lemma 8.9, the following function is a (k + 1)-primitive of f̂

F (x) =
k∑
j=0

(−1)k−j
k!

(k − j)!

(
k + 1

j

)
Ij
{
tk−jG(t);x

}
.

Since

1

ak
Ij
{
tk−jG(t); ax

}
− (−1)kIj

{
tk−jG(t);−x

}
= Ij

{
tk−j

∫ at

−t
ĝ(u)du;x

}
,

we can use Lemma 8.17 to conclude

1

ak
F (x)− (−1)kF (−x) =

k∑
j=0

(−1)k−j
k!

(k − j)!

(
k + 1

j

)
Ij
{
o(tk−j);x

}
= o

(
xk
)

as x→∞ ,

uniformly for a on compact subsets of (0,∞).

We now combine Theorem 8.11 and and Lemma 8.18 to obtain a bound for

the order of summability of the Fourier inversion formula of a general tempered

distribution. We remark that every tempered distribution satisfies an estimate of

type (8.4.10).

Theorem 8.19. Let f ∈ S ′(R) have the behavior at infinity

f(x) = O(|x|α) (C,m) , as |x| → ∞ . (8.4.10)

If f(x0) = γ in S ′(R) with order n, then

1

2π
e.v.

〈
f̂(x), eix0x

〉
= γ (C, k + 1),

where k = max
{
m,n, [n+ α + 1

2
], [m+ α + 1

2
]
}

.

8.5 Order of Point Value

In this section we show that if e.v.
〈
f̂(x), eixx0

〉
= 2πγ (C, k), then f(x0) = γ,

distributionally, and the order of the point value in S ′(R) is less or equal to k+ 2.
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We begin with a particular case which has its inspiration in Riemann’s theorems

on the formal integration of trigonometrical series [256, Chap.IX, p. 319].

Recall the definition of asymptotically homogeneous functions given in Section

3.4.1, they are a fundamental tool in the study of distributional evaluations in the

e.v Cesàro sense.

Theorem 8.20. Let f be an element of S ′(R). Suppose that

1

2π
e.v.

〈
f̂(x), eix0x

〉
= γ (C, 0) ,

then, f(x0) = γ, distributionally; moreover if F1 and F2 are any primitives of order

1 and 2 respectively, then F1 is locally integrable and F2 possesses a Peano second

order differential at x0, with γ as the second order term, i.e., F2 is differentiable

at x0 and as x→ x0

F2(x) = F2(x0) + F ′
2(x0)(x− x0) +

γ

2
(x− x0)

2 + o
(
(x− x0)

2
)
.

Hence, the point value is at most of order 2 in S ′(R).

Proof. We may assume that x0 = 0. We also can assume that 0 /∈ supp f̂ and that

f̂ is the derivative of a locally integrable function. Indeed, otherwise we express

f̂ = f̂2 + f̂1, where f̂2 is the derivative of a distribution with compact support,

0 /∈ supp f̂1 and f̂1 is the first order derivative of a locally integrable function.

Observe that f2 is a C∞-function and 2πf2(0) =
〈
f̂2(x), 1

〉
= 0; consequently, f1

satisfies the hypothesis of the present theorem and f satisfies the conclusions of

the theorem if and only if f1 does.

The hypothesis implies that if G is a primitive of f , then for each a > 0,

G(ax)−G(−x) = 2πγ + o(1) as x→∞ .
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We choose G such that 0 /∈ suppG. Set c = G − πγ, then c is asymptotically

homogeneous of degree 0, and

G(x) = πγ sgnx+ c (|x|) + o(1), as |x| → ∞. (8.5.1)

Therefore, x−1G(x) ∈ L2(R) and x−2G(x) ∈ L1(R) ∩ L2(R), since c(x) = o(log x).

Set,

h(x) =
1

2π

∫ ∞

−∞
eixt

G(t)

t2
dt ,

then h is continuous and h(x) = o(1) as |x| → ∞. We now relate h to f , note

that h′′ = −F−1(G), so ixh′′(x) = f(x). In addition, we have that h′(x) =

iF−1 {t−1G(t);x} ∈ L2(R). Let F2 be the following second order primitive of f ,

F2(x) = ixh(x)− 1

π

∫ ∞

−∞
eixt

G(t)

t3
dt .

Clearly, F1(x) = F ′
2(x) = ixh′(x) − ih(x), which shows that every first order

primitive of f is locally integrable. We now show that F2 is differentiable at 0,

F2(x)− F2(0)

x
=

1

2π

∫ ∞

−∞

G(t)

t2

(
itxeixt − 2eixt + 2

tx

)
dt , (8.5.2)

we can apply Lebesgue Dominated Convergence Theorem in (8.5.2) to conclude

that

F ′
2(0) = − i

2π

∫ ∞

−∞

G(t)

t2
dt .

We now calculate the Peano second order differential of F2 at 0.

∆2(x) =
F2(x)− F2(0)− xF ′

2(0)

x2
=

x

2π

∫ ∞

−∞
G(t)K(xt) dt , (8.5.3)

where K(t) = t−3 (iteit − 2eit + 2 + it). Note that (1 + |log(t)|)K(t) belongs to

L1(R) ∩ L2(R). Changing variables in (8.5.3) and applying in combination with
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(8.5.1), we obtain that as x→ 0

∆2(x) =
sgnx

2π

∫ ∞

−∞
G

(
t

x

)
K(t) dt

=
γ

2

∫ ∞

−∞
sgn t K(t) dt+

1

2π
sgn(x)c(|x|−1)

∫ ∞

−∞
K(t) dt+ o(1)

=
γ

2
+ o(1) ,

since
∫∞

0
(K(t) +K(−t)dt) = 0 and

∫∞
0

(K(t)−K(−t)) dt = 1. This completes

the proof.

We now use Theorem 8.20 to attack the general problem.

Theorem 8.21. Let f ∈ S ′(R). Suppose that

1

2π
e. v.

〈
f̂(x), eix0x

〉
= γ (C, k) ;

then, f(x0) = γ, distributionally, f is the derivative of order k + 1 of a locally

integrable function and the order of f(x0) = γ is less or equal to k + 2.

Proof. As in the proof of the last theorem, we can assume that x0 = 0, 0 /∈ supp f̂

and f̂ is the derivative of order k + 1 of a locally integrable function.

By our assumptions, we can choose G, a locally integrable function, such that

Gk+1 = f̂ , 0 /∈ supp G, and for each a > 0,

a−kG(ax) + (−1)k+1G(−x) =
2πγ

k!
xk + o

(
xk
)

as x→∞ .

Let h be the following tempered distribution

h(x) = −ixF−1
{
t−kG(t);x

}
= F−1

{(
t−kG(t)

)′
;x
}
,

note that h satisfies the hypothesis of Theorem 8.20. Therefore, there is a locally

integrable primitive h1 of h such that h1(εx) = γεx/k! + o(ε) as ε → 0 in S ′. Set

h2(x) =
∫ x

0
h1(t)dt, then, by Theorem 8.20,

h2(x) =
γ

2k!
x2 + o

(
x2
)

as x→ 0 , (8.5.4)
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since h′2(0) is equal to the distributional point value of h1 at 0 and h1(0) = 0 in

D′. We now relate h to f . We show that

Fk+1(x) =
k∑
j=0

(−1)k−jk!

(k − j)!

(
k + 1

j

)
Ij
{
tk−jh1(t);x

}
(8.5.5)

−
k∑
j=0

(−1)k−jk!

(k − j − 1)!

(
k + 1

j

)
Ij+1

{
tk−j−1h1(t);x

}
is a (k + 1)-primitive of f . Differentiating (8.5.5) (k + 1) times, we obtain,

F
(k+1)
k+1 (x) =

k∑
j=0

(−1)k−jk!

(k − j)!

(
k + 1

j

)
dk+1−j

dxk+1−j

(
xk−jh1(x)

−(k − j)

∫ x

0

tk−j−1h1(t)dt

)
=

k∑
j=0

(−1)k−jk!

(k − j)!

(
k + 1

j

)
dk−j

dxk−j
(
xk−jh(x)

)
= −i

k∑
j=0

(−1)k−jk!

(k − j)!

(
k + 1

j

)
dk−j

dxk−j
(
xk+1−jF−1

{
G(t)/tk;x

})
=

k∑
j=0

(−i)k−jk!

(k − j)!

(
k + 1

j

)
dk−j

dxk−j

(
F−1

{(
G(t)/tk

)(k+1−j)
;x
})

= F−1

{
k+1∑
j=0

(
k + 1

j

)
dj

dtj
(tk)

(
G(t)/tk

)(k+1−j)
;x

}

= F−1
{
G(k+1)(t);x

}
= F−1

{
f̂(t);x

}
= f(x)

Therefore, Fk+1 is a primitive of order k + 1 of f . Since h1 is locally integrable, so

is Fk+1. We integrate (8.5.5) to obtain a continuous (k + 2)-primitive of f , given

by

Fk+2(x) =
k∑
j=0

(−1)k−jk!

(k − j)!

(
k + 1

j

)
Ij

{
tk−jh2(t)− (k − j)

∫ t

0

sk−j−1h2(s)ds;x

}

+
k∑
j=0

(−1)k−jk!

(k − j − 1)!

(
k + 1

j

)
Ij+1

{
(k − j − 1)

∫ t

0

sk−j−2h2(s)ds− tk−j−1h2(t);x

}
.
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By using (8.5.4), we can conclude that

Fk+2(x) =
γ

2k!

k∑
j=0

(−1)k−jk!

(k − j)!

(
k + 1

j

)
2Ij
{
tk+2−j;x

}
(k + 2− j)(k + 1− j)

+ o
(
xk+2

)
=
γ

k!
xk+2

k∑
j=0

(−1)k−jk!

(k − j)!

(
k + 1

j

)
(k − j)!

(k + 2)!
+ o

(
xk+2

)
=

γ

k!(k + 2)
xk+2

k∑
j=0

(−1)k−j
(
k

j

)
1

(k + 1− j)
+ o

(
xk+2

)
=

γ

k!(k + 2)
xk+2(−1)k

∫ 1

0

(t− 1)kdt+ o(xk+2)

=
γ

(k + 2)!
xk+2 + o

(
xk+2

)
as x→ 0,

this shows that f(0) = γ in S ′(R) with the order at most k + 2.

8.6 Order of Symmetric Point Values

We shall study in this section the order of summability in the solution of the

Hardy-Littlewood (C) summability problem for tempered distributions (Section

3.11). Recall the notion of symmetric point values (Section 3.10), they are studied

by means of the symmetric part of a distribution about x = x0, that is, the

distribution

χfx0
=
f(x0 + x) + f(x0 − x)

2
.

So, we have that fsym(x0) = γ if and only if χfx0
(0) = γ, distributionally. In the

same manner as for distributional point values, we define the order of symmetric

point values.

Definition 8.22. Let f ∈ D′(R). We say that f has a (distributional) symmetric

point value γ at x = x0 in S ′(R) of order n, and write fsym(x0) = γ in S ′(R) with

order n, if χfx0
∈ S ′(R) and χfx0

(0) = γ in S ′(R) of order n.

Alternatively, we could have defined the order of the symmetric point value

as the minimum integer n such that the conclusion of Theorem 3.57 is satisfied,
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equation (3.10.4), and F (x0 + x) + (−1)nF (x0− x) is locally integrable of at most

polynomial growth.

Most of the results for symmetric point values can be obtained from those of

distributional point values. Let us discuss an example in which we show how to

obtain Theorem 3.67 and Corollary 3.68 by applying the corresponding results for

distributional point values.

Example 8.23. Let f ∈ D′(R) have a distributional point value γ at x = x0.

Let U be a harmonic representation of f on the upper half-plane. We showed in

Theorem 3.55 that

lim
z→x0

U(z) = γ, non-tangentially from the upper half-plane.

We can use this result applied to the symmetric distribution to obtain a radial

version of this result in the case of symmetric point values. Indeed, suppose now

that fsym(x0) = γ, distributionally. If U is a harmonic representation of f . Then

U1(z) = (U(x0 + z) + U(x0 − z̄))/2 is a harmonic representation of χfx0
, hence

U1(z) = γ + o(1) as z approaches 0 from the upper half-plane in a non-tangential

manner. Therefore,

lim
y→0+

U(x0 + iy) = lim
y→0+

U1(iy) = γ .

In particular, if f is a 2π-periodic distribution with sines and cosines series f(x) =

a0/2 +
∑∞

n=1 an cosnx+ bn sinnx, then

a0

2
+

∞∑
n=1

(an cosnx0 + bn sinnx0) = γ (A) .

Our main goal in this section is to study the order of summability in Theorem

3.64. Let us first discuss a known case, namely Fourier series [256, Chap.XI].

Example 8.24. Suppose that f is a 2π-periodic distribution with sines and cosines

Fourier series f(x) = a0/2 +
∑∞

n=1(an cosnx+ bn sinnx). We proved in Corollary
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3.65 that

f(x) =
a0

2
+

∞∑
n=1

(an cosnx0 + bn sinnx0) = γ (C)

if and only if fsym(x0) = γ, distributionally. In [81, 255], using the language of de

la Vallée Poussin derivatives the order of summability is estimated upon knowledge

of the order of the point value; indeed, A. Zygmund showed that if the order of the

point value is k, then the order of summability can be actually taken β, for any

β > k. The opposite problem was first investigated in [89] by assuming that f is

a function. The general case is stated in [256, Chap.XI, Thm.2.1] and establishes

that if the series is summable (C,m), then the symmetric point value is of order

at least m+ 2; such a result goes back to A. Plessner, as attributed in [256].

In order to study symmetric point values in terms of summability of the Fourier

transform, we need to choose the correct notion of summability. As follows from

the results of Section 3.11, the right notion is that of principal value distributional

evaluations in the (C) sense. We now proceed to define the order of summability

for that method of summability.

Definition 8.25. Let g ∈ D′(R), φ ∈ E(R) and β ≥ 0. We say that the evaluation

〈g (x) , φ (x)〉 exists in the p.v. Cesàro sense (at order β), and write

p.v. 〈g (x) , φ (x)〉 = γ (C, β) , (8.6.1)

if for some primitive G of gφ we have

lim
x→∞

(G(x)−G(−x)) = γ (C, β) .

If (8.6.1) exits, we also say that the principal value of the evaluation exists in the

(C, β) sense.

We easily obtain a version of Theorem 8.11 for symmetric point values.
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Theorem 8.26. Let f ∈ D′(R). Suppose that there exists an m ∈ N, such that

every m-primitive of χfx0
is a locally bounded measurable function for large argu-

ments and satisfies an estimate O
(
|x|m−1), x→∞. If fsym(x0) = γ in S ′(R) with

order n, then

1

2π
p.v.

〈
χ̂fx0

(x), 1
〉

= γ (C, β) ,

for any β > k = max {m,n} . When f ∈ S ′(R), we obtain

1

2π
p.v.

〈
f̂(x), eix0x

〉
= γ (C, β) ,

for any β > k = max {m,n} .

Proof. Our hypotheses imply that χfx0
∈ S ′(R), thus we can apply Theorem 8.11

to χfx0
. Since, χfx0

(0) = γ in S ′(R) with order n, then

e.v.
〈
χ̂fx0

(x), 1
〉

= 2πγ (C, β) ,

for any β > k = max {m,n}, in particular the last relation holds in the p.v. sense.

If we assume that f ∈ S ′(R), then

χ̂fx0
(x) =

1

2

(
eix0xf̂(x) + e−ix0xf̂(−x)

)
,

so, if F is first order primitive of eix0xf̂(x), then G(x) = (F (x) − F (−x))/2 is a

first order primitive of χ̂fx0
(x), and hence

lim
x→∞

(G(x)−G(−x)) = lim
x→∞

(F (x)− F (−x)) = 2πγ (C, β) .

When f has compact support we obtain the following result.

Corollary 8.27. Let f be a distribution with compact support. If fsym(x0) = γ in

S ′(R) with order k, then for any β > k,

1

2π
p.v.

∫ ∞

−∞
f̂(t)eix0tdt = γ (C, β) ,
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or which is the same

lim
x→∞

1

2π

∫ x

−x

(
1− |t|

x

)β
f̂(t)eix0tdt = γ .

For Fourier series, we obtain the result of A. Zygmund [255] mentioned in Ex-

ample 8.24. Obviously, our language differers from that of Zygmund’s original

statement.

Corollary 8.28. Let f be a 2π-periodic distribution, with cosines and sines Fourier

series

f(x) =
a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) .

Suppose that fsym(x0) = γ in S ′(R) with order k ≥ 0. Then for any β > k,

a0

2
+

∞∑
n=1

(an cosnx0 + bn sinnx0) = γ (C, β) ,

or equivalently

lim
x→∞

a0

2
+
∑

0<n<x

(
1− |n|

x

)β
(an cosnx0 + bn sinnx0) = γ .

Proof. If k ≥ 1, we can assume that a0 = 0 and proceed to apply Theorem 8.26.

For k = 0, then f is a bounded 2π-periodic function which is continuous at x0,

and hence the conclusion follows from the classical result [93, 256].

As in the proof of Theorem 8.26, one can apply the result for distributional point

values, Theorem 8.19, to the distribution χfx0
to easily obtain the next bound for

the order of summability in the case of the principal value of Fourier inversion

formula for general tempered distributions.

Theorem 8.29. Let f ∈ D′(R). Suppose that

χfx0
(x) = O(|x|α) (C,m) , as |x| → ∞ .

If fsym(x0) = γ in S ′(R) with order n, then

1

2π
p.v.

〈
χ̂fx0

(x), 1
〉

= γ (C, k + 1) ,
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where k = max
{
m,n, [n+ α + 1

2
], [m+ α + 1

2
]
}

. If we assume f ∈ S ′(R), then we

obtain

1

2π
p.v.

〈
f̂(x), eix0x

〉
= γ (C, k + 1) .

Finally, we estimate the order of the symmetric point value in terms of the

order of summability of the principal value Fourier inversion formula. We need the

following lemma.

Lemma 8.30. Let g ∈ D′(R) be an even distribution, that is, g(−x) = g(x), then

e.v. 〈g(x), 1〉 = γ (C, β) (8.6.2)

if and only if

p.v. 〈g(x), 1〉 = γ (C, β) . (8.6.3)

In fact the above relations are equivalent to

lim
x→∞

G(x) =
γ

2
(C, β) , (8.6.4)

where G is the unique odd first order primitive of g.

Proof. That (8.6.3) and (8.6.4) are equivalent is clear. Relation (8.6.2) obviously

implies (8.6.3). We now show that (8.6.4) implies (8.6.2). Let G be the odd first

order primitive of g, so we have that G(x) = γ/2 + o(1) (C, β) as x → ∞, hence

we also have that G(ax) = γ/2 + o(1) (C, β) as x→∞, and thus for each a > 0

lim
x→∞

(G(ax)−G(−x)) = 2 lim
x→∞

(G(ax) +G(x)) = γ (C, β) .

Therefore, on combining Lemma 8.30 and Theorem 8.21, we immediately obtain

the following result. Notice that, as a corollary, we obtain the classical result of

Plessner [256, ChapXI, Thm.2.1] for Fourier series.
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Theorem 8.31. Let f ∈ S ′(R). Suppose that

1

2π
p. v.

〈
f̂(x), eix0x

〉
= γ (C, k) ,

then, fsym(x0), distributionally, χfx0
is the derivative of order k + 1 of a locally

integrable function and the order of fsym(x0) is less or equal to k + 2.

The solution of the (C) symmetric problem for “trigonometric integrals” of dis-

tributions given in Section 3.10 is recovered by the methods of this chapter. It

extends Hardy-Littlewood-Plessner characterization [89, 256] of (symmetric) (C)

summability at a point from Fourier series to general tempered distributions.

Theorem 8.32. Let f ∈ D′(R). Suppose that χfx0
∈ S ′(R). Then

1

2π
p. v.

〈
χ̂fx0

, 1
〉

= γ (C) (8.6.5)

if and only if fsym(x0) = γ, distributionally. If in addition f ∈ S ′(R), then (8.6.5)

is the same as

1

2π
p. v.

〈
f̂(x), eix0x

〉
= γ (C) .

8.7 The Order of Jumps and Symmetric Jumps

In this last section we shall study the order of summability in several characteriza-

tions and formulas that we have already obtained in Chapter 5 for the jump behav-

ior and symmetric jump behavior of distributions (see also [215, 216, 218, 222]).

Let us define the order of jump and symmetric jump behaviors.

Suppose that f ∈ D′(R) has the following jump behavior at x = x0,

f (x0 + εx) = γ−H(−x) + γ+H(x) + o(1) as ε→ 0+ in D′(R) . (8.7.1)

By Theorem 5.2, f has the jump behavior (8.7.1) if and only if there exist n ∈ N

and a function F , locally integrable on a neighborhood of x0, such that F (n) = f

near x0 and

lim
x→x±0

n!F (x)

(x− x0)n
= γ± . (8.7.2)
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If f ∈ S ′(R), then n can be chosen so that F is locally integrable of polynomial

growth. So we can define the order of the jump behavior in S ′(R) of a tempered

distribution.

Definition 8.33. Let f ∈ S ′(R). Suppose that f has jump behavior at x0. The

order of the jump behavior in S ′(R) is defined as the minimum integer n such that

there exists a locally bounded measurable function F of at most polynomial growth

at infinity satisfying F (n) = f and (8.7.2).

Recall the definition of the jump distribution of f at x = x0, it is given by

ψfx0
(x) = f(x0 + x)− f(x0 − x) .

We defined in Section 5.2 the symmetric jump in terms of the jump behavior of

ψfx0
at x = x0.

Definition 8.34. A distribution f ∈ D′(R) is said to have a symmetric jump

behavior at x = x0 in S ′(R) of order n if ψfx0
∈ S ′(R) and ψfx0

has jump behavior

at x = 0 of order n.

Notice that a distribution f has jump behavior (8.7.1) at x = x0 if and only

if it has symmetric point value and symmetric jump behavior at x = x0 and

fsym(x0) = (γ− + γ+)/2 and [f ]x=x0 = γ+ − γ−.

We now add information about the order of summability to the characterization

of the jump behavior given in Section 5.3 (see also [215, 216].

Theorem 8.35. Let f ∈ S ′(R) have the distributional jump behavior (8.7.1) at

x = x0 of order n. Suppose that there exists an m ∈ N, such that every m-primitive

of f is a locally integrable function for large arguments and satisfies an estimate

O
(
|x|m−1), x → ∞. Let F be a fist order primitive of eix0xf̂ , then if β > k =

max {m,n},

1

2π
lim
x→∞

(F (ax)− F (−x)) = fsym(x0) +
[f ]x=x0

2πi
log a (C, β) ,
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uniformly for a in compact subsets of (0,∞).

Proof. Define the distribution

v = −θ[−1,0] + θ[0,1] ,

where thetaA denotes the characteristic function of a set A. Then the distribution

h(x) = f(x)− 1

2
[f ]x=x0 v(x− x0)

satisfies the hypothesis of Theorem 8.11 and h(x0) = fsym(x0) in S ′(R) with order

n. Therefore,

e.v.
〈
ĥ(x), eix0x

〉
= 2πfsym(x0) (C, β),

whenever β > k = max {m,n}. Observe that

eix0xF {v(t− x0);x} = v̂(x) =
2− 2 cos x

ix
.

Let G be a first order primitive of eix0xĥ(x), hence

F (x) = G(x) +
[f ]x=x0

i

∫ x

0

1− cos t

t
dt

satisfies F ′(x) = eix0xf̂(x). Then, we obtain as x→∞

F (ax)− F (−x) = G(ax)−G(−x) +
[f ]x=x0

i

∫ ax

−x

1− cos t

t
dt

= 2πfsym(x0) +
[f ]x=x0

i

∫ ax

x

1− cos t

t
dt+ o(1)

= 2πfsym(x0) +
[f ]x=x0

i
log a+ o(1) (C, β) .

We obtain immediately form Theorem 8.35 the corresponding results for com-

pactly supported distributions and Fourier series. Here we only state the result for

Fourier series and leave the statement for compactly supported distributions to

the reader.
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Corollary 8.36. Let f(x) =
∑∞

n=−∞ cne
ixn be a 2π-periodic distribution. Suppose

that f has the distributional jump behavior (8.7.1) at x = x0 in S ′(R) with order

k ≥ 1. Then for each a > 0 and β > k,

lim
x→∞

∑
−x≤n≤ax

cne
ix0n = fsym(x0) +

[f ]x=x0

2πi
log a (C, β) ,

or equivalently

lim
x→∞

∑
−x≤n≤ax

φβa

(n
x

)
cne

ix0n = fsym(x0) +
[f ]x=x0

2πi
log a . (8.7.3)

Moreover, relation (8.7.3) holds uniformly for a in compact subsets of (0,∞).

Using the same procedure as in the proof of Theorem 8.35, we obtain from

Theorem 8.19 and Theorem 8.21.

Theorem 8.37. Let f ∈ S ′(R) have the distributional jump behavior (8.7.1) at

x = x0 of order n. Suppose that

f(x) = O(|x|α) (C,m) , as |x| → ∞ .

Let F be a first order primitive of eix0xf̂(x). Then we have, uniformly for a in

compact subset of (0,∞),

1

2π
lim
x→∞

(F (ax)− F (−x)) = fsym(x0) +
[f ]x=x0

2πi
log a (C, k + 1) ,

where k = max
{
m,n, [n+ α + 1

2
], [m+ α + 1

2
]
}

.

Theorem 8.38. Let f ∈ S ′(R). Let F be a first order primitive of f . Suppose that

for some constants d1 and d2

1

2π
lim
x→∞

(F (ax)− F (−x)) = d1 + d2 log a (C, k) ,

for a in a subset of positive measure of the interval (0,∞). Then, f has the dis-

tributional jump behavior (8.7.1) at x0 with constants γ± = d1 ± iπd2, f is the

derivative of order k + 1 of a locally integrable function and the order of the jump

behavior is less or equal to k + 2.
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It is possible to formulate analogous results for the symmetric jump behavior in

terms of the jump distribution; however, we choose only to do it for the case of

Fourier series.

Theorem 8.39. Let f be a 2π-distribution with Fourier series

f(x) =
a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) .

Suppose that f has a symmetric jump behavior at x = x0 of order k ≥ 1. Then for

any β > k

lim
x→∞

∑
x<n≤ax

(an sinnx0 − bn cosnx0) = − [f ]x=x0

π
log a (C, β) ,

uniformly for a in compact subsets of [1,∞).

Proof. The jump distribution has Fourier transform

ψfx0
(x) = −2

∞∑
n=1

(an sinnx0 − bn cosnx0) sinnx ,

it has Fourier transform

ψ̂fx0
(x) = 2πi

∞∑
n=1

(an sinnx0 − bn cosnx0) (δ (x− n)− δ (x+ n)) .

Therefore,

Ψ(x) = 2πi
∑

1≤n<|x|

(an sinnx0 − bn cosnx0)

is a first order primitive of the ψ̂fx0
. Since it has a jump behavior at x = 0 with

jump 2[f ]x=x0 , Theorem 8.35 implies the result.

Reasoning as in Theorem 8.39, we can prove using Theorem 8.38 the following

result.

Theorem 8.40. Let f be a 2π-distribution with Fourier series

f(x) =
a0

2
+

∞∑
n=0

(an cosnx+ bn sinnx) .
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Suppose that

lim
x→∞

∑
x<n≤ax

(an sinnx0 − bn cosnx0) = d log a (C, k) ,

for a in a subset of positive measure of the interval [1,∞). Then, f has the dis-

tributional symmetric jump behavior at x0 with jump [f ]x=x0 = −πd, ψfx0
is the

derivative of order k + 1 of a locally integrable function and the order of the jump

behavior is less or equal to k + 2.

We may use Theorems 8.39, Theorem 8.40 and Corollary 8.28 to characterize

the distributional jump behavior of a 2π-periodic distribution from its cosines and

sines Fourier series and its conjugate series.

Theorem 8.41. Let f be a 2π-distribution with Fourier series

f(x) =
a0

2
+

∞∑
n=0

(an cosnx+ bn sinnx) .

Then f has distributional jump behavior at x = x0 if and only if there exists β ≥ 0

such that for some constants d1 and d2

a0

2
+

∞∑
n=0

(an cosnx0 + bn sinnx0) = d1 (C, β) ,

and

lim
x→∞

∑
x<n≤ax

(an sinnx0 − bn cosnx0) = d2 log a (C, β) ,

for a in a subset of positive measure of the interval [1,∞). In such case fsym(x0) =

d1 and [f ]x=x0 = −πd2.

The last results we want to comment are in relation with the classical formula

of F. Lukács for the jump of a function [131, 140, 141, 218]. Indeed, exactly the

same arguments given in Section 5.5 but now in combination with the information

about the order from Theorem 8.35, Corollary 8.36 and Theorem 8.37 yield the

following series of results.
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Theorem 8.42. Let f ∈ S ′(R) have the distributional jump behavior at x = x0 of

order n. Suppose that there exists an m ∈ N such that every m-primitive of f is a

locally integrable function for large arguments and satisfies an estimate O
(
|x|m−1),

as x → ∞. Then for any decomposition f̂ = f̂− + f̂+, where supp f̂− ⊆ (−∞, 0]

and supp f̂+ ⊆ [0,∞), and for any β > max {n,m}, we have that the following

convolutions are locally bounded functions and

(
e±ix0tf̂±(±t) ∗ tβ+

)
(x) ∼ ±[f ]x=x0

|x|β

i
log x , x→∞ ,

in the ordinary sense.

Theorem 8.43. Let f(x) =
∑∞

n=−∞ cne
ixn be a 2π-periodic distribution. Suppose

it has distributional jump behavior at x = x0 of order k ≥ 1. Then for any β > k

lim
x→∞

1

log x

∑
0≤n≤x

c±ne
±inx0

(
1− n

x

)β
= ± [f ]x=x0

2πi
.

Theorem 8.44. Let f ∈ S ′(R) have the distributional jump behavior at x = x0 of

order n. Suppose that

f(x) = O(|x|α) (C,m) , as |x| → ∞ .

Then for any decomposition f̂ = f̂−+ f̂+, where supp f̂− ⊆ (−∞, 0] and supp f̂+ ⊆

[0,∞). We have that the following convolutions are locally bounded functions and

(
e±ix0tf̂±(±t) ∗ tk+1

+

)
(x) ∼ ±[f ]x=x0

|x|k+1

i
log x , as x→∞ ,

in the ordinary sense, where k = max
{
m,n, [n+ α + 1

2
], [m+ α + 1

2
]
}

.

For the case of symmetric jumps of Fourier series we have the following result.

Theorem 8.45. Let f ∈ S ′(R) be a 2π-periodic distribution having the following

Fourier series

a0

2
+

∞∑
n=1

(an cosnx+ bn sinnx) .
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If f has a symmetric jump behavior at x = x0 of order k ≥ 1, then for any β > k

lim
x→∞

1

log x

∞∑
n=1

(an sinnx0 − bn cosnx0)
(

1− n

x

)β
= − 1

π
[f ]x=x0

.
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Chapter 9
Extensions of Tauber’s Second
Tauberian Theorem

9.1 Introduction

We now continue our investigations about tauberian type results which were started

in Chapter 4. A new feature to be introduced is the use of one-sided tauberian

conditions.

Tauberian Theory was initiated in 1897 by two simple theorems of Tauber for the

converse of Abel’s theorem [204, 115]. The present chapter is dedicated to provide

extensions of Tauber’s second theorem in several directions.

Let us state Tauber’s original theorems.

Theorem 9.1. (Tauber’s first theorem) If
∑∞

n=0 cn = γ (A) and

cn = o

(
1

n

)
, n→∞ , (9.1.1)

then
∑∞

n=0 cn converges to γ.

Theorem 9.2. (Tauber’s second theorem) If
∑∞

n=0 cn = γ (A) and

N∑
n=1

ncn = o(N) , N →∞ , (9.1.2)

then
∑∞

n=0 cn converges to γ.

A version of Tauber’s second theorem for Stieltjes integrals appeared in [245].

Tauber’s theorems are very simple to show [204, 85]. In 1910, Littlewood [127]

gave his celebrated extension of Tauber’s first theorem, he substituted the taube-

rian condition (9.1.1) by the weaker one cn = O (n−1) and obtained the same

conclusion of convergence as in Theorem 9.1; actually, it can be shown that the

hypotheses imply the (C, β) summability for any β > −1 [86]. It turns out that

Littlewood’s theorem is much deeper and difficult to prove than Theorem 9.1. Two
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years later [86], Hardy and Littlewood conjectured that the condition ncn > −K

would be enough to ensure the convergence; indeed, they provided a proof later in

[87].

Extensions of Theorem 9.2 are also known. It is natural to ask whether the re-

placement of (9.1.2) by a big O condition would lead to convergence; unfortunately,

it does not suffice (see [171] for example). Nevertheless, one gets (C, 1) summability

as shown in the next theorem of O. Szász [200] (see also [168, 171, 201]), where

even less is assumed.

Theorem 9.3. (Szász [200]) Suppose that
∑∞

n=0 cn = γ (A). Then the tauberian

condition
N∑
n=1

ncn > −KN , (9.1.3)

for some K > 0, implies that
∑∞

n=0 cn = γ (C, 1).

We will actually show (see Corollary 9.39 below) that if a two-sided condition

is assumed instead of (9.1.3), then the series is summable (C, β), for all β > 0.

Versions of Theorem 9.3 for Dirichlet series can be found in [200] and [28, Section

3.8].

It should be noticed that Theorem 9.3 includes the Hardy-Littlewood’s theorem

quoted above, it may also be used to give direct proofs of other classical tauberians .

As a motivation for further extensions of Theorem 9.3, let us discuss how to deduce

the results from [85, pp.153–155] as corollaries.

Corollary 9.4. (Hardy and Littlewood) Suppose that
∑∞

n=0 cn = γ (A). The taube-

rian condition
∑N

n=0 cn = O(1) implies the (C, 1) summability of the series to γ.

Proof. Indeed the tauberian hypothesis implies (9.1.3); for

N∑
n=0

ncn = N

N∑
n=0

cn −
N−1∑
n=0

(
n∑
j=0

cj

)
= O(N) .
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It also implies the following result.

Corollary 9.5. (Hardy and Littlewood) Suppose that F (r) =
∑∞

n=0 cnr
n ∼ γ/(1−

r), r → 1−. If cn = O(1), then sN =
∑N

n=0 cn ∼ γN , N →∞.

Proof. Define b0 = c0, bn = cn − cn−1 for n ≥ 1. Then as r → 1−,

(1− r)
∞∑
n=0

cnr
n =

∞∑
n=0

bnr
n → γ ,

the hypothesis cn = O(1) implies

N∑
n=0

nbn = NcN −
N−1∑
n=0

cn = O(N) .

So we conclude that
∑∞

n=0 bn = γ (C, 1), or which is the same, as N →∞,

1

N

N∑
n=0

n∑
j=0

bn =
1

N

N∑
n=0

cn → γ .

Finally, the one-sided Littlewood’s theorem.

Corollary 9.6. (Littlewood [127], Hardy and Littlewood [87]) If
∑∞

n=0 cn = γ (A)

and ncn > −K, for some constant K > 0, then
∑∞

n=0 cn = γ.

Proof. The condition implies (9.1.3) and hence
∑∞

n=0 cn = γ (C, 1). Since ncn ≥

−K, Hardy’s tauberian theorem for (C, 1) summability, that is, Corollary 3.32 (see

also [85, p.121]), which is much more elementary than the present theorem, implies

the convergence.

The classical tauberian theorems for power series have stimulated the creation

of many interesting methods and theories in order to obtain extensions and easier

proofs for them. Among the classical ones, one could mention those of N. Wiener

[246] and J. Karamata [109, 110]. Other important ones come from the theory
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of generalized functions. In [229], Vladimirov obtained a multidimensional exten-

sion of Hardy-Littlewood type theorems for measures under positivity tauberian

conditions. Later on, the results of [229] were generalized to include tempered

distributions, resulting in a powerful multidimensional tauberian theory for the

Laplace transform [37, 231] (see also [38]). Distributional tauberian theorems for

other integral transforms are investigated in [139, 159, 160]. Other related results

are found in [149, 157].

In Chapter 4 we were able to deduce Littlewood’s tauberian theorem [127] from

the tauberian theorem for distributional point values; actually the method of Sec-

tion 4.4 recovered the more general version for Dirichlet series proved first by

Ananda Rau [5]. A similar approach, but with a more comprehensive character,

will be taken in this chapter.

The structure of the chapter is as follows. Section 9.2 is devoted to the study of

Cesàro limits and summability in the context of Schwartz distributions; we define

one-sided Cesàro boundedness of fractional order, then we provide several technical

tauberian theorems which will establish the link between results for generalized

functions and Stieltjes integrals. The main part of the chapter is Section 9.3. There,

we first show a theorem for distributional point values which generalizes Theorem

9.3; moreover, our theorem is capable to recover Theorem 9.3, and it is applicable to

much more situations. Finally, we generalize [201, Thm.B] from series to Stieltjes

integrals and use this new result to give proofs of some classical tauberians of

Hardy-Littlewood and O. Szász for Dirichlet series.

9.2 Tauberian Theorems for (C) Summability

In this section we show tauberian theorems for (C) summability of distributions

and measures related to Theorem 9.2. We first study Cesàro boundedness. Next,

a convexity theorem is shown. Finally, we present the tauberian theorems.
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9.2.1 Cesàro Boundedness: Fractional Orders

We defined in Section 8.3 Cesàro limits of fractional order; we now extend these

ideas to boundedness. In the case of integral orders, it coincides with the definition

from [49]. We will also define one-sided boundedness.

Recall that given f ∈ D′(R), with support bounded at the left, its β-primitive

is given by the convolution [230]

f (−β) = f ∗ x
β−1
+

Γ(β)
. (9.2.1)

Definition 9.7. Let f ∈ D′(R), and β ≥ 0. We say that f is bounded at infinity

in the Cesàro sense of order β (in the (C, β) sense), and write

f(x) = O(1) (C, β), as x→∞ , (9.2.2)

if for any decomposition f = f− + f+ as sum of two distributions with supports

bounded on the right and left, respectively, one has that the β-primitive of f+ is an

ordinary function (locally integrable) for large arguments and satisfies the ordinary

order relation

f
(−β)
+ (x) = O

(
xβ
)
, x→∞ , (9.2.3)

in the ordinary sense. A similar definition applies for the little o-symbol.

Observe that, because of Proposition 8.3, we can always assume in Definition 9.7

that f = f+, if needed. Notice also that Definition 9.7 is consistent with Definition

8.2, since

lim
x→∞

f(x) = ` (C, β)

if and only if

f(x)− `H(x) = o(1) (C, β) , x→∞ .

We now define one-sided boundedness. Recall that a positive distribution is

nothing else than a positive Radon measure.
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Definition 9.8. Let f ∈ D′(R), β ∈ R, and α ∈ R \ {−1,−2, . . . }. We say that

f is bounded from below (or left bounded) near infinity by OL(xα) in the Cesàro

sense of order β, and write

f(x) = OL(xα) (C, β), as x→∞ , (9.2.4)

if there exists a decomposition f = f− + f+, as sum of two distributions with sup-

ports bounded on the right and left, respectively, a constant K > 0, and an interval

(a,∞) such that f
(−β)
+ +Kxα+β

+ is a positive distribution on (a,∞). A similar defi-

nition applies for right boundedness, in such a case we employ the symbol OR(xα).

Our definitions of Cesàro behavior have the following expected property.

Proposition 9.9. If f is Cesàro bounded ( has Cesàro limit, or is one-sided

bounded) at infinity of order β, then it it Cesàro bounded (has Cesàro limit, or

is one-sided bounded by O(xα), respectively) at infinity of order β̃ > β.

Proof. Proposition 8.3 implies the case of limits and boundedness; for one-sided

boundedness, it follows easily from the definition.

When we do not want to make reference to the order β in (C, β), we simply

write (C). We will often drop x→∞ from the notation. Note that if f(x) = O(1),

x → ∞, then f+ ∈ S ′(R) (here f = f− + f+ as in Definition 9.7). In addition, it

should be noticed that both f(x) = OL(1) and f(x) = OR(1), in the (C, β) sense,

imply f(x) = O(1) (C, β) (prove it!).

We will need the following observation concerning to numerical series in the

future. Given a sequence {bn}∞n=0 and β > 0, write

bN = O(N) (C, β) ,

if the Cesàro means of order β of the sequence (not to be confuse with the Cesàro

means of a series) are O(N), that is,
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N∑
n=0

(
N − n+ β − 1

β − 1

)
bn = O(Nβ+1) .

Likewise, we define the symbols OR and OL in the Cesàro sense for sequences.

Following Ingham’s method [100], we obtain the following useful equivalence.

Lemma 9.10. Let β ≥ 0. The conditions

N∑
n=0

cn = O(N) (C, β) (9.2.5)

and
∞∑
n=0

cnδ(x− n) = O(1) (C, β + 1) , as x→∞ , (9.2.6)

are equivalent. The same holds for the symbols OR and OL.

Proof. Repeating the arguments from [100] (see also Theorem 6.24 in Chapter 6

or [222, Section 7]), with the obvious modifications, one is led to the equivalence

between (9.2.5) and the relation

∑
n<x

(x− n)β cn = O(xβ+1), (resp. OR and OL),

which turns out to be the meaning of (9.2.6).

9.2.2 A Convexity (Tauberian) Theorem

We now show a convexity theorem for the Cesàro limits of distributions. It gener-

alizes [85, Thm.70].

Theorem 9.11. Let f ∈ D′(R). Suppose that limx→∞ f(x) = γ (C, β2), for some

β2 > 0. If f(x) = OL(1) (C, β1), then limx→∞ f(x) = γ (C, β), for any β ≥ β1 + 1.

The same conclusion holds if we replace OL(1) by OR(1). If now f(x) = O(1)

(C, β1), as x→∞, then limx→∞ f(x) = γ (C, β), for any β > β1.

Theorem 9.11 follows immediately from the following theorem. Notice that it

extends results on asymptotics of derivatives from [115, p.34–37] and [85, Thm.112].
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For the first part we give a proof with distributional flavor, following the method

from [37, Lemma 3]. Given a Radon measure, we denote by sµ a function of local

bounded variation such that µ = dsµ; in the sense that µ is given by an Stieltjes

integral and s′µ = µ. If µ has support on [0,∞), then sµ(0) = 0. The variation

measure |µ| associated to µ is also denoted by |dsµ|.

Theorem 9.12. Let µ be a Radon measure supported in [0,∞) and α > −1.

Suppose that for some β1 > 1∫ x

0

(x− t)β1−1dsµ(t) ∼ γΓ (β1) Γ (α + 1)

Γ (β1 + α + 1)
xα+β1 , x→∞ . (9.2.7)

If the one-sided condition,

Cxα+ + µ is a positive measure, (9.2.8)

is satisfied for some constant C, then for any β ≥ 1∫ x

0

(
1− t

x

)β−1

dsµ(t) ∼ γΓ(β)Γ (α + 1)

Γ (β + α + 1)
xα+1 , x→∞ . (9.2.9)

If in addition µ is absolutely continuous with respect to the Lebesgue measure, and

the two sided condition

Fµ(x) = O (xα) , x→∞ , (9.2.10)

is satisfied, where Fµ ∈ L1
loc(R) is so that dsµ(t) = Fµ(t)dt, then (9.2.9) holds

whenever β > max {−α, 0}.

Proof. Let us show the first part of the theorem. By adding Cxα+ to µ, we may

assume that C = 0, and so we are assuming that µ is a positive measure. Next, we

show that we may assume that β1 ∈ N; indeed, if we convolve (9.2.7) with x
[β1]−β1

+ ,

we obtain the same relation for [β1] + 1. It follows that

µ(λx) = γλαxα+ + o (λα) , λ→∞ (9.2.11)
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in D′(R); we want to show that we may take β1 = 1 in (9.2.9), the rest follows

trivially. Let σ > 0. Pick φ ∈ D′(R) with the properties 0 ≤ φ ≤ 1 suppφ ⊆

[−1, 1 + σ] and φ(x) = 1 on [0, 1]. Then, from (9.2.11)

lim sup
λ→∞

(
1

λα+1

∫ λ

0

dsµ(t)− γ

α + 1

)
≤ lim

λ→∞

1

λα+1

∫ ∞

0

φ

(
t

λ

)
dsµ(t)− γ

α + 1

= lim
λ→∞

1

λα
〈µ(λt), φ(t)〉 − γ

α + 1

= γ

∫ 1+σ

0

tαφ(t)dt− γ

α + 1
≤ γ

∫ 1+σ

1

tαdt .

Similarly, choosing the test function with the properties 0 ≤ φ ≤ 1, suppφ ⊆

[−1, 1] and φ(x) = 1 on [0, 1− σ], we come to the conclusion

lim inf
λ→∞

(
1

λα+1

∫ λ

0

dsµ(t)− γ

α + 1

)
≥ −γ

∫ 1

1−σ
tαdt .

Since σ is arbitrary, we have that

∫ λ

0

dsµ(t) ∼ γ
λα+1

α + 1
, λ→∞ .

This completes the proof of the first part.

For the second part, write F := Fµ. We assume that |F (x)| ≤ Mxα for some

constant M and x large enough. Moreover, it is clear that we can assume this

condition to hold for all x, by Proposition 8.3. Denoting F ∗H byF1(x) =
∫ x

0
F (t)dt,

we obtain from the first part that F1(x) ∼ γxα+1/(α + 1), x → ∞. We also have

that if 0 < r < 1

|F1(rx)− F1(x)| ≤M

∫ x

rx

tαdt =
M

α + 1
(1− r)α+1xα+1 .
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Hence, if max {−α, 0} < β < 1

∫ x

0

F (t)

(
1− t

x

)β−1

dt = lim
r→1−

∫ rx

0

F (t)

(
1− t

x

)β−1

dt

= lim
r→1−

(
F1(rx)(1− r)β−1 +

β − 1

x

∫ rx

0

F1(t)

(
1− t

x

)β−2

dt

)

= lim
r→1−

(
(1− r)α+βF1(rx)− F1(x)

(1− r)α+1
+ F1(x)(1− r)β−1

+
β − 1

x

∫ rx

0

F1(t)

(
1− t

x

)β−2

dt

)

= F1(x) + lim
r→1−

β − 1

x

∫ rx

0

(F1(t)− F1(x))

(
1− t

x

)β−2

dt

= (β − 1)

∫ 1

0

(F1(xt)− F1(x)) (1− t)β−2dt+ γ
xα+1

α + 1
+ o(xα+1)

= xα+1

(
(β − 1)

∫ 1

0

F1(xt)− F1(x)

xα+1(1− t)
(1− t)β−1dt+

γ

α + 1
+ o(1)

)
= γ

β − 1

α + 1
xα+1

(∫ 1

0

(tα+1 − 1)(1− t)β−2 +
1

β − 1
+ o(1)

)
= γ

β − 1

α + 1
xα+1

(
Γ(β − 1)Γ(α + 2)

Γ(β + α + 1)
− 1

β − 1
+

1

β − 1
+ o(1)

)
= γ

Γ(β)Γ(α + 1)

Γ(β + α + 1)
xα+1 + o

(
xα+1

)
, x→∞ .

9.2.3 Tauberian Theorems for (C) Summability

We now analyze Tauber’s second type conditions. For that, we need the following

formula, here we use the Laplace transform, so given g ∈ S ′(R), with support

bounded at the left, its Laplace transform is L{g; z} := 〈g(t), e−zt〉, for <e z > 0.

Lemma 9.13. Suppose that f ∈ D′(R) has support bounded at the left. Then

(xf)(−β) = xf (−β) − βf (−β−1) . (9.2.12)
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Proof. We first assume that f ∈ S ′(R). We make use of the injectivity of the

Laplace transform. Set F (z) = L{f(t); z}. Then,

L
{
tf (−β)(t); z

}
= − d

dz

(
L
{
f (−β)(t); z

})
= − d

dz

(
F (z)L

{
t(β−1)

Γ(β)
; z

})
= β

F (z)

zβ+1
− F ′(z)

zβ
= L

{
βf (−β−1) + (tf)(−β) ; z

}
,

which shows (9.2.12). In the general case we take a sequence {fn}∞n=0, with each

fn being tempered and having support on some fixed interval [a,∞), such that

fn → f in D′(R); then (9.2.12) is satisfied for each fn. Thus, the continuity of

the fractional integration operator [230], on D′[a,∞), shows (9.2.12) for f , after

passing to the limit.

We now connect Tauber’s second type conditions with Cesàro boundedness.

Lemma 9.14. Let f ∈ D′(R). Suppose that f(x) = O(1) (C, β2), as x → ∞, for

some β2 ≥ 0. Then the condition xf ′(x) = O(1) (C, β1 + 1) holds if and only if

f(x) = O(1) (C, β1).

Proof. Assume that f has support bounded on the left. We can assume that β2

has the form β2 = β1 + k, for some k ∈ N. Let g = xf ′, then, by Lemma 9.13,

xf (−β1−k+1)(x) = β2f
(−β1−k)(x) + g(−β1−k)(x) = g(−β1−k)(x) +O

(
xβ1+k

)
,

x → ∞; then f(x) = O(1) (C, β1 + k − 1) if and only if g(x) = O(1) (C, β1 + k),

x → ∞. A recursive argument shows that f(x) = O(1) (C, β1) if and only if

g(x) = O(1) (C, β1 + 1).

The same proof applies for one-sided boundedness.

Lemma 9.15. Let f ∈ D′(R). Suppose that f(x) = O(1) (C, β2), as x → ∞, for

some β2 ≥ 0. Then the condition xf ′(x) = OL(1) (C, β1 + 1) holds if and only if

f(x) = OL(1) (C, β1). The same is true if OL(1) is replaced by OR(1).
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So, we immediately obtain from Theorem 9.11

Theorem 9.16. Let f ∈ D′(R). Suppose that limx→∞ f(x) = γ (C, β2) for some

β2 ≥ 0. The tauberian condition xf ′(x) = O(1) (C, β1 + 1), for some β1 ≥ 0;

implies that limx→∞ f(x) = γ (C, β) for all β > β1.

Proof. Indeed, we obtain, by Lemma 9.14, f(x) = O(1) (C, β1), x→∞; hence, an

application of Theorem 9.11 gives the result.

Theorem 9.17. Let f ∈ D′(R). Suppose that limx→∞ f(x) = γ (C, β2) for some

β2 ≥ 0. The tauberian condition xf ′(x) = OL(1) (C, β1 + 1), for some β1 ≥ 0;

implies that limx→∞ f(x) = γ (C, β), for all β ≥ β1 + 1. The same holds if we

replace OL(1) by OR(1).

Proof. From Lemma 9.15, we have f(x) = OL(1) (C, β1), x → ∞; hence, again,

we can an apply Theorem 9.11.

We also analyze a little o condition. It generalizes [85, Thm.65] to distributions.

Theorem 9.18. Let f ∈ D′(R). Suppose that limx→∞ f(x) = γ (C, β2). If β2 >

β1 ≥ 0, a necessary and sufficient condition for the limit to hold (C, β1) is xf ′(x) =

o(1) (C, β1 + 1).

Proof. We retain the notation from the proof of Lemma 9.14. If for some k > 0,

limx→∞ f(x) = γ (C, k + β1), then the relation

xf (−β1−k+1)(x) = g(−β1−k)(x) + (β1 + k)f (−β1−k)(x)

= g(−β1−k)(x) +
γxβ1+k

Γ(β1 + k)
+ o

(
xβ1+k

)
shows the equivalence at level k − 1. A recursive argument proves that the equiv-

alence should hold for k = 1.
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We may state our results in terms of (C) summability of distributional evalua-

tions. We obtain the next series of corollaries directly from Theorem 9.16, Theorem

9.17, and Theorem 9.18.

Corollary 9.19. Let g ∈ D′(R) and φ ∈ E(R). Suppose that supp g is bounded at

the left and

〈g(x), φ(x)〉 = γ (C) . (9.2.13)

If xφ(x)g(x) = O(1) (C, β1 + 1), as x→∞, for some β1 ≥ 0, then

〈g(x), φ(x)〉 = γ (C, β) , (9.2.14)

for all β > β1.

Corollary 9.20. Let g ∈ D′(R) and φ ∈ E(R). Suppose that supp g is bounded at

the left and

〈g(x), φ(x)〉 = γ (C) . (9.2.15)

If xφ(x)g(x) = OL(1) (C, β1 + 1), as x→∞, for some β1 ≥ 0, then

〈g(x), φ(x)〉 = γ (C, β) , (9.2.16)

for all β ≥ β1 + 1.

Corollary 9.21. Let g ∈ D′(R) and φ ∈ E(R). Suppose that supp g is bounded at

the left and

〈g(x), φ(x)〉 = γ (C) . (9.2.17)

Given β ≥ 0, a necessary and sufficient condition for (9.2.17) to hold (C, β) is

xφ(x)g(x) = o(1) (C, β + 1), as x→∞.

9.3 Tauber’s Second Type Theorems for Point

Values and (A) Summability

We now analyze tauberian problems related to Abel summability.
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9.3.1 Tauberian Theorem for Distributional Point Values

We are ready to show the main theorem of this chapter.

Theorem 9.22. Let F be analytic in a rectangular region of the form (a, b)×(0, R).

Suppose f(x) = F (x + i0) in D′(a, b). Let x0 ∈ (a, b) such that F (x0 + iy) → γ

as y → 0+. The tauberian condition f ′(x0 + εx) = O(ε−1) as ε → 0+ in D′(a, b),

implies that f(x0) = γ, distributionally.

Proof. Clearly, by translating, we can assume that x0 = 0. We first show that it

may be assumed f ∈ S ′(R) and F is the Fourier-Laplace representation. Let C be a

smooth simple curve contained in (a, b)×[0, R) such that C∩(a, b) = [x0−σ, x0+σ],

for some small σ, and which is symmetric with respect to the imaginary axis.

Let τ be a conformal bijection [32, 167] between the upper half-plane and the

region enclosed by C such that the image of the imaginary axis is contained on the

imaginary axis and τ extends to a C∞-diffeomorphism from R to C \ (C ∩ iR+).

Then, F ◦ τ(iy) → γ as y → 0+ and f (τ(εx)) = O(ε−1) as ε→ 0+ in D′(R) if and

only if F (iy) → γ and f(εx) = O(ε−1) in D′(R). Moreover [128], f ◦ τ(0) = γ if

and only if f(0) = γ, distributionally. In addition F ◦ τ is bounded away an open

half-disk about the origin, hence it is the Fourier-Laplace analytic representation

of f ◦ τ . So, we can therefore assume that f ∈ S ′(R) and

F (z) =
1

2π

〈
f̂(t), eizt

〉
.

Our aim is to show that f is distributionally bounded at x = 0. Indeed, if one

established this fact then f(0) = γ,distributionally, by Theorem 4.7. The condition

f ′(εx) = O(ε−1) still holds in S ′(R). If we integrate this condition [227], we obtain

from the definition of primitive in S ′(R) that there exists a function c, continuous

on (0,∞), such that

f(εx) = c(ε) +O(1) ,
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as ε→ 0+ in S ′(R), in the sense that for each φ ∈ S(R)

〈f(εx), φ(x)〉 = c(ε)

∫ ∞

−∞
φ(x)dx+O(1) ,

as ε→ 0+. Fourier transforming the last relation, we have that

f̂(λx) = 2πc
(
λ−1
) δ(x)

λ
+O

(
1

λ

)
,

as λ→∞ in S ′(R). Evaluating at e−x, we obtain, as y → 0+,

O(1) = F (iy) =
1

2π

〈
f̂(t), e−yt

〉
=

1

2πy

〈
f̂
(
y−1t

)
, e−t

〉
= c(y) +O(1) .

Hence, c is bounded near the origin, and thus f(εx) = c(ε) + O(1) = O(1) as

ε→ 0+ in S ′(R), as required.

So, we obtain the following tauberian theorem in terms of the Laplace transform.

Theorem 9.23. Let G ∈ D′(R) have support bounded at the left. Necessary and

sufficient conditions for

lim
λ→∞

G(λx) = γ in D′(R) , (9.3.1)

are

lim
y→0+

yL{G; y} = lim
y→0+

L{G′; y} = γ, (9.3.2)

and

λxG′(λx) = O(1) as λ→∞ in D′(R). (9.3.3)

Proof. Either (9.3.1) or (9.3.3) imply that G is a tempered distribution and hence

its Laplace transform is well defined for <e z > 0. The necessity is clear. Now,

the condition (9.3.3) translates into f ′(εx) = O(ε−1) in S ′(R), where f̂ = 2πG′.

Relation (9.3.15) gives F (iy) = L{G′; y} → γ as y → 0+, for the Fourier-Laplace

representation of f , hence by Theorem 9.22, f(0) = γ in S ′(R). Hence, taking

Fourier inverse transform, we conclude that G′(λx) ∼ λ−1γδ(x) as λ → ∞ in

S ′(R), which implies (9.3.1).
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9.3.2 Tauberians for Abel Limitability

Let us define Abel limitability for distributions. Recall that (Section 1.5) g ∈ D′(R),

it is called Laplace transformable [180] on the strip a < <e z < b if e−ξtg(t) is a

tempered distribution for a < ξ < b; in such a case its Laplace transform is well

defined on that strip.

Definition 9.24. Let f ∈ D′(R). We say that f has a limit γ at infinity in the

Abel sense, and write

lim
x→∞

f(x) = γ (A) , (9.3.4)

if there exists a distribution f+ with support bounded at the left such that f+ coin-

cides with f on an open interval (a,∞), f+ is Laplace transformable for <e z > 0,

and

lim
y→0+

yL{f+; y} = γ . (9.3.5)

Notice that Definition 9.24 is independent on the choice of f+, because every

compactly supported distribution satisfies (9.3.5) with γ = 0. The case of locally

integrable functions is of interest, it is analyzed in the next example.

Example 9.25. If f ∈ L1
loc[0,∞) is such that the improper integral

L{f ; y} =

∫ ∞

0

f(t)e−tydt, converges for each y > 0 , (9.3.6)

and

lim
y→0+

yL{f ; y} = γ , (9.3.7)

then f has γ as an Abel limit in the sense of Definition 9.24. However, the Abel

limit of f , in the sense of Definition 9.24, exists under weaker assumptions, namely

under the existence of the Laplace transform as integrals in the Cesàro sense, i.e.,

L{f ; y} =

∫ ∞

0

f(t)e−tydt (C) , exists for each y > 0 , (9.3.8)
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and (9.3.7). Conversely, the reader can verify that the existence of the Abel limit,

interpreted as in Definition 9.24, of a locally integrable function is equivalent to

(9.3.8) and (9.3.7).

Observe that (9.3.5) is precisely (9.3.2). Therefore, using the well known equiva-

lence between Cesàro behavior and parametric (quasiasymptotic) behavior (Propo-

sition 1.13), we may reformulate Theorem 9.23

Corollary 9.26. Let f ∈ D′(R). Necessary and sufficient conditions for

lim
λ→∞

f(x) = γ (C) (9.3.9)

are

lim
x→∞

f(x) = γ (A) and xf ′(x) = O(1) (C) , as x→∞ . (9.3.10)

We now combine Corollary 9.26 with the results from Section 9.2.3 to obtain

more precise information about the Cesàro order in (9.3.9).

Theorem 9.27. Let f ∈ D′(R). Suppose that limx→∞ f(x) = γ (A). The tauberian

condition xf ′(x) = O(1) (C, β1 + 1), as x → ∞, implies limx→∞ f(x) = γ (C, β),

for all β > β1.

Proof. It follows directly form Corollary 9.26 and Theorem 9.16.

We can also consider a one-sided tauberian condition.

Theorem 9.28. Let f ∈ D′(R). Suppose that limx→∞ f(x) = γ (A). Let β1 ≥ 1.

The one-sided tauberian condition xf ′(x) = OL(1) (C, β1), as x → ∞, implies

limx→∞ f(x) = γ (C, β), for all β ≥ β1.

Proof. We may assume that f has support bounded at the left. If xf ′(x) = O(1)

(C) is established, we could apply first Theorem 9.17, and then Corollary 9.26

to obtain the desired conclusion. Because of Lemma 9.13, xf ′(x) = O(1) (C) is
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satisfied if f(x) = O(1) (C); so, let us show the two-sided boundedness of f(x).

By adding a term of the form KH(x) and a compactly supported distribution

to f(x), we may assume that there exists k ∈ N such that g(−k) ∈ L∞loc(R), and

g(−k)(x) ≥ 0, for x large enough, where g(x) = xf ′(x). Actually k can be chosen

so that f (−k) ∈ L∞loc(R). Furthermore, by adding a suitable compactly supported

bounded function we can additionally assume that g(−k)(x) ≥ 0, for all x, and both

g(−k) and f (−k) vanish in a neighborhood of the origin. Using Lemma 9.13, we have

that

g(−k)(x)

xk+1
=

(
f (−k)(x)

xk

)′
;

therefore, f (−k) is a non-negative function. Finally, using the non-negativity of

f (−k), we have that

f (−k−1)(x) =

∫ x

0

f (−k)(t)dt ≤ e

∫ x

0

f (−k)(t)e−
t
x dt

= exkL
{
f ;

1

x

}
= eγxk+1 + o(xk+1) = O(xk+1) ,

hence f(x) = O(1) (C, k + 1).

We obtain from Theorem 9.28 an extension of a classical important result of O.

Szász [200, Thm.1].

Theorem 9.29. Let f ∈ L1
loc[0,∞). Suppose that limx→∞ f(x) = γ (A) in the

sense that it satisfies (9.3.8) and (9.3.7). Then, the one-sided tauberian condition

xf(x)−
∫ x

0

f(t)dt ≥ −Kx, x > a , (9.3.11)

for some positive constants K and a, implies that

f (−1)(x) =

∫ x

0

f(t)dt ∼ γx, x→∞ . (9.3.12)

Proof. Note that (9.3.11) exactly means that xf ′(x) = OL(1) (C, 1) and (9.3.12)

that limx→∞ f(x) = γ (C, 1). So, Theorem 9.28 yields (9.3.12).
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In particular.

Corollary 9.30. (Szász [200, Thm.1]) Let f ∈ L1
loc[0,∞) satisfy (9.3.6) and

(9.3.7). The one-sided tauberian condition (9.3.11) implies (9.3.12).

Remark 9.31. If β ≥ 0, we might replace (9.3.11) in Theorem 9.29 and Corollary

9.30 by

xf(x)−
∫ x

0

f(t)dt = OL(x) (C, β), as x→∞ ,

then same arguments apply to conclude limx→∞ f(x) = γ (C, β + 1).

We can use Theorem 9.18 to obtain a Tauber type characterization of (C, β)

limits; the next result follows easily from Corollary 9.26 and Theorem 9.18.

Theorem 9.32. Let f ∈ D′(R) and β ≥ 0. Necessary and sufficient conditions for

limx→∞ f(x) = γ (C, β) are limx→∞ f(x) = γ (A) and xf ′(x) = o(1) (C, β + 1).

9.3.3 Tauberians for Abel Summability of Distributions

Let g ∈ D′(R) with support bounded at the left and φ ∈ E(R). We defined in

Chapter 3 Abel summability of distributional evaluation as follows:

〈g(x), φ(x)〉 = γ (A) . (9.3.13)

if e−yxφ(x)g(x) ∈ S ′(R), for every y > 0, and

lim
y→0+

〈
φ(t)g(t), e−yt

〉
= γ . (9.3.14)

Notice that (9.3.13) holds if and only if limx→∞G(x) = γ (A), where G is the first

order primitive of φg with support bounded at the left, that is, G = (φg)∗H (here

H is the Heaviside function). So, our theorems from Section 9.3.2 give at once the

following results.

Theorem 9.33. Let g ∈ D′(R) with support bounded at the left and φ ∈ E(R).

Suppose that

〈g(x), φ(x)〉 = γ (A) . (9.3.15)
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The tauberian condition xg(x)φ(x) = OL(1) (C, β1 + 1), as x → ∞, for β1 ≥ 0,

implies

〈g(x), φ(x)〉 = γ (C, β) , (9.3.16)

for all β ≥ β1 + 1. While the stronger tauberian condition xg(x)φ(x) = O(1)

(C, β1 + 1) implies that (9.3.16) holds for all β > β1.

Theorem 9.34. Let g ∈ D′(R) with support bounded at the left and φ ∈ E(R).

Necessary and sufficient conditions for (9.3.16) are 〈g(x), φ(x)〉 = γ (A) and

xg(x)φ(x) = o(1) (C, β + 1) as x→∞.

The case when g = f̂ and φ(x) = eix0x is interesting, it provides the order of

summability in the pointwise Fourier inversion formula for  Lojasewicz point values

(Chapter 3). This is the content of the next corollary.

Corollary 9.35. Let f ∈ S ′(R) be such that supp f̂ is bounded at the left and

1

2π

〈
f̂(x), eix0x

〉
= γ (A) . (9.3.17)

Then xeix0xf̂(x) = OL(1) (C, β1 + 1), for some β1 ≥ 0, implies that f(x0) = γ,

distributionally. Moreover, the pointwise Fourier inversion formula holds (C, β) for

any β ≥ β1 + 1, that is

1

2π

〈
f̂(x), eix0x

〉
= γ (C, β) . (9.3.18)

Moreover, the stronger tauberian condition xeix0xf̂(x) = O(1) (C, β1 + 1) implies

that (9.3.18) holds for all β > β1.

9.3.4 Tauberians for Series and Stieltjes Integrals

The cases of Stieltjes integrals and series is also of importance. We obtain directly

from Theorem 9.33 the following corollary.
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Corollary 9.36. Let s be a function of local bounded variation such that s(x) = 0

for x ≤ 0. Suppose that the improper integral

L{ds; y} =

∫ ∞

0

e−yxds(x) (C) , exists for each y > 0 , (9.3.19)

and that

lim
y→0+

L{ds; y} = γ. (9.3.20)

Let β1 ≥ 0. Then, the tauberian condition

∫ x

0

tds(t) = OL(x) (C, β1) , (9.3.21)

implies that for all β ≥ β1 + 1

lim
x→∞

s(x) = γ (C, β) . (9.3.22)

Moreover, if we replace OL(x) by O(x) in (9.3.21), we conclude that (9.3.22) holds

for all β > β1.

Observe that in particular Corollary 9.36 holds if we replace (9.3.19) by the

stronger assumption of the existence of the improper integrals
∫∞

0
e−yxds(x) =

limt→∞
∫ t

0
e−yxds(x), for each y > 0.

Let λn ↗∞ be an increasing sequence of non-negative real numbers. Recall that

we write
∑∞

n=0 cn = γ (A, {λn}) if the Dirichlet series F (z) =
∑∞

n=0 cne
−zλn = γ

converges on <ez > 0 and limy→0+ F (y) = γ.

Corollary 9.37. Suppose that
∑∞

n=0 an = γ (A, {λn}). The tauberian condi-

tion
∑

λn<x
cn = OL(x) (C, β1), for some β1 ≥ 0, implies that

∑∞
n=0 cn = γ

(R, {λn} , β), for all β ≥ β1+1. The stronger tauberian condition
∑

λn<x
cn = O(x)

(C, β1) implies the (R, {λn} , β) summability of the series to γ, for all β > β1.

Furthermore, we can formulate a much stronger version of Corollary 9.37.
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Corollary 9.38. Suppose that

F (y) =
∞∑
n=0

cne
−yλn (R, {λn}) , exists for each y > 0 , (9.3.23)

and

lim
y→0+

F (y) = γ . (9.3.24)

The tauberian condition
∑

λn<x
cn = OL(x) (C, β1), for some β1 ≥ 0, implies that∑∞

n=0 cn = γ (R, {λn} , β), for all β ≥ β1 + 1. The stronger tauberian condition∑
λn<x

cn = O(x) (C, β1) implies the (R, {λn} , β) summability of the series to γ,

for all β > β1.

We now obtain a general form of Theorem 9.3 stated at the introduction; it is a

particular case of Corollary 9.37.

Corollary 9.39. Suppose that
∑∞

n=0 cn = γ (A). The one-sided tauberian condi-

tion
∑N

n=0 cn = OL(N) (C, β1), for some β1 ≥ 0, implies that
∑∞

n=0 cn = γ (C, β),

for all β ≥ β1 + 1. The stronger tauberian condition
∑N

n=0 cn = O(N) (C, β)

implies the (C, β) summability of the series to γ, for all β > β1.

If we specialize Corollary 9.38 to power series, we have.

Corollary 9.40. Suppose that

F (r) =
∞∑
n=0

cnr
n (C) , exists for each 0 ≤ r < 1 , (9.3.25)

and

lim
r→1−

F (r) = γ . (9.3.26)

The tauberian condition
∑N

n=0 cn = OL(N) (C, β1), for some β1 ≥ 0, implies

that
∑∞

n=0 cn = γ (C, β), for all β ≥ β1 + 1. The stronger tauberian condition∑N
n=0 cn = O(N) (C, β) implies the (C, β) summability of the series to γ, for all

β > β1.
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9.4 Applications: Tauberian Conditions for

Convergence

This section is devoted to applications of the distributional method in classical

tauberians for series and Dirichlet series. Let f ∈ D′(R) have support bounded at

the left, we have that limx→∞ f(x) = γ (C) if and only if its derivative has the

following quasiasymptotic behavior

f ′(λx) = γ
δ(x)

λ
+ o

(
1

λ

)
as λ→∞ in D′(R) . (9.4.1)

Let 1 < σ < 2. Throughout this section φσ ∈ D′(R) is a fixed test function with the

following properties: 0 ≤ φσ ≤ 1, φσ(x) = 1 for x ∈ [0, 1], and suppφσ ⊆ [−1, σ],.

We first extend a Theorem of O. Szász [201] (see also [171]) from series to Stieltjes

integrals.

Theorem 9.41. Let s be a function of local bounded variation such that s(x) = 0

for x ≤ 0. Suppose that limx→∞ s(x) = γ (A). Then, the tauberian conditions∫ x

0

tds(t) = OL(x) (C, β) , (9.4.2)

for some β ≥ 0, and

lim
σ→1+

lim sup
x→∞

1

x

∫ σx

x

t |ds| (t) = 0 , (9.4.3)

imply that limx→∞ s(x) = γ.

Proof. Theorem 9.28 and (9.4.2) imply that limx→∞ s(x) = γ (C). Then s′ has the

quasiasymptotic behavior (9.4.1), evaluating the quasiasymptotic at φσ, we obtain

lim sup
λ→∞

|s(λ)− γ| ≤ lim sup
λ→∞

∫ σλ

λ

φσ

(
t

λ

)
|ds| (t)

≤ lim sup
λ→∞

1

λ

∫ σλ

λ

t |ds| (t)

Since σ is arbitrary, we obtain the convergence from (9.4.3).
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We recover the result of Szász mentioned above.

Corollary 9.42. (Szász, [201, Thm.1]). Suppose that
∑∞

n=0 cn = γ (A). The taube-

rian conditions

VN =
1

N

N∑
n=0

n |cn| = O(1) , (9.4.4)

and

Vm − Vn → 0, as
m

n
→ 1+ and n→∞ , (9.4.5)

imply the convergence of the series to γ.

Proof. We show that (9.4.5) implies (9.4.3). Indeed,

1

x

∑
x<n≤σx

n |cn| =
[σx]− [x]

x
V[σx] +

[x]

x
(V[σx] − V[x])

<
σx− x− 1

x
O(1) + (V[σx] − V[x]) ,

and the last expression tends to 0 as x→∞ and σ → 1+.

The next tauberian theorem for Dirichlet series belongs to Hardy and Littlewood

[87] (see also [199] and [200, Thm.6]).

Theorem 9.43. (Hardy-Littlewood). Suppose that
∑∞

n=0 cn = γ (A, {λn}). The

tauberian condition
∞∑
n=1

(
λn

λn − λn−1

)p−1

|cn|p <∞ , (9.4.6)

where 1 ≤ p <∞, implies the convergence of the series to γ.

Proof. The case p = 1 is trivial, we assume 1 < p <∞. Let q = p/(p−1). Hölder’s

inequality implies (9.4.2), with β = 0, for s(x) =
∑

λn≤x cn. So, Corollary 9.37 im-

plies the (R, {λn} , 1) summability. Then
∑∞

n=0 cnδ(x−λn) has the quasiasymptotic
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behavior (9.4.1), evaluating at φσ and using Hölder’s inequality, we obtain

lim sup
N→∞

∣∣∣∣∣
N∑
n=0

cn − γ

∣∣∣∣∣ ≤ lim sup
N→∞

∑
λN<λn≤σλN

φσ

(
λn
λN

)
|cn|

≤ lim sup
N→∞

( ∑
λN<λn≤σλN

λn − λn−1

λn

∣∣∣∣φσ ( λnλN
)∣∣∣∣q
) 1

q

O(1)

≤ lim sup
N→∞

( ∑
λN<λn≤σλN

λn − λn−1

λn

) 1
q

O(1)

≤ (σ − 1)
1
qO(1) ,

taking σ → 1+, we obtain the result.

We end this section proving a theorem of Szász [198, 199, 200] (the case for

power series was first discovered by Hardy and Littlewood).

Theorem 9.44. (Szász, [200]). Suppose that
∑∞

n=0 cn = γ (A, {λn}). The taube-

rian condition
N∑
n=1

λpn (λn − λn−1)
1−p |cn|p = O(λN) , (9.4.7)

for some 1 < p <∞, implies the convergence of the series to γ.

Proof. Let q = p/(p − 1). Again, Hölder’s inequality implies (9.4.2), with β = 0,

for s(x) =
∑

λn≤x cn. So, Corollary 9.37 implies that
∑∞

n=0 cnδ(x − λn) has the

quasiasymptotic behavior (9.4.1), evaluating at φσ and using Hölder’s inequality,

we obtain

lim sup
N→∞

∣∣∣∣∣
N∑
n=0

cn − γ

∣∣∣∣∣ ≤ lim sup
N→∞

∑
λN<λn≤σλN

φσ

(
λn
λN

)
|cn|

≤

lim sup
N→∞

λ
1
p

N

( ∑
λN<λn≤σλN

λn − λn−1

λqn

∣∣∣∣φσ ( λnλN
)∣∣∣∣q
) 1

q

O(1)

≤ lim sup
N→∞

(
1

λN

∑
λN<λn≤σλN

(λn − λn−1)

) 1
q

O(1)

= (σ − 1)
1
qO(1) .
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Since σ is arbitrary, we obtain the convergence.
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Chapter 10
The Structure of Quasiasymptotics

10.1 Introduction

The quasiasymptotic behavior has been a fundamental concept throughout our

investigations of local properties of distributions. It is a very convenient notion

to describe the local behavior of a distribution around a point, or its asymptotic

behavior at infinity. One gains generality by considering quasiasymptotics rather

than ordinary asymptotics of functions because they are directly applicable to the

nature of a distribution; moreover, one might say that every distribution shows, in

one way or another, quasiasymptotic properties. Despite its generality, the concept

is extremely useful in practice; in fact, it has an evident advantage over the asymp-

totics of ordinary function: its flexibility under analytical manipulations such as

differentiation or integral transformations. So far, we have only considered some

particular cases of the quasiasymptotic behavior, mainly in connection with distri-

butional point values and jump behaviors, we now analyze general quasiasymptotic

properties of distributions.

In this chapter we make a comprehensive study of quasiasymptotic properties of

distributions in one variable. The exposition is based on a recent series of papers by

the author [212, 213, 227], where some open structural problems were undertook

and solved.

The concept of the quasiasymptotic behavior of distributions was introduced

by B. I. Zavialov for tempered distributions in [249] as a result of his investiga-

tions in Quantum Field Theory, and further developed by him, Vladimirov and

Drozhzhinov [231]. Later this concept was slightly reformulated in [151, 152] for

distributions of one variable.
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The quasiasymptotic behavior has found many applications in mathematics and

mathematical physics. As previously mentioned, it was created as a response to

theoretical questions in mathematical physics, where it has been effectively applied

[231, 233, 234, 249]. Later on, it had its main developments within the study of

integral transforms on spaces of distributions [61, 160, 231, 232]. It is remarkable

the predominant role that tauberian and abelian type results have had in the

theory [37, 38, 40, 41, 160, 231, 232]. The asymptotic notions for distributions

are also very appropriate for the study of asymptotics of solutions to convolution

equations, integral equations, and partial differential equations [41, 60, 231, 235].

It has also important connections with problems in Fourier analysis, as we have

been seen in the previous chapters.

Since its introduction, the study of the structure of the quasiasymptotics has

deserved a special place [43, 54, 128, 151, 152, 150, 153, 156, 160, 192, 216, 231].

S.  Lojasiewicz introduced the value of a distribution at a point, and he provided

the corresponding structural theorem for it (Section 3.2 above). V. S. Vladimirov,

Yu. N. Drozhzhinov and B. I. Zavialov gave a complete structural theorem for

quasiasymptotics at infinity of tempered distributions with support on cones. S.

Pilipović gave partial structural theorems for one dimensional quasiasymptotics at

the origin and infinity. However, a complete structural theorem for quasiasymp-

totics has remained as an open question for long time. The importance and neces-

sity of a solution to such an open problem has been pointed out in several articles

[43, 156, 192, 213, 216]. Experience has shown that the structure of quasiasymp-

totics plays a very important theoretical role in the application of the notion to

other contexts, this makes the solution of the structural problem a critical issue in

generalized asymptotic analysis.
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The principal aims of this chapter are to provide a solution for this structural

open question in the one dimensional case, and then discuss some of its conse-

quences and generalizations. Our presentation is intended to be complete and

self-contained. For the sake of coherence, we comment some well known results

of preliminary character in Sections 10.2, 10.3, and 10.4; though our approach and

proofs may differ from the original sources. Therein, we also make some biblio-

graphical remarks which may be useful for the reader.

Section 10.5 is chief part of the chapter. We characterize there the quasiasymp-

totic behavior by means of structural theorems; the cases at finite points and

infinity are both studied. Our exposition follows the lines of the author’s articles

[212, 227]. Our analysis is based on the properties of the parametric coefficients re-

sulting after performing several integrations of the quasiasymptotic behavior, then

we single out the asymptotic properties of such coefficients. The key points for

our structural theorems will be then the notions of asymptotically and associate

asymptotically homogeneous functions with respect to slowly varying functions,

they are actually the parametric coefficients in the integration of quasiasymptotics;

such classes of functions are suitable and natural extensions of those introduced

in Section 3.4.1. Observe that the same sort of ideas have been previously applied

in Section 3.4 in the context of summability of the Fourier transform (see also

[47, 216]) and deeply depended in the analysis given in Section 3.4.1; however, the

problem we are about to study is much more difficult and technical.

In Section 10.6 we study the structural properties of quasiasymptotic bounded-

ness with respect to regularly varying functions. We follow the author’s paper [213].

The technique of integration and asymptotic analysis of parametric coefficients is

employed once again. The parametric coefficients of integration will fit into the

concept of asymptotically homogeneously bounded functions with respect to slowly
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varying functions, which will be introduced in Section 10.6.1. Using asymptot-

ically homogeneously bounded functions, we obtain the structural theorems for

quasiasymptotic boundedness in Section 10.6.2.

Further quasiasymptotic properties of distributions are discussed in Section 10.7.

We apply the structural theorems to study problems in what the author denomi-

nates quasiasymptotic extension problems. We study three of such problems.

We shall study in Section 10.7.1 the asymptotic properties of extensions to R of

distributions initially defined on R \ {0} (or just (0,∞) ) and having a prescribed

asymptotic behavior at either the origin or infinity; here we follow the approach

from [212, 213, 228], and complement with some new results. Notice that the

latter problem is important from a mathematical physics perspective, since it is of

relevance to renormalization procedures; indeed, the problem of renormalization

in quantum field theory is nothing but a problem of this nature [21, 125, 178, 233,

234, 249]. It also has much relevance to the study of singular integral equations on

spaces of distributions [60].

In Section 10.7.2, we show that if a tempered distribution has quasiasymptotic

behavior or is quasiasymptotic bounded at point in the space D′(R), then the same

quasiasymptotic property is preserved in the space S ′(R). Observe that we have

made extensive use of this fact for distributional point values and jump behavior in

the past chapters; in fact, this property was of vital importance because it allows

one to apply Fourier transform and translate local properties of tempered distri-

butions into asymptotics of the Fourier transform at infinity. A similar problem

is studied in Section 10.7.3, but this time at infinity; we show that the quasi-

asymptotic behavior holds in smaller spaces than S ′(R), namely on some spaces

of the type K′
β(R), consequently, this fact provides conditions over test functions

which allows one to evaluate them at quasiasymptotics, these test functions are
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in bigger spaces than S(R) and, as shown in Chapter 7 (Section 7.8), they can

be related to partial differential equations. We also consider similar problems for

quasiasymptotic boundedness with respect to regularly varying functions.

10.2 Comments on the Quasiasymptotic

Behavior

We would like to make some comments about the definition of the quasiasymptotic

behavior, other known facts, the problems to be considered in the rest of our

discussion, and references to the literature.

In Section 1.8.1, Definitions 1.3 and 1.5, we defined the quasiasymptotic behavior

for f ∈ D′(R) as an asymptotic relation of the form

f(hx) ∼ ρ(h)g(x) as h→ 0+ , or h→∞ , (10.2.1)

in the distributional sense, that is, holding after evaluation at each test function

〈f(hx), φ(x)〉 ∼ ρ(h) 〈g(x), φ(x)〉 , for each φ ∈ D(R) . (10.2.2)

Our assumption is that that ρ is defined, positive and measurable near 0 (resp.

∞). It follows from the definition itself that if g is assumed to be non-zero, then ρ

and g in (10.2.1) cannot have an arbitrary form [61, 160, 231]; indeed, ρ must be a

regularly varying function (Section 1.7) and g must be a homogeneous distribution

[61] having degree of homogeneity equal to the index of regular variation of ρ. We

will reproduce the proof of this fact. It should be mentioned that a more general

result can be found in [58] (the so-called asymptotic separation of variables).

Lemma 10.1. Suppose that ρ is a function defined, positive and measurable near

0 (resp. ∞). If (10.2.2) holds at the origin (resp. at ∞) and g 6= 0, then ρ is

a regularly varying function at the origin (resp. at ∞) and g is a homogeneous
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distribution having degree of homogeneity equal to the index of regular variation of

ρ.

Proof. We show the assertion at the origin, the one at infinity is completely anal-

ogous. Select φ such that 〈g(x), φ(x)〉 = 1, then, for each a > 0,

lim
ε→0+

ρ(aε)

ρ(ε)
= lim

ε→0+

〈f(aεx), φ(x)〉
ρ(ε)

= lim
ε→0+

1
a

〈
f(εx), φ

(
x
a

)〉
ρ(ε)

=
1

a

〈
g(x), φ

(x
a

)〉
,

denoting the last term of the equation by τ(a), the continuity of the dilation gives

that τ(a) does not vanish in a neighborhood of a = 1, which in particular has non-

zero Lebesgue measure. It implies (Section 1.7) that τ(a) = aα, for some α > 0

and each a > 0. Therefore, ρ is regularly varying with index α. On the other hand,

〈g(ax), ϕ (x)〉 = lim
ε→0+

ρ(aε)

ρ(ε)

〈f(aεx), ϕ(x)〉
ρ(aε)

= aα 〈g(x), ϕ (x)〉 .

Obviously, Lemma 10.1 holds if one considers the quasiasymptotic behavior in

A′, the dual of a space of functions in which the dilation is a continuous operation

onto itself.

Since any regularly varying function ρ can be written as ρ(h) = hαL(h), where

L is a slowly varying function, we may only talk about slowly varying functions

in the rest of our discussion. In order to introduce some language, we reformulate

our definitions in terms of slowly varying functions.

Definition 10.2. An distribution f ∈ D′(R) is said to have quasiasymptotic be-

havior of degree α at x = x0 with respect to the slowly varying function L if there

exists g ∈ D′(R) such that

f (x0 + εx) ∼ εαL(ε)g(x) as ε→ 0+ in D′(R) . (10.2.3)
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Definition 10.3. An distribution f ∈ D′(R) has quasiasymptotic behavior of de-

gree α at infinity in D′(R) with respect to the slowly varying function L if there

exists g ∈ D′(R) such that

f (λx) ∼ λαL(λ)g(x) as λ→∞ in D′(R) . (10.2.4)

In the sense of (10.2.1), relation (10.2.3), resp. (10.2.4), is the most general

asymptotic behavior that a distribution can have at small scale, resp. large scale.

The same considerations discussed in Section 1.8.1 apply for Definitions 10.2

and 10.3, that is, Definition 10.2 is of local character and hence it is meaningful

when f is just defined in a neighborhood of x = x0, by shifting in most cases

is enough to consider x0 = 0 in (10.2.3), and the quasiasymptotic (10.2.4) is not

a local property when α ≤ −1. We may talk about Definitions 10.2 and 10.3 in

other spaces of generalized functions constructed as dual spaces of suitable spaces

of functions. Finally, the notation (1.8.7) will also be widely employed in the sequel.

Our aim is now to characterize the structure of the quasiasymptotic behavior,

that is, to describe it by asymptotics, in the ordinary sense, of primitives of the

distribution. This will be done in Section 10.5.

We now want to make some comments about the previous known properties of

the structure of the quasiasymptotics available in the literature, this is valuable

for the reader since many important techniques can be found in the references.

We start with quasiasymptotics at infinity. The complete structural theorems for

distributions from S ′[0,∞) can be found in [231]. Such results will be reproduce in

Section 10.4 below. In addition, in page 134 of the cited book, one finds a decom-

position theorem, which basically implies the structural theorem when the degree

of the quasiasymptotic behavior is not a negative integer and with no restrictions

on the support of the distribution. The details about how this is implied by the

decomposition theorem can be found in [151]. Therefore, in the case at infinity the
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only unknown structural theorem was for negative integral degrees. The results

that we studied in Section 3.4.2 are a particular case of such an open question,

they were obtained by the author and R. Estrada in [216]. The general case was

recently obtained by the author in [212] and will be discussed in Section 10.5 below.

In the case at the origin, only partial results were known under restrictions on

the degree of the quasiasymptotic behavior (α > −1) and boundedness of L [153].

The reader can also consult [156, 160, 192] for more about these structural results.

The general case was recently obtained in [227] by the author and S. Pilipović, it

will be also the subject of Sections 10.5.

10.3 Remarks on Slowly Varying Functions:

Estimates and Integrals

In this section we collect some results about slowly varying functions to be used in

the future. Some facts were already discussed in Section 1.7, but the subsequent

work demands us more detailed information about slowly varying functions; we

are particularly interested in some reductions and estimates that will be crucial

for some future arguments.

10.3.1 Estimates and Reductions

Let us assume that L is a slowly varying function at the origin. Similar consid-

erations are applicable for slowly varying functions at infinity. Our first obvious

observation is that for the quasiasymptotic behavior only the behavior of L near

0 plays a role in (10.2.3), and so we may impose to L any behavior we want in

intervals of the form [A,∞). Moreover, if L̃ is any measurable function which

satisfies

lim
x→0+

L̃(x)

L(x)
= 1 ,

we may replace L by L̃ in any statement about quasiasymptotics without loosing

generality in the original statement. Recall the representation formula for slowly
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varying functions (Section 1.7): L is slowly varying at the origin if and only if

there exist measurable functions u and w defined on some interval (0, B], u being

bounded and having a finite limit at 0 and w being continuous on [0, B] with

w(0) = 0, such that

L(x) = exp

(
u(x) +

∫ B

x

w(t)

t
dt

)
, x ∈ (0, B] .

Since we are looking for suitable modifications of L, our first remark is that, when

dealing with quasiasymptotics, we can always assume that L is defined in the

whole (0,∞) and L is everywhere non-negative (or even positive). This is shown

by extending u and w to (0,∞) in any way we want.

A direct consequence of the representation formula is the following useful bound.

Given any fixed σ > 0 and M > 1, there exists 0 < B̃ ≤ B such that

1

M
min

{
x−σ, xσ

}
<
L(εx)

L(ε)
< M max

{
x−σ, xσ

}
, (10.3.1)

for εx < B̃ and ε < B̃. Furthermore, given any A > 0, there exists Ã such that

(10.3.1) holds if x < A and ε < Ã; for instance, take Ã = min
{
B̃, (B̃/A)

}
. This

result is known as Potter’s theorem [15, p.25], and will be of vital importance

in our investigations of the structural properties for quasiasymptotics. Potter’s

estimate (10.3.1) also holds for slowly varying functions at infinity, with the obvious

modifications in the parameters.

Sometimes is useful to modify L away the origin (resp. infinity) such that (10.3.1)

holds globally in the following sense. Given a fixed σ > 0, then by modifying u

and w, we can assume, when it is convenient, that B = 1, u is bounded on all over

(0,∞) and |w(x)| < σ, x ∈ (0,∞). In particular, we obtain the estimate (10.3.1)

∀x, ε ∈ (0,∞).
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As an application of the ideas just discussed, we give a proof a result which

will have some importance in the future. An alternative constructive proof can be

found in Seneta’s book [183], based on the nice construction of Adamović [1, 2].

Lemma 10.4. Let L be slowly varying at the origin (resp. at infinity). There exists

another slowly varying function L̃ ∈ C∞(0,∞) at the origin (resp. at infinity) such

that

L(x) ∼ L̃(x) , and L̃(n)(x) = o

(
L(x)

xn

)
,

for each n ∈ N. Moreover, L̃ can be chosen so that it vanishes in a neighborhood

of infinity (resp. the origin).

Proof. Observe that only the behavior of L near the origin (resp. infinity) plays

a role in the statement, so we can modify it on irrelevant intervals such that it

satisfies (10.3.1) for all x, ε ∈ (0,∞). We can also assume that L(x) = 0 for

x > 1 (resp. x < 1). Under our assumptions, we can use Lebesgue’s dominated

convergence theorem in ∫ ∞

0

(
L (εx)

L(ε)
− 1

)
φ(x)dx ,

for φ ∈ D(R), to deduce that (resp. the same relation with ε = λ→∞)

L(εx)H(x) = L(ε)H(x) + o (L(ε)) as ε→ 0+ in D′(R) .

Take now L̃(x) =
∫∞

0
L(xt)φ(t)dt, where φ ∈ D(0,∞) with

∫∞
0
φ(t)dt = 1; it

satisfies all the requirements.

We may also impose more conditions on w to obtain more reasonable assump-

tions on L. For example, in the case of slowly varying functions at the origin the

assumption t−1w(t) ∈ L1[1,∞) implies

M̃ < L(x) < M, x > 1,
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for some positive constants M̃ and M .

We finally recall a well known fact [15, 183]: As soon as L(ax) ∼ L(x) holds for

each a > 0 on a set of positive measure, it automatically holds uniformly for a in

compact subsets of (0,∞) .

10.3.2 Asymptotics of Some Integrals

We now want to discuss the quasiasymptotic behavior in relation to ordinary

asymptotics of functions, such results are very well known [160, 231], but we in-

clude them here for the sake of completeness. The next lemma is due to Aljančić,

Bojanić, and Tomić [3] (see also [183, Section 2.3]).

Lemma 10.5. Let L be slowly varying at at infinity defined on I = (A,∞), A > 0

(resp. the origin and I = (0, A)). If xσg ∈ L1(I) (resp. x−σg ), for some σ > 0,

then

∫
I

L(λx)g(x)dx ∼ L(λ)

∫
I

g(x)dx , λ→∞ (resp. λ→ 0+) . (10.3.2)

Additionally, if L, g ∈ L1
loc(0,∞) and g(x) = O(xα), x → 0+, for some α > −1,

(resp. α < −1, x→∞), then

∫
λ−1I

L(λx)g(x)dx ∼ L(λ)

∫
I

g(x)dx , λ→∞ (resp. λ→ 0+) . (10.3.3)

Proof. We only give the proof of the assertion at infinity, the one at the origin

follows from the change of variables x ↔ x−1. Find M,B > 0 such that if x > A

and λ > B, then

L(λx)

L(λ)
|g(x)| ≤Mxσ |g(x)| ∈ L1(A,∞) . (10.3.4)

Therefore, (10.3.2) follows from the Lebesgue dominated convergence theorem if

I = (A,∞).
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For the case λ−1I = ((A/λ),∞), we may assume that −1 < α < 0 and σ < α+1,

then there exist M1, B1 > 0 and A1 > A such that

L(λx)

L(λ)
|g(x)| ≤M1 max

{
x−σ, xσ

}
|g(x)| ∈ L1(0,∞) . (10.3.5)

for λ > B1, and λx > A1. Write

∫ ∞

A
λ

(
L(λx)

L(λ)
− 1

)
g(x)dx = I1(λ)− I2(λ) + I3(λ) ,

where I1(λ) =
∫∞
A1/λ

((L(λx)/L(λ))− 1) g(x)dx, I2(λ) =
∫ A1/λ

A/λ
g(x)dx, and I3(λ) =∫ A1/λ

A/λ
(L(λx)/L(λ))g(x)dx. Because of (10.3.5), we can apply Lebesgue dominated

convergence theorem to conclude that I1(λ) = o(1), λ → ∞. That I2(λ) = o(1)

follows easily from the assumption over g. Finally,

|I3(λ)| ≤ 1

λL(λ)

∫ A1

A

∣∣∣L(x)g
(x
λ

)∣∣∣ dx = O

(
1

λ1+αL(λ)

)
= o(1) , λ→∞ .

From Lemma 10.5, we immediately obtain the next corollaries.

Corollary 10.6. Let f ∈ L1
loc(x0,∞) and α > −1. If L is slowly varying at the

origin, and

f(x) ∼ C(x− x0)
αL(x− x0) , x→ x+

0 , (10.3.6)

for C ∈ R, then f ∈ L1
loc[x0,∞) and

f(x0 + εx)H(x) ∼ CεαL(ε)xα+ as ε→ 0+ in D′(R) . (10.3.7)

Proof. By shifting, we may assume that x0 = 0. That f ∈ L1
loc[0,∞) follows

from the estimate f(x) = O(xαL(x)) = O(xα−σ), x → 0+, where σ is chosen

so that α − σ > −1. Next, decompose f = CxαL̃ + G, where G vanishes near

the origin, supp L̃ ⊆ (0, B], B > 0, and L̃(x) ∼ L(x), x → 0+. Then, obviously,
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G(εx) = o(εαL(ε)), and because of (10.3.2) of Lemma 10.5, if φ ∈ D′(R)∫ ∞

0

f(εx)φ(x)dx = Cεα
∫ 1

ε

0

xαφ(x)L̃(εx)dx+ o(εαL(ε))

= Cεα
∫

suppφ

xαφ(x)L̃(εx)dx+ o(εαL(ε))

∼ CεαL̃(ε)

∫ ∞

0

xαφ(x)dx = CεαL(ε)
〈
xα+, φ(x)

〉
,

as ε→ 0+.

Corollary 10.7. Let f ∈ L1[0,∞) and α > −1. If L is slowly varying at infinity,

and

f(x) ∼ CxαL(x) , x→∞ , (10.3.8)

for C ∈ R, then f ∈ S ′[0,∞) and

f(λx)H(x) ∼ CλαL(λ)xα+ as λ→∞ in S ′(R) . (10.3.9)

Proof. The proof is similar to that of Corollary 10.6. First notice that f has tem-

pered growth, so it is a tempered distribution. We decompose f = CxαL̃+G, where

G vanishes near infinity, supp L̃ ⊆ [B,∞), B > 0, and L̃(x) ∼ L(x), x → ∞. We

have that G(λx) = O(λ−1) = o(λαL(λ)) because it has compact support and sat-

isfies the moment asymptotic expansion (see (1.8.11) in Section 1.8.1). So, the rest

follows by (10.3.3) of Lemma 10.5 applied to L̃ and xαφ, where φ ∈ S(R).

10.4 Structural Theorems in D′[0,∞) and

S ′[0,∞)

In this section we show the structural theorem for the quasiasymptotic behavior of

distributions in D′[0,∞) and S ′[0,∞). This case is much simpler than the general

one of unrestricted support, which we postpone for Sections 10.5.3 and 10.5.5. We

follow [231] for the proofs; actually, they are essentially the same as the proof of

Proposition 1.8 previously discussed in Section 1.8.
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Proposition 10.8. Let L be slowly varying at the origin. A distribution f ∈

D′[0,∞) has quasiasymptotic behavior

f(εx) ∼ CL(ε)
(εx)α+

Γ(α + 1)
as ε→ 0+ in D′(R) (10.4.1)

if and only if there exists a non-negative integer m > −α− 1 such that f (−m) is an

ordinary function (locally integrable) in a neighborhood of the origin and

f (−m)(x) ∼ C
xα+mL(x)

Γ(α +m+ 1)
, x→ 0+ . (10.4.2)

Proof. The converse follows directly from Corollary 10.6, and then differentiating

m-times the quasiasymptotic relation obtained. The Banach-Steinhaus theorem,

the quasiasymptotic behavior (10.4.1) and the definition of convergence in D′[0,∞)

imply that there exists n, sufficiently large, such that the evaluation of f at φn(t) :=

(1 − t)n(H(t) − H(t − 1)) makes sense and (10.4.1) holds when evaluated at φn.

Put m = n+ 1, then, as x→ 0+,

f (−m)(x) =
1

(m− 1)!

〈
f(t), (x− t)m−1(H(t)−H(t− 1))

〉
=

xm−1

(m− 1)!

〈
f(t), φn

(
t

x

)〉
=

xm

(m− 1)!
〈f(xt), φn (t)〉

∼ Cxm+αL(x)

(m− 1)!Γ(α + 1)
F.p.

∫ 1

0

tα(1− t)m−1dt

=
Cxm+αL(x)

Γ(α +m+ 1)
.

Proposition 10.9. A distribution f ∈ D′[0,∞) has quasiasymptotic behavior

f(λx) ∼ CL(λ)
(λx)α+

Γ(α + 1)
as λ→∞ in D′(R) (10.4.3)

if and only if f ∈ S ′[0,∞) and there exists a non-negative integer m > −α − 1

such that f (−m) ∈ L1
loc[0,∞) and

f (−m)(x) ∼ C
xα+m

Γ(α +m+ 1)
, x→∞ , (10.4.4)
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in the ordinary sense. Moreover, the quasiasymptotic behavior (10.4.3) holds actu-

ally in S ′[0,∞).

Proof. The converse follows directly from Corollary 10.7 and differentiating m-

times; furthermore Corollary 10.7 also implies that (10.4.3) holds actually in the

space S ′[0,∞). The other part is established exactly in the same way as in the

proof of Proposition 10.8.

We now discuss some results about the convolution.

Theorem 10.10. Let f, g ∈ D′[0,∞). Suppose that

f(εx) ∼ C1L1(ε)
(εx)α+

Γ(α + 1)
as ε→ 0+ in D′(R) (10.4.5)

and

g(εx) ∼ C2L2(ε)
(εx)ν+

Γ(ν + 1)
as ε→ 0+ in D′(R) . (10.4.6)

Then,

(f ∗ g)(εx) ∼ C1C2L1(ε)L2(ε)
(εx)α+ν+1

+

Γ(α + ν + 2)
as ε→ 0+ in D′(R) . (10.4.7)

Proof. The proof is simple. Consider f ⊗ g ∈ D′(R2). Then by Proposition 10.8

there exist n > −α − 1 and m > −ν − 1 such that f (−n) and g(−m) are locally

integrable in a neighborhood of the origin,

lim
x→0+

Γ(α + n+ 1)f (−n)(x)

xα+nL1(x)
= C1

and

lim
y→0+

Γ(ν +m+ 1)g(−m)(y)

yν+mL2(y)
= C2,

hence for each φ ∈ D(R2),

〈f ⊗ g(εx, εy), φ(x, y)〉 =
(−1)n+m

εn+m

∫ ∫
f (−n)(εx)g(−m)(εy)

∂n+mφ

∂xn∂ym
(x, y)dxdy

∼ εα+νL1(ε)L2(ε)

〈
C1x

α
+

Γ(α + 1)
⊗

C2y
α
+

Γ(ν + 1)
, φ(x, y)

〉
.

So (10.4.7) follows then from the definition of convolution and the last relation.
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The same property of the convolution holds for the quasiasymptotic behavior

at infinity, and the proof is identically the same as the one of Theorem 10.10. In

[231], this assertion at ∞ is shown by means of tauberian theory; see Lemma 1,

Chapter 4, Section 11.1 in [231].

Theorem 10.11. Let f, g ∈ S ′[0,∞). Suppose that

f(λx) ∼ C1L1(λ)
(λx)α+

Γ(α + 1)
as λ→∞ in S ′(R) (10.4.8)

and

g(λx) ∼ C2L2(λ)
(λx)ν+

Γ(ν + 1)
as λ→∞ in S ′(R) . (10.4.9)

Then,

(f ∗ g)(λx) ∼ C1C2L1(λ)L2(λ)
(λx)α+ν+1

+

Γ(α + ν + 2)
as λ→∞ in S ′(R) . (10.4.10)

10.5 Structural Theorems for

Quasiasymptotics: General Case

We now proceed to undertake the general structural study of the quasiasymptotic

behavior. We shall introduce two classes of functions having regular variational

asymptotic properties, the class of asymptotically homogeneous functions and the

class of associate asymptotically homogeneous functions of degree 0. These func-

tions extend those discussed in Section 3.4.1. We will later derive the announced

structural theorems from the fundamental properties of such functions.

The technique to be employed here is based on the asymptotic analysis of the

parametric coefficients resulting after performing several integrations of the quasi-

asymptotic behavior, these coefficients are naturally connected with the classes

of asymptotically and associate asymptotically homogeneous functions. The tech-

nique of integration of distributional asymptotic relations goes back to the classical

work of  Lojasiewicz [128] (see also [47, 153, 216]). Later on, the properties of the
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parametric coefficients were singled out and recognized as asymptotically and as-

sociate asymptotically homogeneous functions by the author in [212, 213, 227].

10.5.1 Asymptotically Homogeneous Functions

We study some properties of asymptotically homogeneous functions which will

be applied later to the structural study of the quasiasymptotic behavior. Let us

proceed to define this class of functions.

Definition 10.12. A function b is said to be asymptotically homogeneous of degree

α at the origin (respectively at infinity) with respect to the slowly varying function

at the origin L, if it is measurable and defined in some interval (0, A) (respectively

on (A,∞)), A > 0, and for each a > 0,

b(ax) = aαb(x) + o(L(x)) , x→ 0+ (resp. x→∞) . (10.5.1)

Obviously, asymptotically homogeneous functions at the origin and at infinity

are connected by the change of variables x↔ x−1; therefore, most of the properties

of the class of asymptotically homogeneous functions at infinity can be obtained

from those of the corresponding class at origin.

Let us now obtain a crucial property of these functions. Observe that no unifor-

mity with respect to a is assumed in Definition 10.12; however, the definition itself

forces (10.5.1) to hold uniformly for a on compact subsets. Indeed, we will show

this fact by using a classical argument of H. Korevaar, T. van Aardenne Ehrenfest,

and N. G. de Bruijn [114, 15, 183, 227].

Lemma 10.13. Let b be an asymptotically homogeneous function of degree α with

respect to L. Then, the relation

b(ax) = aαb(x) + o(L(x)) , (10.5.2)

holds uniformly for a in compact subsets of (0,∞).
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Proof. We show the assertion at the origin, the case at infinity can be obtained by

the change of variables x↔ x−1. So assume that b is asymptotically homogeneous

of degree α at the origin with respect to L. We may assume that b is defined on

(0, 1]. We rather work with the functions c(x) = eαxb (e−x) and s(x) = L (e−x),

hence c and s are defined in [0,∞). By using a linear transformation between an

arbitrary compact subinterval of [0,∞) and [0, 1], it is enough to show that

c(h+ x)− c(x) = o(eαxs(x)) , x→∞ , (10.5.3)

uniformly for h ∈ [0, 1]. Suppose that (10.5.3) is false. Then, there exist 0 < ε < 1,

a sequence {hm}∞m=1 ∈ [0, 1]N, and an increasing sequence of real numbers {xm}∞m=1,

xm →∞, m→∞, such that

|c (hm + xm)− c (xm)| ≥ εeαxms (xm) , m ∈ N . (10.5.4)

Define, for n ∈ N,

An =
{
h ∈ [0, 2] : |c (h+ xm)− c (xm)| < ε

3
eαxms (xm) ,m ≥ n

}
,

Bn =
{
h ∈ [0, 2] : |c (h+ xm + hm)− c (hm + xm)| < ε

3
eαxms (xm + hm) ,m ≥ n

}
.

Note that

[0, 2] =
⋃
n∈N

An =
⋃
n∈N

Bn ,

so we can select N such that µ(An), µ(Bn) > 3
2

(here µ(·), and only here, stands for

Lebesgue measure), for all n ≥ N . For each n ∈ N, put Cn = {hn}+Bn. Then, we

have µ(Cn) > 3
2
, n ≥ N , and Cn, An ⊆ [0, 3]. It follows that An

⋂
Cn 6= ∅, n > N .

For each n ≥ N , select un ∈ An
⋂
Cn. In particular, we have un − hn ∈ Bn, and

hence,

|c (un + xn)− c (xn)| < ε

3
eαxns (xn) ,

|c (un + xn)− c (xn + hn)| < ε

3
eαxns (xn + hn)
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which implies that for all n ≥ N,

|c (xn + hn)− c (xn)| < ε

3
eαxn (s (xn) + s (xn + hn)) .

Using that s(x+ h)− s(x) = o(s(x)), x→∞, uniformly for h on compact subsets

of (0,∞), we have that for all n sufficiently large, s (xn + hn) ≤ 2s (xn), which

implies that for n big enough

|c (xn + hn)− c (xn)| < εeαxns (xn) ,

in contradiction to (10.5.4), Therefore, (10.5.3) must hold uniformly for h ∈ [0, 1].

Corollary 10.14. If b is asymptotically homogeneous at the origin (resp. at in-

finity) with respect to a slowly varying function, then b is locally bounded in some

interval of the form (0, B) (resp. (B,∞)).

Proof. It follows directly from Lemma 10.13; indeed, let us only discuss the case

at infinity. Let B > 1 be such that

|b(ax)− aαb(x)| < L(x)

for all B ≤ x, a ∈ [1, 2] and L ∈ L∞loc[B,∞). It is enough to show that b is

bounded on each interval of the form x ∈ [B, 2nB], n ∈ N. Let Mn be a bound

for L on x ∈ [B, 2nB], n ∈ N. So, we have |b(x)| < 2|α|b(B) + Mn for x ∈ [B, 2B],

|b(x)| < 2|α|b(2B) + Mn < 22|α|b(B) + 2|α|Mn + Mn for x ∈ [2B, 4B], and so.

Therefore,

|b(x)| < 2n|α|b(B) +Mn
2n|α| − 2|α|

2|α| − 1
, ∀ x ∈ [B, 2nB] .
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It is interesting to observe that is not absolutely necessary to ask (10.5.1) for all

a > 0; indeed, it is enough to assume that it initially holds for a merely in a set of

positive measure.

Proposition 10.15. Suppose that (10.5.1) holds merely for each a ∈ B, a set of

positive Lebesgue measure, then (10.5.1) remains valid for all a > 0.

Proof. We may assume that B is the maximal set where (10.5.1) holds. Let us

show that B is multiplicative subgroup of R+. If a, a′ ∈ B, then

b(aa′x) = b(a′x) + o(L(a′x)) = b(a′x) + o(L(x)) = b(x) + o(L(x)) ,

and so aa′ ∈ B. On the other hand

b(a−1x) = b(x) + (b(a−1x)− b(a(x/a))

= b(x) + (b(a−1x)− b(x/a)− o(L(x/a)))

= b(x) + o(L(x)) .

Therefore, B is a subgroup. Since its measure is positive, it follows from the

well known theorem of Steinhaus (see [15, p.2], [148], the original source is [196,

Théorème VII]) that it contains an open interval and hence B = (0,∞).

We now obtain the behavior of asymptotically homogeneous functions of non-

zero degree.

Theorem 10.16. Suppose that b is asymptotically homogeneous at the origin (resp.

at infinity) with respect to the slowly varying function L. Then

(i) If α > 0 (resp. α < 0 for the case at infinity), then

b(x) = o(L(x)) , x→ 0+ (resp. x→∞) . (10.5.5)

(ii) If α < 0 (resp. α > 0), then there exists a constant γ such that

b(x) = γxα + o (L(x)) , x→ 0+ (resp. x→∞) . (10.5.6)
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Proof. We show only the assertion at the origin, the case at infinity follows again

from a change of variables.

Let us first show (i). Assume that α > 0. Let 0 < η be any arbitrary number.

We keep ε < 2α − 1. Let x0 > 0 such that

∣∣∣b(x
2

)
− 2−αb(x)

∣∣∣ ≤ ηL(x) and |L(2x)− L(x)| ≤ ηL(x), 0 < x < x0 . (10.5.7)

We may assume that b and L are bounded on [x0, 2x0]. So, let

M = sup

{
|b(x)|
L(x)

:
1

2
x0 ≤ x ≤ x0

}
.

Take x ∈ [x0/2, x0]. From (10.5.7) it follows that∣∣∣∣ b(x/2n)

L(x/2n)

∣∣∣∣ ≤ 2−αn
|b(x)|
L(x/2n)

+ η

n−1∑
j=0

2−α(n−1−j)L(x/2j)

L(x/2n)
.

Thus, with t = x/2n, and t ∈ [x0/2
n+1, x0/2

n],

∣∣∣∣ b(t)L(t)

∣∣∣∣ ≤ 2−nαM
L(2nt)

L(t)
+ η

n−1∑
j=0

2−jα
L(2j+1t)

L(t)
.

By this and

L(2j+1t)/L(2jt) ≤ (1 + η), j = 0, . . . , n− 1,

we have that if t ∈
[
2−(n+1)x0, 2

−nx0

]
, then∣∣∣∣ b(t)L(t)

∣∣∣∣ ≤M

(
1 + η

2α

)n
+η(1+η)

∞∑
j=0

(
1 + η

2α

)j
= M

(
1 + η

2α

)n
+η(1+η)

2α

2α − 1− η
.

Let us prove that for every ε > 0 there exists a positive σ such that |b(t)/L(t)| <

ε, t ∈ (0, σ). First, we have to take η, small enough, such that

η(1 + η)
2α

2α − 1− η
<
ε

2

and n0 ∈ N such that

M

(
1 + η

2α

)n
<
ε

2
, n ≥ n0 .
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Then, it follows that |b(t)/L(t)| < ε, t ∈ (0, σ), if we take σ = x0/2
n0 . This

completes the first part of the proof.

We now show (ii). Assume that α < 0. We rather work with c(x) = eαxb(e−x)

and s(x) = L(e−x). Then c satisfies

c(h+ x)− c(x) = o (eαxs(x)) , x→∞ ,

uniformly for h ∈ [0, 1]. Given ε > 0, we can find x0 > 0 such that for all x > x0

and h ∈ [0, 1],

|c(x+ h)− c(x)| ≤ εeαxs(x) and |s(h+ x)− s(x)| ≤
(
e−

α
2 − 1

)
s(x) .

So we have that

|c(h+ n+ x)− c(x)| ≤ |c(h+ n+ x)− c(n+ x)|+ |c(n+ x)− c(x)|

≤ εeα(n+x)s(n+ x) +
n−1∑
j=0

|c(j + 1 + x)− c(j + x)|

≤ εeαx
n∑
j=0

eαjs(j + x)

≤ εeαxs(x)
1

1− e
α
2

,

where the last estimate follows from s(x + j) ≤ s(x)e−αj/2. Since s(x) = o (e−αx)

as x→∞, it shows that there exists γ ∈ R such that

lim
x→∞

c(x) = γ .

Moreover, the estimate shows that

c(x) = γ + o (eαxs(x)) , x→∞ ,

thus, changing the variables back, we have obtained,

b(x) = γxα + o (L(x)) , x→ 0+.
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Remark 10.17. Notice that the converse of Theorem 10.16 is trivially true, that

is, Theorem 10.16 is a full characterization of asymptotically homogeneous, with

non-zero degree, with respect to slowly varying functions.

Asymptotically homogeneous functions of degree zero have a more complex

asymptotic behavior. For example if L ≡ 1, any asymptotically homogeneous func-

tions function is the logarithm of a slowly varying function. Instead of attempting

to find their behavior in the classical sense, we will study their distributional be-

havior. A representation formula for them will be obtained in Section 10.5.4 (

Theorems 10.39 and 10.60). The next lemma roughly estimate the growth proper-

ties of asymptotically homogeneous functions of degree zero.

Lemma 10.18. Let b be asymptotically homogeneous of degree 0 at the origin

(respectively at infinity) with respect to the slowly varying function L. If σ < 0

(resp. σ > 0) then,

b(x) = o (xσ) , x→ 0+ (resp. x→∞) .

In particular, b(x) (L(x))−1 is integrable near the origin (resp. locally integrable

near ∞).

Proof. We know that L(x) = o (xσ). Then for each a > 0, b(ax) = b(x) + o (xσ)

and this implies that x−σb(x) is asymptotically homogeneous of degree −σ > 0

with respect to the constant slowly varying function L ≡ 1. From Theorem 10.16,

it follows that b(x) = o (xσ).

We now describe the behavior of asymptotically homogeneous functions of degree

zero at the origin. The next two theorems will be very important in Section 10.5.3.

Theorem 10.19. Let b be asymptotically homogeneous of degree zero at the origin

with respect to the slowly varying function L. Suppose that b is integrable on (0, A].
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Then

b(εx)(H(x)−H(εx− A)) = b(ε)H(x) + o(L(ε)) as ε→ 0+ in D′(R) , (10.5.8)

where H is the Heaviside function.

Proof. Let φ ∈ D(R). Find B such that suppφ ⊆ [−B,B], then there exists εφ < 1

such that

〈b(εx), φ(x)〉 =

∫ 1
ε

0

b(εx)φ(x)dx =

∫ B

0

b(εx)φ(x)dx, ε < εφ . (10.5.9)

Replacing φ(x) by Bφ(Bx) and εφ by Bεφ, we may assume that B = 1. Our aim

is to show that for some ε0 < 1,

b(εx)− b(ε)

L(ε)
, x ∈ (0, 1], ε < ε0

is dominated by an integrable function in (0, 1] for the use of the Lebesgue theorem.

For this goal, we assume that L satisfies the following estimate,

L(εx)

L(ε)
≤Mx−

1
2 , x ∈ (0, 1], ε ∈ (0, εφ) . (10.5.10)

By Lemma 10.13, there exists 0 < ε0 < εφ such that

|b(εx)− b(ε)| < L(ε), x ∈ [1/2, 1], ε < ε0 .

We keep ε < ε0 and x ∈ [2−n−1, 2−n] . Then

|b(εx)− b(ε)| ≤ |b(2εx)− b((2xε)/2)|+ |b(2εx)− b(ε)|

≤ L(2εx) + |b(2εx)− b(ε)|

≤
n∑
i=1

L
(
2iεx

)
+ L(ε)

≤
n∑
i=1

(2ix)−1/2L(ε) + L(ε).
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It follows from (10.5.10) that if ε < ε0 and x ≤ 1, then∣∣∣∣b(εx)− b(ε)

L(ε)

∣∣∣∣ ≤M1x
− 1

2 + 1,

where M1 = M(
√

2+1). Therefore we can apply Lebesgue’s dominated convergence

theorem to deduce (10.5.8).

We also have a similar result at infinity, this fact is stated in the next theorem.

Since its a corollary of Theorem 10.37 , we omit its proof and refer the reader to

Section 10.5.4.

Theorem 10.20. Let b be asymptotically homogeneous of degree zero at the infinity

with respect to the slowly varying function L. Suppose that b is locally integrable

on [A,∞). Then

b(λx)H(λx− A) = b(λ)H(x) + o(L(λ)) as λ→∞ in S ′(R) . (10.5.11)

Remark 10.21. The results of this section were obtained by the author and S.

Pilipović in [227]. The author recently learned from [183, Section 2.4] and [15,

Chap.3] that some of them could have been also obtained from properties of a class

of functions introduced by R. Bojanić and J. Karamata in [22], but, at the time

we wrote [227], we were unaware of the existence of such results. The functions

introduced by R. Bojanić and J. Karamata are measurable functions defined in

some interval of the form [A,∞), A > 0, satisfying

c(ax) = c(x) + τ(a)xαL(x) + o(xαL(x)) , x→∞ . (10.5.12)

for each a > 0. Now, if b is asymptotically homogeneous at infinity of degree α with

respect to L, then c(x) = b(x)/xα satisfies (10.5.12) with τ(a) = 0 and α replaced

by −α. The class of functions satisfying (10.5.12) has been extensively studied

[8, 15, 65, 84, 115, 183]; the associated theory is usually referred as second-order

theory of regular variation or de Haan theory [15, 84].

288



10.5.2 Relation Between Asymptotically Homogeneous
Functions and Quasiasymptotics

We introduced asymptotically homogeneous functions in order to study the struc-

ture of the quasiasymptotics for Schwartz distributions. The next proposition pro-

vides the intrinsic link between quasiasymptotics and asymptotically homogeneous

functions.

Proposition 10.22. Let f ∈ D′(R) have quasiasymptotic behavior in D′(R)

f (λx) = L(λ)g(λx) + o (λαL(λ)) as λ→∞ (resp. λ→ 0+) , (10.5.13)

where L is a slowly varying function and g is a homogeneous distribution of degree

α ∈ R. Let n ∈ N. Suppose that g admits a primitive of order n, that is, Gn ∈ D′(R)

and G
(n)
n = g, which is homogeneous of degree n+ α . Then, for any given Fn, an

n-primitive of f in D′(R), there exist functions b0, . . . , bn−1, continuous on (0,∞),

such that

Fn (λx) = L(λ)Gn(λx) +
n−1∑
j=0

λα+nbj(λ)
xn−1−j

(n− 1− j)!
+ o

(
λα+nL(λ)

)
(10.5.14)

as λ→∞ (resp. λ→ 0+) in D′(R), where each bj is asymptotically homogeneous

of degree −α− j − 1.

Proof. Recall that any φ ∈ D(R) is of the form

φ = Cφφ0 + θ′, where Cφ =

∫ ∞

−∞
φ(t)dt, θ ∈ D(R) (10.5.15)

and φ0 ∈ D(R) is chosen so that
∫∞
−∞ φ0(t)dt = 1. The evaluations of primitives F1

of f and G1 of g on φ are given by

〈F1, φ〉 = Cφ〈F1, φ0〉 − 〈f, θ〉 and 〈G1, φ〉 = Cφ〈G1, φ0〉 − 〈g, θ〉 .

This implies〈
F1(λx)

λα+1L(λ)
, φ(x)

〉
= Cφ

〈
F1(λx)

λα+1L(λ)
, φ0(x)

〉
−
〈
f(λx)

λαL(λ)
, θ(x)

〉
, (10.5.16)
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and〈
G1(λx)

λα+1L(λ)
, φ(x)

〉
= Cφ

〈
G1(λx)

λα+1L(λ)
, φ0(x)

〉
−
〈
g(λx)

λαL(λ)
, θ(x)

〉
. (10.5.17)

With c0(λ) = 〈(F1 −G1)(λx), φ0(x)〉, λ ∈ (0,∞), from (10.2.1), it follows

F1 (λx) = L(λ)G1(λx) + c0(λ) + o
(
λα+1L(λ)

)
in D′(R) . (10.5.18)

So relation (10.5.14) follows by induction from (10.5.18) and (10.2.1).

We shall now concentrate in showing the property of the bj’s. We set Fm =

F
(n−m)
n and Gm = G

(n−m)
n ,m ∈ {1, . . . , n}. By differentiating relation (10.5.14)

(n−m)-times, it follows that

Fm(λx) = L(λ)Gm(λx) +
m−1∑
j=0

λα+mbj(λ)
xm−1−j

(m− 1− j)!
+ o

(
λα+mL(λ)

)
(10.5.19)

in D′(R). Choose φ ∈ D(R) such that
∫∞
−∞ φ(x)xjdx = 0 for j = 1, . . . ,m− 1, and∫∞

−∞ φ(x)dx = 1. Then evaluating (10.5.19) at φ, we have that

(aλ)α+mbm−1(aλ) + L(aλ) 〈Gm(aλx), φ(x)〉+ o
(
λα+mL(λ)

)
= 〈Fm(aλx), φ(x)〉

=
1

a

〈
Fm(λx), φ

(x
a

)〉
= λα+mbm−1(λ) + L(λ) 〈Gm(aλx), φ(x)〉+ o

(
λα+mL(λ)

)
,

and so, with j = m− 1 ∈ {0, . . . , n− 1},

bj(aλ) = a−α−j−1bj(λ) + o (L(λ)) ,

for each a > 0.

10.5.3 Structural Theorems for Some Cases

We now derive structural theorems for quasiasymptotics in some cases with the

aid of asymptotically homogeneous functions (Theorems 10.16, 10.19 and 10.20)

and Proposition 10.22.
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Theorem 10.23. Let f ∈ D′(R) have quasiasymptotic behavior at infinity in D′(R)

f(λx) = C−L(λ)
(λx)α−

Γ(α + 1)
+C+L(λ)

(λx)α+
Γ(α + 1)

+o (λαL(λ)) as λ→∞ , (10.5.20)

where α /∈ Z−. Then there exist a non-negative integer m > −α − 1 and an m-

primitive F of f such that F ∈ L1
loc(R) and

lim
x→±∞

Γ(α +m+ 1)F (x)

xm |x|α L (|x|)
= C± . (10.5.21)

Conversely, if these conditions hold, then (by differentiation) (10.5.20) follows.

Moreover, it follows that f is tempered and (10.5.20) holds in the space S ′(R).

Proof. The converse follows from Corollary 10.7 and then m differentiations. The

last claim is implied by Corollary 10.7. We now focus in showing 10.5.21. On

combining Proposition 10.22 and Theorem 10.16, one obtains that for each n ∈ N

and Fn, an arbitrary n-primitive of f , there exist constants γ0, . . . , γn−1 such that,

in the sense of convergence in D′(R),

Fn(λx) =
n−1∑
j=0

γj
(λx)j

j!
+ C−

(−1)nL(λ)(λx)α+n
−

Γ(α + n+ 1)
+ C+

L(λ)(λx)α+n
+

Γ(α + n+ 1)
+ o

(
λα+nL(λ)

)
(10.5.22)

It follows from the convergence D′(R) that there is m ∈ N, sufficiently large, such

that any m-primitive of f is continuous and (10.5.22) holds (with n = m) uniformly

for x ∈ [−1, 1]. Pick a specific m-primitive of f , say Fm, then from (10.5.22) there

is a polynomial p of degree at most m− 1 such that

Fm(λx) = p(λx)+C−L(λ)
(−1)m(λx)α+m

−

Γ(α +m+ 1)
+C+L(λ)

(λx)α+m
+

Γ(α +m+ 1)
+o
(
λα+mL(λ)

)
,

uniformly for x ∈ [−1, 1]. Then setting F = Fm − p, x = 1,−1 and replacing λ by

x, relation (10.5.21) follows at once.

Let us make some comment about Theorem 10.23.
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Remark 10.24. It should be observed that (10.5.21) holds for every m-primitive

of f , provided that α > −1. In fact, since pm−1(x) = o(xm+αL(x)) → 0, x → ∞,

whenever α > −1, we have that in such a case the polynomial is irrelevant in the

proof of the last Theorem.

Remark 10.25. When α < −1, there is one and only one m-primitive F of

f satisfying (10.5.21). Indeed, if F1 is another m-primitive satisfying (10.5.21),

then F1 = F + p, where p is a polynomial of degree at most m − 1; then, p(x) =

o(xm+αL(x)) = o(xm−1), and the latter implies that p is identically zero.

Remark 10.26. The proof of Theorem 10.23 gives that m can be selected so that

F ∈ C(R); but this fact actually follows directly by one integration of (10.5.21).

Remark 10.27. We obtain at once the decomposition theorem from [231, p.134].

We also have the analog to Theorem 10.23 at the origin. The proof is identically

the same as the one of Theorem 10.23; we therefore omit it.

Theorem 10.28. Let f ∈ D′(R) have quasiasymptotic behavior at the origin in

D′(R)

f(εx) = C−L(ε)
(εx)α−

Γ(α + 1)
+C+L(ε)

(εx)α+
Γ(α + 1)

+ o (εαL(ε)) as ε→ 0+ , (10.5.23)

where α /∈ Z−. Then there exist a non-negative integer m > −α − 1 and an m-

primitive F of f such that F is locally integrable near the origin and

lim
x→0±

Γ(α +m+ 1)F (x)

xm |x|α L (|x|)
= C± . (10.5.24)

Conversely, if these conditions hold, then (by differentiation) (10.5.23) follows.

Remark 10.29. Theorem 10.28 gives at once the structure of quasiasymptotics at

finite points, it is obtained by translation.
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Remark 10.30. If α > −1, then the m-primitive satisfying (10.5.24) is unique;

however, if α < −1, then (10.5.24) is valid for more than one m-primitive, but in

general not for all.

We now give a second application of asymptotically homogeneous functions, we

will study the quasiasymptotic behavior f(λx) = γL(λ)δ(λx) + o(λ−1L(λ)). We

postpone the general case of negative integral degrees for Section 10.5.5, after the

introduction of associate asymptotically homogeneous function in Section 10.5.4.

Proposition 10.31. Let f ∈ D′(R) have quasiasymptotic behavior at infinity

f(λx) = γ
L(λ)

λ
δ(x) + o

(
L(λ)

λ

)
as λ→∞ in D′(R) . (10.5.25)

Then, there exist m ∈ N, a function b, being asymptotically homogeneous function

of degree 0 with respect to L, and an (m+1)-primitive F of f such that F ∈ L1
loc(R)

and

F (x) = γL(|x|) x
m

2m!
sgnx+ c (|x|) x

m

m!
+ o (|x|m L(|x|)) , x→∞ . (10.5.26)

Conversely, if (10.5.26) holds, then (10.5.25) follows by differentiation. Moreover,

(10.5.25) is valid in the space S ′(R).

Proof. The existence of m, b, and F satisfying (10.5.26) follows from the weak

convergence of (10.5.25), Proposition 10.22 and Theorem 10.16, as in the proof of

Theorem 10.23. The converse is shown by applying Theorem 10.20 and differenti-

ating (m+ 1)-times.

Likewise, one shows.

Proposition 10.32. Let f ∈ D′(R) have quasiasymptotic behavior at the origin

f(εx) = γ
L(ε)

ε
δ(x) + o

(
L(ε)

ε

)
as ε→ 0+ in D′(R) . (10.5.27)
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Then, there exist m ∈ N, a function b, being asymptotically homogeneous function

of degree 0 with respect to L, and an (m+1)-primitive F of f such that F is locally

integrable near the origin and

F (x) = γL(|x|) x
m

2m!
sgnx+ c (|x|) x

m

m!
+ o (|x|m L(|x|)) , x→ 0 . (10.5.28)

Conversely, if (10.5.28) holds, then (10.5.27) follows by differentiation.

10.5.4 Associate Asymptotically Homogeneous Functions

We now introduce the main tool for the study of structural properties of quasi-

asymptotics of negative integral degree. What makes impossible the application of

Proposition 10.22 to the -1 degree case is the fact that, in general, the primitives

of a homogeneous distribution of degree -1 are not homogeneous. In Section 10.5.5,

the technique of integrating the quasiasymptotic and studying the coefficients of

integration is employed again; moreover, the main coefficient of this integration

will fit into the context of associate asymptotically homogeneous functions, which

we now proceed to define.

Definition 10.33. A function b is said to be associate asymptotically homogeneous

of degree 0 at the origin (resp. at infinity) with respect to the slowly varying function

L, if it is measurable and defined in some interval (0, A) (resp. (A,∞)), A > 0,

and there exists a constant β such that for each a > 0,

b(ax) = b(x) + βL(x) log a+ o(L(x)) , x→ 0+ (resp. x→∞) . (10.5.29)

We may use the same argument employed in the proof of Lemma 10.13 to show

uniform convergence of (10.5.29). Furthermore, the same argument of Proposition

10.15 lead to a proof of the following claim: if one just assumes (10.5.29) for a is

a set of positive measure then it should hold for each a > 0. We leave the details

to the reader.
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Lemma 10.34. Suppose that (10.5.29) holds merely for a in a set of positive

Lebesgue measure, then it holds for each a > 0. Moreover, relation (10.5.29) holds

uniformly for a in compact subsets of (0,∞).

We shall study the distributional asymptotic properties of this class of func-

tions in detail. We first roughly estimate the behavior of associate asymptotically

homogeneous functions of degree 0.

Lemma 10.35. Let b be associate asymptotically homogeneous of degree 0 at the

origin (resp. at infinity) with respect to L, then for each σ < 0 (resp. σ > 0),

b(x) = o(xσ) , x→ 0+ (resp. x→∞) . (10.5.30)

Hence, b is integrable near the origin (resp. locally integrable near infinity).

Proof. We know that L(x) = o(xσ), for each σ > 0 [183]. Hence b(ax) = b(x)+o(xσ)

and thus x−σb(x) is asymptotically homogeneous of degree −σ with respect to

L ≡ 1, so (10.5.30) follows from Theorem 10.16.

The next two theorems will be crucial in the next section. They generalize The-

orems 10.19 and 10.16. We only give the proof at infinity, the proof at the origin

is similar to that of Theorem 10.19.

Theorem 10.36. Let b be a locally integrable associate asymptotically homoge-

neous function of degree zero at infinity with respect to the slowly varying function

L defined on [A,∞). Then

b(λx)H(λx− A) = b(λ)H(x) + L(λ)βH(x) log x+ o(L(λ)) , (10.5.31)

as λ→∞ in the space S ′(R).

Proof. Let λ0 be any positive number. The function b can be decomposed as b =

b1 + b2, where b1 ∈ L1(R) has compact support and b2(x) = b(x)H(x − λ0) is
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associate asymptotically homogeneous function of degree zero at infinity. Since b1

satisfies the moment asymptotic expansion, it follows that b1(λx) = O(λ−1) =

o(L(λ)) as λ→∞ in S ′(R). Therefore, we can always assume that A = λ0, where

λ0 is selected at our convenience.

Our aim is to show that there is some λ0 > 1 such that

J(x, λ) := φ(x)
b(λx)− b(λ)− βL(λ) log x

L(λ)
H(λx− λ0)

is dominated by an integrable function, whenever φ ∈ S(R), for the use of the

Lebesgue dominated convergence theorem. For this goal, we can always assume that

L is positive everywhere and satisfies the following estimate (see Section 2.10.1),

L(λx)

L(λ)
≤M max

{
x−

1
4 , x

1
4

}
, x, λ ∈ (0,∞) , (10.5.32)

for some positive constant M . Because of the uniformity of (10.5.29) on compact

sets, there exists a λ0 > 1 such that

|b(λx)− b(λ)− βL(λ) log x| < L(λ) , x ∈ [1, 2], λ0 < λ .

Let n be a positive integer. We keep λ0 < λ and x ∈ [2n, 2n+1] . Then

|b(λx)− b(λ)− βL(λ) log x| ≤ |b(λx)− b(λ)|+ |β|L(λ) log x

≤ |β|L(λ) log x+ |b(2(λx/2))− b(λx/2)− βL(λx/2) log 2|

+ |β|L(λx/2) log 2 + |b(λx/2)− b(λ)|

≤ |β|L(λ) log x+ (1 + |β| log 2)L(λx/2) + |b(λx/2)− b(λ)|

≤ (1 + |β| log 2)
n∑
j=1

L
(
2−jλx

)
+ |β|L(λ) log 2x+ L(λ)

≤

(
Mx

1
4 (1 + |β| log 2)

n∑
j=1

(1/2)
j
4 + |β| log 2x+ 1

)
L(λ) ,

where the last inequality follows from (10.5.32). So if λ0 < λ and 1 < x, then∣∣∣∣b(λx)− b(λ)− βL(λ) log x

L(λ)

∣∣∣∣ ≤M1x
1
4 ,
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for some M1 > 0. Now if λ0/λ < x < 1, we have that

∣∣∣∣b(λx)− b(λ)− βL(λ) log x

L(λ)

∣∣∣∣ ≤(1 +
L(λx)

L(λ)

)
|β log x|

+

∣∣∣∣b(λ)− b(λx)− βL(λx) log x−1

L(λ)

∣∣∣∣
≤
(

1 +Mx−
1
4

)
|β log x|

+
L(λx)

L(λ)

∣∣∣∣b(λx(x−1))− b(λx)− βL(λx) log x−1

L(λx)

∣∣∣∣
≤
(

1 +Mx−
1
4

)
|β log x|+MM1x

− 1
2 .

Therefore J(x, λ) is dominated by an integrable function for λ > λ0, so we apply

Lebesgue dominated convergence theorem to deduce that limλ→∞
∫∞

0
J(x, λ)dx =

0. Finally,

〈b(λx)H(λx− λ0), φ(x)〉 − b(λ)

∫ ∞

0

φ(x)dx− βL(λ)

∫ ∞

0

log x φ(x)dx

=

∫ ∞

λ0/λ

b(λx)φ(x)dx− b(λ)

∫ ∞

0

φ(x)dx− βL(λ)

∫ ∞

0

log x φ(x)dx

= L(λ)

∫ ∞

0

J(x, λ)dx+ L(λ)O

(
log λ

λ

)
+O

(
b(λ)

λ

)
= o(L(λ)) + L(λ)O

(
b(λ)

λL(λ)

)
= o(L(λ)) , λ→∞ ,

where in the last equality we have used Lemma 10.35 and the fact that slowly

varying functions are o(λσ) for any σ > 0. This completes the proof of (10.5.31).

Theorem 10.37. Let b be a locally integrable associate asymptotically homoge-

neous function of degree zero at the origin with respect to the slowly varying func-

tion L defined on (0, A]. Then

b(εx)(H(x)−H(εx− A)) = b(ε)H(x) + L(ε)βH(x) log x+ o(L(ε)) (10.5.33)

as ε→ 0+ in D′(R).
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Corollary 10.38. Let b be an associate asymptotically homogeneous function of

degree 0 with respect to the slowly varying function L. Then, there exists an as-

sociate asymptotically homogeneous function c ∈ C∞(0,∞) such that b(x) =

c(x) + o(L(x)).

Proof. By Lemma 10.4, we may assume that L ∈ C∞(0,∞). Find B such that b is

locally bounded in [B,∞) (resp. (0, B]), this can be done because of Proposition

10.18. Take φ ∈ D(R) such that
∫∞

0
φ(t)dt = 1 and set c(x) =

∫∞
B/x

b(xt)φ(t)dt −

βL(x)
∫∞

0
φ(t) log tdt (resp.

∫ B/x
0

b(xt)φ(t)dt−βL(x)
∫∞

0
φ(t) log tdt), the corollary

now follows from Theorem 10.36 (resp. Theorem 10.37).

We may also use Corollary 10.38 to obtain a representation formula for associate

asymptotically homogeneous functions, this is the analog to [183, Theorem 1.2] for

slowly varying functions.

Theorem 10.39. The function b is associate asymptotically homogeneous of degree

0 at ∞ satisfying (10.5.29) if and only if there is a positive number A such that

b(x) = η(x) +

∫ x

A

τ(t)

t
dt , x ≥ A , (10.5.34)

where η is a locally bounded measurable function on [A,∞) such that η(x) = M +

o(L(x)) as x→∞, for some number M , and τ is a C∞-function such that τ(x) ∼

βL(x) as x→∞.

Proof. The converse follows easily from (10.5.34), so we show the other part. As-

sume first that b1 is C∞, defined on [0,∞) and satisfies the hypothesis of the

theorem. We can find L1 ∼ L which is C∞ and satisfies xL′1(x) = o(L(x)) as

x→∞ (Lemma 10.4). Let φ and c as in the proof of Corollary 10.38 correspond-

ing to b1 and L1, additionally assume that suppφ ⊆ (0,∞). From Theorem 10.36,
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we have that

b′1(λx) =
b1(λ)

λ
δ(x) + β

L(λ)

λ
Pf

(
H(x)

x

)
+ o

(
L(λ)

λ

)
as λ→∞

in S ′(R), since distributional asymptotics can be differentiated. Then, for x positive

xc′(x) = x

∫ ∞

0

b′1(xt)tφ(t)dt− βxL′1(x)

∫ ∞

0

φ(t) log t dt

= x

∫ ∞

0

b′1(xt)tφ(t)dt+ o(L(x))

= b1(x) · 0 + βL(x)

∫ ∞

0

φ(t)dt+ o(L(x))

= βL(x) + o(L(x)) as x→∞ .

Set τ(x) = xc′(x). If A > 0, one has that b1(x) = c(A) +
∫ x
A

(τ(t)/t)dt+ o(L(x)).

In the general case, let A be a number such that b and L are locally bounded on

[A,∞) and let b1 be the function from Corollary 10.38 such that b(x) = b1(x) +

o(L(x)), then we can apply the previous argument to b1 to find τ as before, so we

obtain (10.5.34) with η(x) = b(x)−
∫ x
A

(τ(t)/t) dt = c(A) + o(L(x)).

A change of variables x↔ x−1 in Theorem 10.39 implies the analog result at 0.

Theorem 10.40. The function b is associate asymptotically homogeneous of degree

0 at the origin satisfying (10.5.29) if and only if there is a positive number A such

that

b(x) = η(x) +

∫ A

x

τ(t)

t
dt , x ≤ A , (10.5.35)

where η is a locally bounded measurable function on (0, A] such that η(x) = M +

o(L(x)) as x→ 0+, for some number M , and τ is a C∞-function such that τ(x) ∼

βL(x) as x→ 0+.

Remark 10.41. A slightly different representation formula is given in [183, The-

orem 2.13], but, except for the smoothness of τ , both are equivalent.
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Remark 10.42. Note that the property (10.5.29) is exactly (10.5.12) with α = 0

and τ(a) = β log a; indeed, when α = 0, it can be shown [183, Theorem 2.9]

that (10.5.12) forces τ to have this form. Associate asymptotically homogeneous

functions of degree zero are called de Haan functions in [15], and have been very

much studied. Some of the results of the present section overlap those from [15,

Chap.3], however, the author independently rediscovered [212, 227] them because

he was unaware of their existence.

10.5.5 Structural Theorems for Negative Integral Degrees

This section is dedicated to the study of structural properties of quasiasymptotic

behaviors with negative integral degree. The next lemma reduces the analysis of

negative integral degrees to the case of degree -1.

Lemma 10.43. Let f ∈ D′(R) and k ∈ Z+. Then f has the quasiasymptotic

behavior

f(λx) = γλ−kL(λ) δ(k−1)(x) + βL(λ)(λx)−k + o
(
λ−kL(λ)

)
in D′(R)

(at either 0 or ∞) if and only if there exists a k- primitive g of f satisfying

g(λx) = γλ−1L(λ) δ(x) +
(−1)k−1β

(k − 1)!
L(λ)(λx)−1 + o

(
λ−1L(λ)

)
in D′(R) .

Proof. It follows directly from Proposition 10.22 and Theorem 10.16.

We should introduce some notation that will be needed. In the following for all

n ∈ N we denote by ln the primitive of log |x| with the property that ln(0) = 0 and

l′n = ln−1. We have an explicit formula for them:

ln(x) =
xn

n!
log |x| − xn

n!

n∑
j=1

1

j
, x ∈ R ,

which can be easily verified by direct differentiation. They satisfy

ln(ax) = anln(x) +
(ax)n

n!
log a , a > 0 . (10.5.36)
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We analyze the case at infinity, the treatment of quasiasymptotic behavior at

the origin is similar.

Theorem 10.44. Let f ∈ D′(R) have quasiasymptotic behavior

f(λx) = γ
L(λ)δ(x)

λ
+βL(λ) (λx)−1 +o

(
L(λ)

λ

)
as λ→∞ in D′(R) . (10.5.37)

Then, there exist an associate asymptotically homogeneous function b satisfying

b(ax) = b(x) + βL(x) log a+ o(L(x)) , x→∞ , (10.5.38)

an integer m, and an (m+ 1)-primitive F ∈ L1
loc(R) of f such that

F (x) = b (|x|) x
m

m!
+ γ

xm

2m!
L (|x|) sgn x− βL (|x|) x

m

m!

m∑
j=1

1

j
+ o (|x|m L (|x|))

(10.5.39)

as x → ±∞, in the ordinary sense. Conversely, relation (10.5.39) implies the

quasiasymptotic behavior (10.5.37). Furthermore, f is a tempered distribution and

(10.5.37) holds in the space S ′(R).

Proof. We shall study, as we have been doing, the coefficients of the integration of

(10.5.37). For each n ∈ N, choose an n primitive Fn of f satisfying F ′
n = Fn−1. We

now proceed to integrate (10.5.37) once, so we obtain

F1(λx) = b(λ) +
γ

2
L(λ) sgn x+ βL(λ) log |x|+ o(L(λ)) in D′(R). (10.5.40)

Now, using the standard trick of evaluating at φ ∈ D(R) with the property∫∞
−∞ φ(x)dx = 1, one obtains that

b(λa) +
γ

2
L(λa)

∫ ∞

−∞
sgnx φ(x)dx+ βL(λa)

∫ ∞

−∞
log |x|φ(x)dx+ o(L(λ))

= 〈F1(λax), φ(x)〉 =
1

a

〈
F1(λx), φ

(x
a

)〉
= b(λ) +

γ

2
L(λ)

∫ ∞

−∞
sgnxφ(x)dx+ βL(λ)

∫ ∞

−∞
log |ax|φ(x)dx+ o(L(λ)) ,
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λ→∞, for each a > 0. So, we see that b satisfies (10.5.38) for each a > 0. Further

integration of (10.5.40) gives,

Fn+1(λx) =b(λ)
(λx)n

n!
+

n∑
j=1

λnbj(λ)
xn−j

(n− j)!
+ γL(λ) sgn x

(λx)n

2n!

+ βL(λ)λnln(x) + o (λnL(λ)) as λ→∞ in D′(R) .

As in the proof of Proposition 10.22, one shows that the bj’s are asymptotically

homogeneous functions of degree −j with respect to L. Hence, if we apply Theorem

10.16 to the bj’s, we obtain that

Fm+1(λx) = b(λ)
(λx)m

m!
+ γL(λ)

(λx)m

2m!
sgnx+ βL(λ)λmlm(x) + o (λmL(λ))

(10.5.41)

in the sense of convergence in D′(R). Moreover, it follows from the definition of

convergence in D′(R) there exists m0 ∈ N such that for all m ≥ m0 the distribu-

tion Fm+1 is a continuous function and (10.5.41) holds uniformly for x ∈ [−1, 1].

Relation (10.5.39) is shown by making x = ±1 in (10.5.41) and then changing

λ↔ x.

Conversely, since only the behavior of b at infinity plays a roll in (10.5.39), we

may assume that b is locally integrable, so the converse is obtained after application

of Theorem 10.36 and then (m+1) differentiations; Theorem 10.36 also shows that

F is tempered, so is f , and that (10.5.37) holds in S ′(R).

Remark 10.45. A similar statement holds for the the quasiasymptotic at the ori-

gin. We leave the formulation and proof to the reader.

Remark 10.46. The proof of Theorem 10.44 actually shows that m can be selected

so that F ∈ C(R) (resp. continuous near the origin in the case at the origin).

Theorem 10.44 is a structural theorem, but we shall give a version free of b. We

also state the assertion at the origin.
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Theorem 10.47. Let f ∈ D′(R). Then f has quasiasymptotic at infinity (resp. at

the origin) of the form (10.5.37) if and only if there exists an (m + 1)-primitive

F ∈ L1
loc(R) (resp. locally integrable near 0) of f , such that for each a > 0,

lim
x→∞

m! (a−mF (ax)− (−1)mF (−x))

xmL(x)
= γ + β log a (resp. lim

x→0+
). (10.5.42)

Proof. The limit (10.5.42) follows from (10.5.39), (10.5.38) and (10.5.36) by direct

computation. For the converse, rewrite (10.5.42) as

a−mF (ax)− (−1)mF (−x) = (γ + β log a)
xm

m!
L(x) + o (xmL(x)) ,

for each a > 0. Set

b(x) = m!x−mF (x)−

(
γ

2
− β

m∑
j=1

1

j

)
L(x) , x > 0.

By setting a = 1 in (10.5.42), one sees that for x < 0,

F (x) = b (|x|) x
m

m!
+ γL (|x|) x

m

2m!
sgnx− βL (|x|) x

m

m!

m∑
j=1

1

j
+ o (|x|m L (|x|)) .

Since

a−mF (ax)− F (x) = β
xm

m!
L(x) log a+ o (xmL(x)) ,

it is clear that for each a > 0,

b(ax) = b(x) + βL(x) log a+ o(L(x)).

Remark 10.48. It is remarkable that, initially, no uniform condition on a is as-

sumed in (10.5.42). However, the proof of Theorem 10.47 forces this relation to

hold uniformly for a in compact subsets, in view of the fact that such a property

holds for associate asymptotically homogeneous functions (Lemma 10.34). Addi-

tionally, it is enough to know that (10.5.42) holds merely for a in a set of positive

measure to conclude that it holds for each a > 0.
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We are now ready to state the general structural theorem for negative integral

degrees which now follows directly from Lemma 10.43, Theorem 10.44 and Theorem

10.47.

Theorem 10.49. Let f ∈ D′(R) and k ∈ Z+. Then f has the quasiasymptotic

behavior

f(λx) = γ
L(λ)

λk
δ(k−1)(x) + βL(λ)(λx)−k + o

(
L(λ)

λk

)
as λ→∞ in D′(R)

(10.5.43)

if and only if there exist m ∈ N, m ≥ k, an associate asymptotically homogeneous

function b of degree 0 at infinity with respect to L satisfying

b(ax) = b(x) +
(−1)k−1β

(k − 1)!
L(x) log a+ o(L(x)) , x→∞ ,

for each a > 0, and an m-primitive F ∈ L1
loc(R) of f which satisfies

F (x) =b (|x|) xm−k

(m− k)!
+ γL (|x|) xm−k

2(m− k)!
sgnx

− (−1)k−1β

(k − 1)!
L (|x|) xm−k

(m− k)!

m−k∑
j=1

1

j
+ o

(
|x|m−k L (|x|)

)
as x→ ±∞, in the ordinary sense. The last property is equivalent to

lim
x→∞

(m− k)!
(
ak−mF (ax)− (−1)m−kF (−x)

)
xm−kL(x)

= γ +
(−1)k−1β

(k − 1)!
log a , (10.5.44)

for each a > 0. Furthermore, f ∈ S ′(R) and (10.5.43) holds in the space S ′(R).

Likewise, we have the structural theorem at the origin.

Theorem 10.50. Let f ∈ D′(R) and k ∈ Z+. Then f has the quasiasymptotic

behavior

f(εx) = γ
L(ε)

εk
δ(k−1)(x) + βL(ε)(εx)−k + o

(
L(ε)

εk

)
as ε→ 0+ in D′(R)

if and only if there exist m ∈ N, m ≥ k, an associate asymptotically homogeneous

function b of degree 0 at infinity with respect to L satisfying

b(ax) = b(x) +
(−1)k−1β

(k − 1)!
L(x) log a+ o(L(x)) , x→ 0+ ,
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for each a > 0, and an m-primitive F of f which is locally integrable near the

origin and satisfies

F (x) =b (|x|) xm−k

(m− k)!
+ γL (|x|) xm−k

2(m− k)!
sgnx

− (−1)k−1β

(k − 1)!
L (|x|) xm−k

(m− k)!

m−k∑
j=1

1

j
+ o

(
|x|m−k L (|x|)

)
as x→ 0, in the ordinary sense. The last property is equivalent to

lim
x→0+

(m− k)!
(
ak−mF (ax)− (−1)m−kF (−x)

)
xm−kL(x)

= γ +
(−1)k−1β

(k − 1)!
log a , (10.5.45)

for each a > 0.

It should be noticed that in (10.5.44) or (10.5.45) is not absolutely necessary to

assume that the limit is of the form γ+ (−1)k−1(β/(k− 1)!) log a. Indeed, we have

the following stronger result.

Theorem 10.51. Let f ∈ D′(R). Then f has quasiasymptotic behavior at infinity

(resp. at the origin) of degree −k, k ∈ Z+, if and only if there exists m-primitive

F ∈ L1
loc(R) (resp. locally integrable near the origin) of f , m ≥ k, such that the

following limit exists

lim
x→∞

(
ak−mF (ax)− (−1)m−kF (−x)

)
xm−kL(x)

= I(a) (resp. lim
x→0+

) , (10.5.46)

for each a merely in a subset B ⊂ (0,∞) having positive Lebesgue measure. In this

case, there exist constants γ and β such that I(a) = γ + (−1)k−1(β/(k− 1)!) log a,

and (10.5.46) holds uniformly for a in any compact subset of (0,∞).

Proof. We may assume that B is the maximal set of numbers a where (10.5.46) is

valid. It is easy to see that B is a multiplicative subgroup of R+ and has positive

measure; consequently, Steinhaus theorem implies that B = R+. Next, we easily

see that I is measurable and satisfies

I(ab) = I(a) + I(b)− I(1) ,
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setting h(x) = eI(x)−I(1), one has that h is positive, measurable and satisfies the

functional equation h(ab) = h(a)h(b), from where it follows [183] that h(x) = xβ1 ,

for some β1, and so I has the desired form upon setting I(1) = γ and β1 =

(1)k−1β/(k− 1)!. The uniform convergence over compact subsets of (0,∞) follows

from Remark 10.48.

10.6 Quasiasymptotic Boundedness

This section is intended to study the structure of the distributional relation

f(λx) = O(ρ(λ)) , (10.6.1)

where here λ→∞ or λ→ 0+ and Our approach to the problem follows the exposi-

tion from [213]. In Section 1.8.1 we introduced quasiasymptotic boundedness with

no restriction over the comparison function ρ. However, we will assume throughout

this section that ρ is a regularly varying function, and we will obtain the structural

properties of (10.6.1) under this assumption. In order to introduce some language,

we state the following definition.

Definition 10.52. Let L be a slowly varying function at infinity (resp. at the

origin) and α ∈ R. We say f is quasiasymptotically bounded of degree α at infinity

(at the origin) with respect to the slowly varying function L, if

f(λx) = O(λαL(λ)) as λ→∞ inD′(R) (10.6.2)

(resp. λ→ 0+).

We may talk about (10.6.2) in other spaces of distributions. By translation, we

can also formulate Definition 10.52 at any finite point.

In order to obtain the structure of quasiasymptotically bounded distributions

For this aim, the program established in Section 10.5 will be followed. We will

integrate the relation (10.6.2) and study the coefficients of integration.
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10.6.1 Asymptotically Homogeneously Bounded
Functions

The coefficients of integration of (10.6.2) will satisfy the properties of the next

definition.

Definition 10.53. Let b be a measurable function defined in some interval (A,∞)

(resp. (0, A)), A > 0, It is said to be asymptotically homogeneously bounded of

degree α at infinity (resp. at the origin) with respect to the slowly varying function

L if it is and for each a > 0

b(ax) = aαb(x) +O(L(x)), x→∞ (resp. x→ 0+) . (10.6.3)

If we set c(x) = b(x)/xα, then c satisfies

c(ax) = c(x) +O(x−αL(x)) . (10.6.4)

The class of functions satisfying the above relation has been very much studied

by several authors, see for instance [183, Section 2.4] or [15, Chap.3]. In [15],

more general classes, called OΠ-classes, are defined and they contain functions

satisfying (10.6.4). We now discuss some properties of asymptotically homoge-

neously bounded functions in connection with the structure of quasiasymptotically

bounded distributions. Many of these properties of a asymptotically homogeneous

function b can be deduced from those of the corresponding c by using the known re-

sults from [183, 15]. Alternatively, the reader may observe that most of the proofs

of the following results are the analog to those for asymptotically homogeneous

functions and can be obtained by replacing the o symbol by the O symbol and

making obvious modifications to the estimates, therefore they will be omitted. We

leave to the reader the details of such modifications.

Proceeding as in Lemma 10.13 and Proposition 10.15, or using the the results

of [183, Section 2.4], one has the following result.
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Proposition 10.54. If (10.6.3) holds merely for a in a set of positive measure,

then it remains valid for each a > 0. Moreover, (10.6.3) holds uniformly for a in

compact subsets of (0,∞).

One can also show the following series of results.

Proposition 10.55. Let b be asymptotically homogeneously bounded at infinity (at

the origin) with respect to the slowly varying function L. If the degree is negative

(resp. positive), then b(x) = O(L(x)).

Proposition 10.56. Let b be asymptotically homogeneously bounded at infinity

(at the origin) with respect to the slowly varying function L. If the degree α is

positive (respectively negative), then there exits a constant γ such that b(x) =

γxα +O(L(x)).

Corollary 10.57. Let b be asymptotically homogeneously bounded function of de-

gree 0 at infinity (at the origin) with respect to L. If σ > 0 (resp. σ < 0), then

b(x) = O(xσ). Consequently, it is locally integrable for large arguments (in a right

neighborhood of the origin).

The proof of the next proposition is totally analogous to those of Theorems 10.19

and 10.36, and therefore will be omitted again.

Proposition 10.58. Let b be asymptotically homogeneously bounded of degree zero

at infinity (at the origin) with respect to the slowly varying function L. Suppose

that b is locally integrable on [A,∞) (respectively (0, A]). Then

b(λx)H(λx− A) = b(λ)H(x) +O(L(λ)) as λ→∞ in S ′(R) , (10.6.5)

(resp. b(εx)(H(x)−H(εx− A) = b(ε)H(x) +O(L(ε)) as ε→ 0+ in D′(R)).

Corollary 10.59. Let b be an asymptotically homogeneously bounded function

of degree 0 at infinity (at the origin) with respect to L. Then, there exists c ∈
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C∞(0,∞), being also asymptotically homogeneously bounded of degree 0, such that

b(x) = c(x) +O(L(x)).

Proof. We only show the assertion at infinity, the case at the origin is similar. Find

A such that b is locally bounded in [A,∞). Take φ ∈ D(R) supported in (0,∞)

such that
∫∞

0
φ(t)dt = 1 and set c(x) =

∫∞
A/x

b(xt)φ(t)dt, the corollary now follows

from Proposition 10.58.

Using the ideas of Theorem 10.39, we can give a representation formula for

asymptotically homogeneously bounded functions of degree 0. We start with the

case at infinity.

Theorem 10.60. A function b is associate asymptotically homogeneously bounded

of degree 0 at ∞ with respect to the slowly varying function L if and only if there

is a positive number A such that

b(x) = η(x) +

∫ x

A

τ(t)

t
dt , x ≥ A , (10.6.6)

where η is a locally bounded measurable function on [A,∞) such that η(x) = M +

O(L(x)), x→∞, for some number M , and τ is a C∞-function such that τ(x) =

O(L(x)), x→∞.

Proof. The converse follows easily from (10.6.6), we concentrate on the other part.

Assume first that b1 is C∞, defined on [0,∞), and satisfies the hypothesis of the

theorem. Let φ be such that suppφ ⊆ (0,∞) and
∫∞

0
φ(t)dt = 1. Set c(x) =∫∞

0
b1(xt)φ(t)dt = b1(x) +O(L(x)). From Theorem 10.36, we have that

b′1(λx) =
b1(λ)

λ
δ(x) +O

(
L(λ)

λ

)
as λ→∞ in S ′(R) ,

since distributional asymptotics can be differentiated. Then, for x positive

xc′(x) = x

∫ ∞

0

b′1(xt)tφ(t)dt = b1(x) · 0 +O(L(x)) = O(L(x)) .
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Set τ(x) = xc′(x). If A > 0, one has that b1(x) = c(A)+
∫ x
A

(τ(t)/t)dt+O(L(x)). In

the general case, let A be a number such that b and L are locally bounded on [A,∞)

and let b1 be the function from Corollary 10.38 such that b(x) = b1(x) +O(L(x)),

then we can apply the previous argument to b1 to find τ as before, so we obtain

(10.6.6) with η(x) = b(x)−
∫ x
A

(τ(t)/t) dt = c(A) +O(L(x)).

A change of variables x↔ x−1 in Theorem 10.60 implies the analog result at 0.

Theorem 10.61. A function b is associate asymptotically homogeneously bounded

of degree 0 at the origin if and only if there is a positive number A such that

b(x) = η(x) +

∫ A

x

τ(t)

t
dt , x ≤ A , (10.6.7)

where η is a locally bounded measurable function on (0, A] such that η(x) = M +

O(L(x)), x→ 0+, for some number M , and τ is a C∞-function such that τ(x) =

O(L(x)), x→ 0+.

10.6.2 Structural Theorems

The main connection between quasiasymptotically bounded distributions and the

class of asymptotically homogeneously bounded functions is given in the next

proposition, again the proof will be omitted since it is analogous to that of Propo-

sition 10.22.

Proposition 10.62. Let f ∈ D′(R) be quasiasymptotically bounded of degree α

at infinity (at the origin) with respect to the slowly varying function L. Let m ∈

N. Then, for any given Fm, an m-primitive of f in D′(R), there exist functions

b0, . . . , bm−1, continuous on (0,∞), such that

Fm (λx) =
m−1∑
j=0

λα+mbj(λ)
xm−1−j

(m− 1− j)!
+O

(
λα+mL(λ)

)
in D′(R) , (10.6.8)

as λ→∞ (resp. λ→ 0+), where each bj is asymptotically homogeneously bounded

of degree −α− j − 1 with respect to L.
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Thus we obtain from Propositions 10.55–10.62 our first structural theorem.

Theorem 10.63. Let f ∈ D′(R) and α /∈ Z−. Then f is quasiasymptotically

bounded of degree α at infinity (resp. at the origin) with respect to the slowly

varying function L if and only if there exist m ∈ N, m+α > −1, and m-primitive

F ∈ L1
loc(R) (resp. locally integrable in a neighborhood of the origin) of f such that

F (x) = O
(
|x|m+α L (|x|)

)
, (10.6.9)

|x| → ∞ (resp. x→ 0), in the ordinary sense. Moreover, in the case at infinity, f

belongs to S ′(R) and is quasiasymptotically bounded of degree α with respect to L

in S ′(R).

Proof. We only discuss the case at infinity, the proof of the assertion at the origin

is similar to this case. It follows from Proposition 10.62, Proposition 10.55 and

Proposition 10.56 that given m ∈ N and an m-primitive Fm, there is a polynomial

pm−1 of degree at most m− 1 such that

Fm(λx) = pm−1(λx) +O(λα+mL(λ)) as λ→∞ in D′(R) , (10.6.10)

from the definition of boundedness in D′(R) it follows that there is an m > −α

such that (10.6.10) holds uniformly for x ∈ [−1, 1]. We let F = Fm − pm−1, so by

taking x = −1, x = 1 and replacing λ by x in (10.6.10) we obtain (10.6.9). The

converse follows by observing that (10.6.9) implies that F (λx) = O(λα+mL(λ)) in

S ′(R) which gives the result after differentiating m-times.

We now analyze the case of negative integral degree.

Theorem 10.64. Let f ∈ D′(R) and k ∈ Z+. Then f is quasiasymptotically

bounded of degree −k at infinity (at the origin) with respect to L if and only if

there exist k < m ∈ Z+, an asymptotically homogeneously bounded function b of
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degree 0 at infinity (at the origin) with respect to L and an m-primitive F ∈ L1
loc(R)

(resp. locally integrable near the origin) of f such that

F (x) = b (|x|)xm−k +O
(
|x|m−k L (|x|)

)
, (10.6.11)

as |x| → ∞ (resp. x→ 0). Moreover (10.6.11) is equivalent to have

ak−mF (ax)− (−1)m−kF (−x) = O
(
xm−kL(x)

)
, (10.6.12)

as x → ∞ (resp. x → 0+), for each a > 0. In the case at infinity, it follows that

f is tempered and quasiasymptotically bounded of degree −k with respect to L in

S ′(R).

Proof. Again we only give the proof of the assertion at infinity, the case at the

origin is similar. If f(λx) = O(λ−kL(λ)) in D′(R), then after k − 1 integrations

Proposition 10.62 and Proposition 10.56 provide us of a (k − 1)-primitive of f

which is quasiasymptotically bounded of degree -1 at infinity with respect to L,

hence we may assume that k = 1. Next, Proposition 10.62, Proposition 10.55 and

the definition of boundedness in D′(R) give to us the existence of an m > 1, an

asymptotically homogeneously bounded function of degree -1 with respect to L and

an m-primitive F of f such that F (λx) is continuous for x ∈ [−1, 1] (hence F is

continuous on R because of the dilation parameter) and F (λx) = λm−1b(λ)xm−1 +

O(λm−1L(λ)) as λ → ∞ uniformly for x ∈ [−1, 1], by taking x = −1, x = 1 and

replacing λ by x one gets (10.6.11). Assume now (10.6.11), by using Corollary 10.59,

we may assume that b is locally integrable on [0,∞), this allows the application of

Proposition 10.58 to deduce that F (λx) = λm−1b(λ)xm−1+O(λm−1L(λ)) as λ→∞

in S ′(R) and hence the converse follows by differentiating m-times. That (10.6.11)

implies (10.6.12) is a simple calculation; conversely, setting b(x) = xk−mF (x) for

x > 0, one obtains (10.6.11).
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It is not necessary to assume that (10.6.12) holds for all a > 0. Indeed, we have

the following result.

Theorem 10.65. Let f ∈ D′(R) and k ∈ Z+. Then f is quasiasymptotically

bounded at infinity (resp. at the origin) of degree −k if and only if there exists

m-primitive F ∈ L1
loc(R) (resp. locally integrable near the origin) of f , m ≥ k,

such that

ak−mF (ax)− (−1)m−kF (−x) = O(xm−kL(x)) , (10.6.13)

x→∞ (resp. x→ 0+), for each a merely in a subset B ⊂ (0,∞) having positive

Lebesgue measure. In this case (10.6.13) holds uniformly for a in any compact

subset of (0,∞).

Proof. Set b(x) = F (x)/xm−k, for x > 0. Then, b(ax)− b(x) = O(L(x)), for a ∈ B.

It follows from Proposition 10.54 that b(ax)−b(x) = O(L(x)) holds for each a > 0,

and actually uniformly on compact subsets of (0,∞); but the latter is the same to

say that (10.6.13) holds uniformly for a in any compact subset of (0,∞).

10.7 Quasiasymptotic Extension Problems

We analyze some problems about which can be denominated as quasiasymptotic

extension problems. Most of the results of the present section were obtained by the

author in [212, 213, 227]. Let U and A be two suitable spaces of functions which are

closed under dilation. Furthermore, assume that U ⊂ A (not necessarily densely

contained) with continuous inclusion. Suppose that f ∈ U ′ have quasiasymptotic

behavior in U ′, that is,

〈f(λx), φ(x)〉 ∼ λαL(λ) 〈g(x), φ(x)〉 , ∀φ ∈ U . (10.7.1)

Suppose that either f ∈ A′ or there is a suitable extension of f to A. Sometimes,

when corresponds, the existence of the extension is part of the problem. We are
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interested in the quasiasymptotic properties f (or its extensions) in A′. We may

classify the quasiasymptotic extension problems into two categories, each of them

having subcategories.

1. U is dense in A (consequently, A′ ⊂ U ′). We may ask:

(QEP1.1) Suppose we know a priori f ∈ A′. Does (10.7.1) hold for all φ ∈ A ?

(QEP1.2) Would (10.7.1) be enough to conclude f ∈ A′ and that (10.7.1) remains

valid in A′ ?

2. U is not dense in A. We obtain a canonical map A′ → U ′ via restriction of

functionals (which is not necessarily onto nor one-to-one). The image of this

map is precisely the set of elements of U ′ admitting extensions to A. We may

ask:

(QEP2.1) Suppose that f admits extensions to A. What are the quasiasymptotic

properties in A′ of such extensions?

(QEP2.2) Would (10.7.1) be enough to conclude f has extensions to A ? In a

positive case, what are the quasiasymptotic properties in A′ of such

extensions?

Observe that the problems just discussed also make sense for quasiasymptotic

boundedness.

The positive answer for (QEP1.1) for U ′ = D′(R), A′ = S ′(R), and distributional

point values has been widely used in the previous chapters in connection with

Fourier inverse problems. In Section 10.7.2 we will treat the same question for the

general quasiasymptotic behavior (and boundedness) at finite points.

The reader should have noticed that (QEP1.2) has been implicitly studied in the

previous sections for quasiasymptotics at infinity in D′(R) . Indeed, in Sections
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10.5 and 10.6, we showed that if f ∈ D′(R) has quasiasymptotic behavior or is

quasiasymptotic bounded at infinity with respect to a regularly varying function,

then f ∈ S ′(R) and the same quasiasymptotic properties are preserved in f ∈

S ′(R). We will make a further study of this case in Section 10.7.3 for spaces of the

form A′ = K′
β(R).

We will study (QEP2.1) and (QEP2.2) for U ′ = D′(0,∞) and A′ = D′(R) in

Section 10.7.1.

10.7.1 Quasiasymptotic Extension from (0,∞) to R

The purpose of this section is to study the extensions of distributions to R which

are initially defined off the origin and have a prescribed asymptotic behavior, that

is, f ∈ D′(R\{0}) with a prescribed quasiasymptotic behavior at either the origin

or infinity.

We want to make some comments about extension of distributions initially de-

fined in R\{0} to R. Observe that this problem is of vital importance for renormal-

ization procedures in Quantum Field Theory ([21, 125, 233, 234]). For simplicity,

we discuss the problem of extending a distribution from R+ = (0,∞) to R, the

general case can be obviously reduced to this one.

Recall that the spaces D′(R+) and S ′(R+), duals of D(R+) and S(R+), respec-

tively, are identifiable [231, p.13] with the spaces of distributions and tempered

distributions supported on R+, respectively. Therefore, in discussing extensions

of distributions defined on R+ to R is enough to considered the extension to the

interval R+ = [0,∞). In general, it is not true that a distribution f0 ∈ D′(R+)

should have an extension to D′(R+). The necessary and sufficient condition [61]

for a distribution f0 ∈ D′(R+) to admit extensions to D′(R+) is the existence of

β ∈ R such that

f0(εx) = O(εβ) as ε→ 0+ in D′(R+). (10.7.2)
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We will recover this extension characterization below. We call f0 ∈ D′(R+) extend-

able to R+ if it satisfies this condition. In relation to the extendable distributions

the notation D31(R+) is used in [60, p.179] for those test functions from D(R) hav-

ing support on R+. Its dual is D′
31(R+). Notice that D(R+) is dense in D31(R+);

consequently, D′
31(R+) ⊆ D′(R+). The space D31(R+) is closed in D(R+); hence

every distribution of D′
31(R+), in view of Hanh-Banach theorem, admits an exten-

sion to D′(R+). Moreover, D′
31(R+) coincides with the extendable distributions in

D′(R+).

We now analyze our first extension problem where we suppose that f0, defined

on (0,∞), has quasiasymptotic behavior.

Theorem 10.66. Let f0 ∈ D′(R+) have the quasiasymptotic behavior

f0(εx) ∼ εαL(ε)g(x) as ε→ 0+ in D′(R+) . (10.7.3)

Then f0 is extendable to R+. Moreover, if f ∈ D′(R+) is an extension of f0 to R+,

one has that:

(i) If α /∈ Z−, then there exist constants a0, a1, . . . , am−1 such that

f(εx) = εαL(ε)g(x) +
m−1∑
j=0

aj
δ(j)(x)

εj+1
+ o(εαL(ε)) (10.7.4)

as ε→ 0+ in D′(R).

(ii) If α = −k, k ∈ Z+, then g is of the form g(x) = C Pf
(
H(x)/xk

)
and there

exist an associate asymptotically homogeneous function b satisfying

b(ax) = b(x) +
(−1)k−1

(k − 1)!
CL(x) log a+ o(L(x)), x→ 0+ , (10.7.5)

for each a > 0, and constants ak, ak+1, . . . , am−1 such that

f(εx) = C
L(ε)

εk
Pf

(
H(x)

xk

)
+
b(ε)

εk
δ(k−1)(x) +

m−1∑
j=k

aj
δ(j)(x)

εj+1
+ o

(
L(ε)

εk

)
(10.7.6)

as ε→ 0+ in D′(R).
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Proof. (i) Since α is not a negative integer and the quasiasymptotic behavior

(10.7.3) holds on the positive part of the real line we have that

g(x) =
Cxα+

Γ(α + 1)
for some constant C .

In Proposition 10.22, we may replace the space D′(R) by D′(R+); as in the proof of

Theorem 10.23, we have that there are a positive integer m > −α, an m-primitive

Fm of f0 in D′(R+), which is continuous on the interval (0, 1), and a polynomial p

such that

Fm(εx) = C+L(ε)
(εx)α+m

+

Γ(α +m+ 1)
+ o(εα+mL(ε)) (10.7.7)

as ε→ 0+, uniformly for x ∈ [1/2, 1]. Setting x = 1 and replacing x by ε, we obtain

that

Fm(x) = C+L(x)
xα+m

+

Γ(α +m+ 1)
+ o(xα+mL(x)) ,

in the ordinary sense. Therefore, F is actually continuous on [0, 1) and the asymp-

totic formula (10.7.7) holds in D′(R). Let f1 = F
(m)
m , differentiating (10.7.7) m-

times, we see that f1 has the quasiasymptotic behavior (10.7.3) in D′(R), and f1 is

an extension of f0. The rest follows from the observation that f−f1 is a distribution

concentrated at the origin, and hence it is a sum of the Dirac delta distribution

and its derivatives.

(ii) Let us observe that if we take the space D′(R+) instead of D′(R) in Proposition

10.22 and Lemma 10.43, they still hold. Hence, the arguments given in Theorem

10.44 are still applicable to conclude the existence of m ∈ N, m > k, and Fm, an

m-primitive of f0 in D′(R+) , which is continuous on the interval (0, 1), such that

Fm(x) = b1(x)
xm−k

(m− k)!
− (−1)k−1C

(k − 1)!
L(x)

xm−k

(m− k)!

m−k∑
j=1

1

j
+o(xm−kL(x)), x→ 0+ ,
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in the ordinary sense, where the function b1 satisfies (10.7.5). Notice that Fm is

then continuous on [0, 1). By Theorem 10.37, we have

Fm(εx) = b1(ε)
(εx)m−k+

(m− k)!
+

(−1)k−1C

(k − 1)!
εm−kL(ε)lm−k(x)H(x) + o(εm−kL(ε)) ,

as ε→ 0+ in D′(R), where

lm−k(x) =
xm−k

(m− k)!
log x− xm−k

(m− k)!

m−k∑
j=1

1

j
.

Differentiating the last expression (m− k)-times, we get

F (m−k)
m (εx) = b1(ε)H(x) +

(−1)k−1C

(k − 1)!
L(ε)H(x) log x+ o(L(ε)) , (10.7.8)

as ε → 0+ in D′(R). Set now f1 = F
(m)
m ∈ D′(R+), k more differentiations of

(10.7.8) and the formula

dk−1

dxk−1

(
Pf

(
H(x)

x

))
= (−1)k−1(k − 1)!Pf

(
H(x)

xk

)
− δ(k−1)(x)

k∑
j=1

1

j
,

imply that

f1(εx) = C
L(ε)

εk
Pf

(
H(x)

xk

)
+
b(ε)

εk
δ(k−1)(x) + o

(
L(ε)

εk

)

with b(x) = b1(x)− (−1)k−1C

(k − 1)!
L(x)

k∑
j=1

1

j
. Since f1 is an extension of f0, then f−f1

is concentrated at the origin, and hence we obtain (10.7.6).

Remark 10.67. Theorem 10.66 extends the properties obtained by S.  Lojasiewicz

in [128] about the limit of a distribution at a point.

We have a similar assertion for quasiasymptotic boundedness. The proof is al-

most the same as the case of quasiasymptotic behavior, we leave the details to the

reader.

Theorem 10.68. Let L be slowly varying at the origin. Let f0 ∈ D′(R+) be such

that

f0(εx) = O(εαL(ε)) as ε→ 0+ in D′(R+) . (10.7.9)
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Then f0 is extendable to R+. Moreover, if f ∈ D′(R+) is an extension of f0 to R+,

one has that:

(i) If α /∈ Z−, then there exist constants a0, a1, . . . , am−1 such that

f(εx) =
m−1∑
j=0

aj
δ(j)(x)

εj+1
+O(εαL(ε)) (10.7.10)

as ε→ 0+ in D′(R).

(ii) If α = −k, k ∈ Z+, then there exist an asymptotically homogeneously bounded

function b of degree 0 with respect to L and constants ak, ak+1, . . . , am−1 such that

f(εx) =
b(ε)

εk
δ(k−1)(x) +

m−1∑
j=k

aj
δ(j)(x)

εj+1
+O

(
L(ε)

εk

)
(10.7.11)

as ε→ 0+ in D′(R).

Therefore, we recover the characterization of extendable distributions.

Corollary 10.69. A distribution f0 ∈ D′(R+) is extendable to R if and only if

(10.7.2) is satisfied.

Proof. The first half of the statement follows from Theorem 10.68. On the other

hand if f0 is extendable to R, findm ∈ N and F continuous in a neighborhood of the

origin such that Fm = f ; since F is bounded near the origin, then F (εx) = O(1),

differentiating m-times, we obtain that f(εx) = O(ε−m) in D′(R+).

We now turn our attention to asymptotics at infinity. Suppose that a distribution

f ∈ D′(R) with support in [0,∞) has quasiasymptotic behavior of degree α in the

space D′(R+), that is, for each φ ∈ D(R+)

〈f(λx), φ(x)〉 ∼ λαL(λ) 〈g(x), φ(x)〉 . (10.7.12)

What can we say about the quasiasymptotic properties of f in D′(R)?

We can also apply the technique of Theorem 10.66 to give a complete answer

to this question. The answer depends on α. We formulate the next theorem in
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more general terms. Recall that S(R+) is the closed subspace of S(R) consisting of

functions supported in [0,∞). It is dual space S ′(R+) coincides with the extendable

distributions of D′(R+) which have tempered behavior at infinity.

Theorem 10.70. Let f0 ∈ D′(R+) be an extendable distribution to R+. Let L be

slowly varying at infinity and α ∈ R. Suppose that

f0(λx) ∼ λαL(λ)g(x) as λ→∞ in D′(R+). (10.7.13)

Then f0 ∈ S ′(R+) and the quasiasymptotic behavior holds in S ′(R+). Moreover,

let f ∈ S ′(R+) be any extension of f0.

(i) If α > −1, then f has the quasiasymptotic behavior (10.7.13) in S ′(R).

(ii) If α < −1 and α /∈ Z−, then there exist constants a0, . . . , an−1, n < −α, such

that

f(λx) =
n−1∑
j=0

aj
δ(j)(x)

λj+1
+ λαL(λ)g(x) + o(λαL(λ)) (10.7.14)

as λ→∞ in S ′(R). The constants depend on the choice of the extension f .

(iii) If α = −k, k ∈ Z+, then g is of the form g(x) = C Pf
(
H(x)/xk

)
and there

are (k − 1) constants a0, . . . , ak−2 and an associate asymptotically homogeneous

function of degree 0 with respect to L satisfying

b(ax) = b(x) +
(−1)k−1

(k − 1)!
CL(x) log a+ o(L(x)), x→∞ , (10.7.15)

such that

f(λx) = C
L(λ)

λk
Pf

(
H(x)

xk

)
+
b(λ)

λk
δ(k−1)(x)+

k−2∑
j=0

aj
δ(j)(x)

λj+1
+o

(
L(λ)

λk

)
(10.7.16)

as λ→∞ in S ′(R). The constants and the function b depend on the choice of the

extension f .

Proof. Let f ∈ S ′(R+) be an extension of f0.
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(i) Let us start with the case α > −1. Clearly g must be of the form Cxα+/Γ(α+1),

for some constant C. Next, Proposition 10.22 still holds replacing the space D′(R)

by D′(R+) (actually this holds without the restriction α > −1). Hence, the same

argument given in Theorem 10.23 applies here, but this time we only require the

uniform convergence on [1/2, 2], and hence we can still conclude the existence of

the integer such that (10.5.21) holds with the limit taken only as x→∞. Actually,

because α > −1, relation (10.5.21) holds for any m-primitive of f . Let f (−m) be

the m-primitive of f supported on the interval [0,∞), then we have that

f (−m)(x) ∼ Cxα+mL(x)

Γ(α +m+ 1)
, x→∞ ,

so we have that f (−m)(λx) = CL(λ)(λx)α+m
+ /Γ(α + m + 1) + o(λα+mL(λ)) in the

space S ′(R), differentiating m-times, we obtain the result. (ii) Suppose now that

α < −1 and α /∈ Z−. This case differs from the last one essentially in one point, we

cannot conclude (10.5.21) for every m-primitive of f but only for some of them.

In any case, if f (−m) is the m-primitive (we keep m > −α − 1) of f supported on

[0,∞), we have that there exists a polynomial of degree at most m− 1 such that

f (−m)(x)− p(x) ∼ Cxα+mL(x)

Γ(α +m+ 1)
, x→∞ ;

therefore,

f (−m)(λx) =
CL(λ)(λx)α+m

+

Γ(α +m+ 1)
+

m−1∑
j=0

aj(λx)j+ + o(λα+mL(λ)) as λ→∞ ,

in the space S ′(R), for some constants a0, . . . , am−1. Thus, after m differentiations

and a small rearrangement of constants, we obtain (10.7.14).

(iii) Reasoning as in the previous two cases, we obtain the existence of a positive

integer m > k such that f (−m) is continuous and

f (−m)(x) = b1(x)
xm−k

(m− k)!
−(−1)k−1C

(k − 1)!
L(x)

xm−k

(m− k)!

m−k∑
j=1

1

j
+pm−1(x)+o(xm−kL(x)) ,
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x → ∞, where b1 is a locally integrable associate asymptotically homogeneous

function satisfying (10.7.15) and pm−1 is a polynomial of degree at most m − 1.

Throwing away the irrelevant terms of the polynomial pm−1 and using Theorem

10.36, we obtain the following asymptotic expansion as λ→∞ in the space S ′(R),

f (−m)(λx) =b1(λ)
(λx)m−k+

(m− k)!
+

(−1)k−1C

(k − 1)!
λm−kL(λ)lm−k(x)H(x)

+
k−1∑
j=0

aj
(λx)m−j−1

+

(m− j − 1)!
+ o(λm−kL(λ)) .

Differentiating (m− k)-times this expansion, we have that

f (−m)(λx) = b1(λ)H(x)+
(−1)k−1C

(k − 1)!
L(λ)H(x) log x+

k−1∑
j=0

aj
(λx)k−j−1

+

(k − j − 1)!
+o(L(λ)) .

(10.7.17)

The well known formula

dk−1

dxk−1

(
Pf

(
H(x)

x

))
= (−1)k−1 (k − 1)! Pf

(
H(x)

xk

)
− δ(k−1)(x)

k−1∑
j=1

1

j
.

and k-times differentiations of (10.7.17) imply (10.7.16) with

b(x) = b1(x) +
(−1)kC

(k − 1)!

(
k−1∑
j=1

1

j

)
L(x) .

Likewise, one shows.

Theorem 10.71. Let f0 ∈ D′(R+) be an extendable distribution to R+. Let L be

slowly varying at infinity and α ∈ R. Suppose that

f0(λx) = O(λαL(λ)) as λ→∞ in D′(R+). (10.7.18)

Then f0 ∈ S ′(R+) and (10.7.18) holds in S ′(R+). Moreover, let f ∈ S ′(R+) be any

extension of f0.
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(i) If α > −1, then f is quasiasymptotically bounded of degree α at infinity with

respect to L in S ′(R).

(ii) If α < −1 and α /∈ Z−, then there exist constants a0, . . . , an−1, n < −α, such

that

f(λx) =
n−1∑
j=0

aj
δ(j)(x)

λj+1
+O(λαL(λ)) (10.7.19)

as λ→∞ in S ′(R). The constants depend on the choice of the extension f .

(iii) If α = −k, k ∈ Z+, then there are (k − 1) constants a0, . . . , ak−2 and an

associate asymptotically homogeneously bounded function b of degree 0 with respect

to L such that

f(λx) =
b(λ)

λk
δ(k−1)(x) +

k−2∑
j=0

aj
δ(j)(x)

λj+1
+O

(
L(λ)

λk

)
(10.7.20)

as λ→∞ in S ′(R). The constants and the function b depend on the choice of the

extension f .

Example 10.72. Theorems 10.66 and 10.70 show that if α /∈ Z− we may select

an extension having quasiasymptotic behavior. For the case α ∈ Z− this not longer

true. Moreover, it is absolutely necessary to consider associate asymptotically ho-

mogeneous functions of degree 0 in Theorems 10.66 and 10.70, as shown by the

following example. Consider

f0(x) = 2
log x

x
∈ D′(R+) .

Then, f(x) = g′(x), where g(x) = H(x) log2 x, is an extension of f0 to [0,∞). Now

g(ax) = g(x) + 2 log a log x+ o(|log x|) ,

as x→ 0+ and x→∞. So g is associate asymptotically homogeneous of degree 0.

Then we obtain the asymptotic expansions

g(εx) = g(ε)H(x)− 2 log ε−1H(x) log x+ o(log ε−1) as ε→ 0+ in S ′(R) ,
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and

g(λx) = g(λ)H(x) + 2 log λH(x) log x+ o(log λ) as λ→∞ in S ′(R) ,

thus,

f(εx) =
g(ε)

ε
δ(x)− 2

log ε−1

ε
Pf

(
H(x)

x

)
+ o

(
log ε−1

ε

)
as ε→ 0+ in S ′(R) ,

and

f(λx) =
g(λ)

λ
δ(x) + 2

log λ

λ
Pf

(
H(x)

x

)
+ o

(
log λ

λ

)
as λ→∞ in S ′(R) .

The latter two expansions show that

f0(εx) = −2
log ε−1

εx
+ o

(
log ε−1

ε

)
as ε→ 0+ in D′(R+) ,

and

f0(λx) = 2
log λ

λx
+ o

(
log λ

λ

)
as λ→∞ in D′(R+) ,

but it is impossible to choose constants a0, ..., an which make disappear the function

g in the expansion of an arbitrary extension f+
∑n

j=0 ajδ
(j) of f0. A counterexample

for α = −k is constructed by considering f
(k−1)
0 .

Example 10.73. While for α /∈ Z− Theorems 10.68 and 10.71 imply that we can

select an extension which is also quasiasymptotically bounded, this is not longer

true for α ∈ Z−. In other words, for the negative integral degrees, it is absolutely

necessary to consider asymptotically homogeneously bounded functions in Theorems

10.68 and 10.71. For instance, let g, f and f0 be the function and the distributions

from Example 10.72. Then, g(x) is asymptotically homogeneously bounded of degree

0 with respect to |log x|, both at infinity and the origin. Observe that f
(k−1)
0 is
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quasiasymptotically bounded in the space D′(R+) of degree −k at both 0 and ∞

with respect to |log x|. On the other hand,

f (k−1)(εx) =
g(ε)

εk
δ(k−1)(x) +O

(
log ε−1

εk

)
as ε→ 0+ in S ′(R) ,

and

f (k−1)(λx) =
g(λ)

λk
δ(k−1)(x) +O

(
log λ

λk

)
as λ→∞ in S ′(R) ,

which show that f
(k−1)
0 has no extension to [0,∞) being quasiasymptotically bounded

of degree −k with respect to |log x|.

10.7.2 Extensions of Quasiasymptotics at the Origin from
D′(R) to S ′(R)

We now study the following problem. Suppose that f ∈ S ′(R) has quasiasymptotic

behavior at the origin in the space S ′(R), does f have the same quasiasymptotic

behavior in S ′(R)? Such a question was posted as an open problem in [153, Remark

2], where a partial answer was given under the assumptions of boundedness for L

and restrictions under the degree of the quasiasymptotic. We obtained a positive

solution in [227] based in the structural theorems for quasiasymptotics at the origin;

it will be the approach to be followed here. The solution is given by the following

theorem, which we formulate for quasiasymptotics at finite points. The author was

recently informed about a more general problem which was treated by Zavialov in

[250] (though he has been unable to get a copy of the article).

Theorem 10.74. Let f ∈ S ′(R). If f has quasiasymptotic behavior at x = x0 in

D′(R), then f has the same quasiasymptotic behavior at x = x0 in in the space

S ′(R).

Proof. We may assume that x0 = 0. Let α be the degree of the quasiasymptotic

behavior. We shall divide the proof into three cases:
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α /∈ {−1,−2,−3, . . . } ,

α = −1,

α = −2,−3, . . . .

Suppose its degree is α /∈ Z− and

f(εx) = C−L(ε)
(εx)α−

Γ(α + 1)
+ C+L(ε)

(εx)α+
Γ(α + 1)

+ o (εαL(ε)) , as ε→ 0+ in D′(R).

Then, by using Theorem 10.28 and the fact f ∈ S ′(R), we conclude the existence

of an integer m, a real number β such that m > −α, β > m+α, and a continuous

m-primitive F of f such that

F (x) =
|x|m+α

Γ(m+ α + 1)
L (|x|) ((−1)mC−H(−x) + C+H(x)) + o

(
|x|m+α L (|x|)

)
,

x→ 0+, and

F (x) = O
(
|x|β

)
, |x| → ∞ . (10.7.21)

We make the usual assumptions over L. Assume (Section 20.10.1) that L is positive,

defined in (0,∞) and there exists M1 > 0 such that

L(εx)

L(ε)
≤M1 max

{
x−

1
2 , x

1
2

}
, ε, x ∈ (0,∞) . (10.7.22)

Let φ ∈ S(R), then we can decompose φ = φ1 +φ2 +φ3, where suppφ1 ⊆ (−∞, 1],

supp φ2 is compact and supp φ3 ⊆ [1,∞). Observe that since φ2 ∈ D(R) we have

that

〈f(εx), φ2(x)〉 ∼ εαL(ε)

〈
C−x

α
− + C+x

α
+

Γ(α + 1)
, φ2(x)

〉
, ε→ 0+ . (10.7.23)

So, if we want to show (10.7.23) for φ, it is enough to show it for φ3 placed instead

of φ2 in the relation because by symmetry it would follow for φ1 and hence for φ.

Set

G(x) =
F (x)

xα+mL(x)
, x > 0.
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Then

lim
x→0+

G(x) =
C+

Γ(α +m+ 1)
, (10.7.24)

On combining (10.7.21), (10.7.22) and (10.7.24), we find a constant M2 > 0 such

that

|G(x)| < M2(1 + xβ+ 1
2
−m−α), x > 0 . (10.7.25)

Relation (10.7.25) together with (10.7.22) show that for ε ≤ 1,∣∣∣∣G(εx)
L(εx)

L(ε)
xα+mφ

(m)
3 (x)

∣∣∣∣ ≤ 2M1M2x
β+1
∣∣∣φ(m)

3 (x)
∣∣∣H(x− 1) .

The right hand side of the last estimate belongs to L1(R) and thus we can use the

Lebesgue dominated convergence theorem to obtain,

lim
ε→0+

1

εαL(ε)
〈f(εx), φ3(x)〉 = lim

ε→0+
(−1)m

∫ ∞

0

G(εx)
L(εx)

L(ε)
xα+mφ

(m)
3 (x)dx

= (−1)m
C+

Γ(α +m+ 1)

∫ ∞

0

xα+mφ
(m)
3 (x)dx

= C+

〈
xα+

Γ(α + 1)
, φ3(x)

〉
.

This shows the result in the case α /∈ {−1,−2,−3, . . . } .

We now aboard the case α = −1. Assume that

f(εx) = γε−1L(ε)δ(x) + βε−1L(ε)x−1 + o
(
ε−1L(ε)

)
as ε→ 0+ in D′(R) .

As in the last case, it suffices to assume that φ ∈ S(R), supp φ ⊆ [1,∞) and show

that

lim
ε→0+

ε

L(ε)
〈f(εx), φ(x)〉 = β

∫ ∞

1

φ(x)

x
dx .

We may proceed as in the previous case to apply the structural theorem, but we

rather reduce it to the previous situation. So, set g(x) = xf(x), then

g(εx) = βL(ε) + o(L(ε)) as ε→ 0+ in D′(R) . (10.7.26)
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But g ∈ S ′(R), then since the order of the quasiasymptotic is 0, first case implies

that (10.7.26) is valid in S ′(R). Therefore

lim
ε→0+

ε

L(ε)
〈f(εx), φ(x)〉 = lim

ε→0+

1

L(ε)

〈
g(εx),

φ(x)

x

〉
= β

∫ ∞

1

φ(x)

x
dx .

This shows the case α = −1.

It remains to show the theorem when α ∈ {−2,−3, . . . }. Suppose the order

is −k, k ∈ {2, 3, . . . }. It is easy to see that any primitive of order (k − 1) of f

has quasiasymptotic behavior of order -1 at the origin with respect to L (in fact

this is the content of Proposition 10.22 when combined with Theorem 10.16). The

(k − 1)-primitives of f are in S ′(R), so we can apply the case α = −1 to them,

and then, by differentiation, it follows that f has quasiasymptotic at the origin in

S ′(R).

This completes the proof of Theorem 10.74.

The analog to Theorem 10.74 is valid for quasiasymptotic boundedness with

respect to regularly varying. Since the proof uses essentially the same arguments

as those used in the proof of Theorem 10.74, we omit it and leave to the reader its

verification.

Theorem 10.75. Let f ∈ S ′(R). If f is quasiasymptotically bounded of degree

α at a point, with respect to a slowly varying function L, in D′(R), then f is

quasiasymptotically bounded of degree α at the point with respect to L in in the

space S ′(R).

If we now combine Theorems 10.64, 10.75, 10.66 and 10.68, we obtain the fol-

lowing corollary.

Corollary 10.76. Let the hypotheses of Theorem 10.66 (resp. Theorem 10.68) be

satisfied. If one assumes that f0 ∈ S ′(R+), then (10.7.3) (resp. (10.7.9)) holds

in the space ∈ S ′(R+). Furthermore, any extension f belongs to S ′(R+) and the
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asymptotic expansions (10.7.4) and (10.7.6) (resp. (10.7.10) and (10.7.11)) hold

in S ′(R).

10.7.3 Extensions of Quasiasymptotics at Infinity from
S ′(R) to Spaces K′

β(R)

Sometimes is very useful to have the right of evaluating a quasiasymptotic relation

in more test functions than in S(R). For example, we confronted such a kind of

problem in Chapter 7 when dealing with the φ−transform and distributionally

regulated functions. This section is dedicated to give some conditions under the

test function which guarantee that quasiasymptotic behavior at infinity remains

valid when evaluated at such a test function. We will consider test functions in

the spaces Kβ(R) (Section 1.2), β ∈ R. Recall that Kβ(R) consists of those test

functions φ ∈ E(R) such that

φ(x) = O(|x|β) strongly as |x| → ∞ , (10.7.27)

i.e., for each m ∈ {0, 1, 2, . . . }

φ(m)(x) = O(|x|β−m) as |x| → ∞ . (10.7.28)

It is topologized in the obvious way [61]. These spaces and their dual spaces are

very important in the theory of asymptotic expansions of distributions [61]. In

fact, we have that K(R) =
⋃
Kβ(R) (the union having a topological meaning),

and K′(R) =
⋂
K′

β(R) (with projective limit topology) is the space of distribu-

tional small distributions at infinity [49, 61], they satisfy the moment asymptotic

expansion at infinity [61].

The next theorem shows that if f is quasiasymptotically bounded with respect

to a regularly varying functions at infinity, then the distributional evaluation of f

at φ ∈ Kβ(R) makes sense under some conditions on β, specifically, we show that

f has extensions to some of the spaces K′
β(R).
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Theorem 10.77. Let f ∈ D′(R) be quasiasymptotically bounded of degree α at

infinity with respect to the slowly varying function L. If α+β < −1, then f admits

an extension to Kβ(R).

Proof. Let σ > 0 such that α + β + σ < −1, then from Theorem 10.63, Theorem

10.64 and Corollary 10.57 we deduce that there exist m ∈ N and a continuous

m-primitive of f , say F , such that

F (x) = O(|x|m+α+σ) , |x| → ∞ . (10.7.29)

Notice that here we have used that L(x) = O(xσ) as x→∞ (Section 1.7). So it is

evident that an extension of f to Kβ(R) is given by

〈fe(x), φ(x)〉 = (−1)m
∫ ∞

−∞
F (x)φ(m)(x)dx , φ ∈ Kβ(R) , (10.7.30)

which in view of (10.7.28) and (10.7.29) is well defined and defines an element of

K′
β(R).

We now show that the quasiasymptotic behavior remains valid in K′
β(R), with

the assumption under β imposed in Theorem 10.77.

Theorem 10.78. Let f ∈ D′(R) have quasiasymptotic behavior at ∞ of degree α

with respect to a slowly varying function L, then f has an extention to Kβ which

has the same quasiasymptotic in K′
β(R), provided that α + β < −1.

Proof. The proof is similar to that of Theorem 10.74 with some modifications in

the estimates. We use the extension from Theorem 10.77, which we keep calling

f = fe. We shall divide the proof into two cases: α /∈ Z− and α ∈ Z−.

Suppose its degree is α /∈ Z− and

f(λx) = C−L(λ)
(λx)α−

Γ(α + 1)
+C+L(λ)

(λx)α+
Γ(α + 1)

+ o (λαL(λ)) as λ→∞ in D′(R) .
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Find σ > 0 such that α+ β + σ < −1. Then from Theorem 10.23, there are an m

such that m+ α > 0 and a continuous m-primitive F of f such that

F (x) =
xm |x|α

Γ(m+ α + 1)
L (|x|) (C−H(−x) + C+H(x)) + o

(
|x|m+α L (|x|)

)
,

x → ∞. We recall that H denotes the Heaviside function. We make the usual

assumptions over L (Section 10.3.1), assume that L is positive, defined and con-

tinuous in (0,∞) and there exists M1 > 0 such that

L(λx)

L(λ)
≤M1 max

{
xσ, x−σ

}
, λ ≥ 1, x ∈ (0,∞) . (10.7.31)

Let φ ∈ Kβ(R), then we can decompose φ = φ1 + φ2 + φ3, where supp φ1 ⊆

(−∞, 1], supp φ2 is compact and supp φ3 ⊆ [1,∞). Observe that since φ2 ∈ D(R)

we have that

〈f(λx), φ2(x)〉 ∼ C−λ
αL(λ)

〈
C−x

α
− + C+x

α
+

Γ(α + 1)
, φ2(x)

〉
(10.7.32)

as λ→∞. If we want to show (10.7.32) for φ, it is enough to show it for φ3 placed

instead of φ2 in the relation because by symmetry it would follow for φ1 and hence

for φ. Set

G(x) =
F (x)

xα+mL(x)
for x ≥ 1 , (10.7.33)

then

lim
x→∞

G(x) =
C+

Γ(α +m+ 1)
. (10.7.34)

So, we can find a constant M2 > 0 such that

|G(x)| < M2, globally. (10.7.35)

Relation (10.7.35) together with (10.7.31) show that for λ ≥ 1,∣∣∣∣G(λx)
L(λx)

L(λ)
xα+mφ

(m)
3 (x)

∣∣∣∣ ≤M1M2x
α+m+σ

∣∣∣φ(m)
3 (x)

∣∣∣H(x− 1) .
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Since φ3 ∈ Kβ(R), the right hand side of the last estimate belongs to L1(R) and

thus we can use the Lebesgue dominated convergence theorem to obtain,

lim
λ→∞

1

λαL(λ)
〈f(λx), φ3(x)〉 = lim

λ→∞
(−1)m

∫ ∞

0

G(λx)
L(λx)

L(λ)
xα+mφ

(m)
3 (x)dx

= (−1)m
C+

Γ(α +m+ 1)

∫ ∞

0

xα+mφ
(m)
3 (x)dx

= C+

〈
xα+

Γ(α + 1)
, φ3(x)

〉
.

This shows the result in the case α /∈ {−1,−2,−3, . . . } .

We now aboard the case α = −k, k ∈ Z+. Assume that

f(λx) = γλ−kL(λ)δ(k−1)(x) + βλ−kL(λ)x−k + o
(
λ−kL(λ)

)
as λ → ∞ in D′(R). As in the last case, it suffices to assume that φ ∈ Kβ(R),

supp φ ⊆ [1,∞) and show that

lim
λ→∞

λk

L(λ)
〈f(λx), φ(x)〉 = β

∫ ∞

1

φ(x)

xk
dx .

We may proceed as in the previous case to apply the structural theorem, but we

rather reduce it to the previous situation. So, set g(x) = xkf(x), then

g(λx) = βL(λ) + o(L(λ)) as λ→∞ in D′(R) . (10.7.36)

But φ ∈ Kβ(R) implies φ(x)/xk ∈ Kβ−k(R) then since the degree of the quasi-

asymptotic behavior of g is 0, last case implies that (10.7.36) is valid in K′
β−k(R)

because β − k < −1, therefore

lim
λ→∞

λk

L(λ)
〈f(λx), φ(x)〉 = lim

λ→∞

1

L(λ)

〈
g(λx),

φ(x)

xk

〉
= β

∫ ∞

1

φ(x)

xk
dx .

This completes the proof of Theorem 10.78

We have a similar result for quasiasymptotic boundedness. The same sort of

arguments used in the proof of Theorem 10.78 lead to the next result; actually, the

proof is even easier and we thus omit it.
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Theorem 10.79. Let f ∈ D′(R) satisfy f(λx) = O(λαL(λ)) as λ → ∞ in the

space D′(R). If α + β < −1, then f has an extension to Kβ(R), say fe, satisfying

fe(λx) = O(λαL(λ)) as λ→∞ in K′
β(R) . (10.7.37)

The importance of Theorems 10.78 and 10.79 lies in the fact that we can relax the

growth restrictions on the test functions, this permits to apply quasiasymptotics to

obtain ordinary asymptotics in many interesting situations, for example for certain

integral transforms or for solutions to partial differential equations. We discuss a

simple example.

Example 10.80. Let f ∈ D′(R) have quasiasymptotic behavior at infinity of degree

α < 1,

f(λx) = λαL(λ)g(x) + o (λαL(λ)) as λ→∞ in D′(R) .

Consider the Poisson kernel,

P (t) =
1

π (t2 + 1)
.

Clearly P ∈ K−2(R). By Theorem 10.77, the evaluation of f at P is well defined.

Thus

U(z) = U(x+ yi) =

〈
f(t),

1

y
P

(
x− t

y

)〉
is a solution of the boundary value problem

∂2U

∂x2
+
∂2U

∂y2
= 0, U(x+ i0+) = f(x) .

Using Theorem 10.78, we can find the asymptotic behavior of U at infinity over

cones. Indeed, let 0 < σ < π/2, then Theorem 10.78 implies that as r →∞

U(reiϑ) ∼ sinα(ϑ)Cϑr
αL(r) , uniformly for ϑ ∈ [σ, π − σ] ,

where Cθ = g ∗ P (cotϑ).
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Chapter 11
Tauberian Theorems for the Wavelet
Transform

11.1 Introduction

Local analysis of the wavelet transform at boundary points is the scope of this

chapter. We make a complete wavelet analysis of asymptotic properties of distri-

butions. The study is carried out via abelian and tauberian type results, connecting

the boundary asymptotic behavior of the wavelet transform with local and non-

local quasiasymptotic properties of elements in the Schwartz class of tempered

distributions. The results to be discussed were obtained in collaboration with S.

Pilipović and D. Rakać [228].

The wavelet transform is a powerful tool for studying local properties of func-

tions. Usually, wavelet analysis presents two main important features [33, 95, 104,

137, 138]: the wavelet transform as a time-frequency analysis tool, and wavelet anal-

ysis as part of approximation theory (see also [29, 80] and references therein for

another approach to time-frequency analysis). The existent applications of wavelet

methods in local analysis are very rich. In [195], the wavelet transform is effec-

tively applied to study differentiability properties of functions. A wavelet study of

asymptotic and oscillatory behavior of functions can be found in [96, 104, 138].

Wavelet analysis can also be used to provide intrinsic characterizations of function

and distribution spaces [137, 209]. Moreover, it is deeply involved in the analysis of

regularity notions. One could mention the vital role it plays for Zygmund-Hölder

type spaces (cf. [138] or [195]), and hence for the study of pseudodifferential op-

erators within such classes (see [98, Sect. 8.5, 8.6]). Therefore, any result, as the

ones of this chapter, connecting the wavelet transform with local properties of

distributions might be used in this direction.
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We are mainly concerned with the Schwartz class of tempered distributions.

There are many classical ways to extend local regularity notions from functions

to certain distributions which have been studied via the wavelet transform. Nev-

ertheless such regularity notions are in somehow restrictive: they are not directly

applicable to the nature of a distribution. In the past chapters we have made exten-

sive use of the quasiasymptotic behavior of distributions. It should be now clear for

the reader that the quasiasymptotics can be used to measure pointwise properties

of very general distributions. Such a notion is more general and more suitable than

others when one is only interested in the actual behavior of distributions around

individual points.

Recently, wavelet methods have attracted the attention of many authors as a tool

for the analysis of quasiasymptotic properties of distributions. Problems related to

multiresolution expansions and orthogonal wavelets are studied in [163, 162, 169,

188, 205, 241, 242]. Abelian and tauberian results for the wavelet transform are

obtained in [174, 175, 176].

The quasiasymptotic behavior is a very suitable concept for wavelet analysis. In

fact, the wavelet transform can be thought as a sort of mathematical microscope

analyzing a distribution on various length scales around any point of the real axis.

On the other hand, the idea of the quasiasymptotic behavior itself is to study the

asymptotic properties at small or large scale of the dilates of a distribution. In the

case of small scales, the quasiasymptotic behavior uses only local information of

the distribution at small scale around a point, and hence the natural connection be-

tween it and the boundary asymptotic behavior of the wavelet transform. Another

reason that suggests the use of the quasiasymptotic behavior in wavelet analysis

is that it is based on asymptotic comparison with regularly varying functions [15],
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which are actually a power function multiplied by an asymptotic invariant function

under rescaling, and hence measures certain fractal behavior of distributions.

The chapter is organized as follows. We recall in Section 11.2 the basic facts

from distribution wavelet analysis based on highly time-frequency localized func-

tion spaces, following Holschneider’s book [95]. Sections 11.3 and 11.4 are devoted

to connect the boundary asymptotic behavior of the wavelet transform through

abelian theorems and tauberian characterizations of the quasiasymptotic behavior

in the dual of the space of highly time-frequency localized functions. For finite

points, Section 11.3 deals with global tauberian assumptions, while the results are

later improved to a local version in Section 11.4. Since the results from Sections

11.3 and 11.4 lead to regard tempered distributions, and asymptotic relations, on a

more restricted space of distributions, we study in Section 11.5 what this informa-

tion tells us about the asymptotic properties in the space of tempered distributions.

Sections 11.6 and 11.7 are the most important ones, there we obtain the tauberian

theorems for quasiasymptotics of tempered distributions in terms of the wavelet

transform; these are complete inverse theorems to the abelians from [175, 176]. It

is shown that in some cases our tauberian theorems become full characterizations

of asymptotic properties. They can also be considered as generalizations of the

results from [96] to our distributional context. Finally, in Section 11.8, we indicate

how to treat progressive and regressive distributions.

11.2 The Wavelet Transform of Distributions

We will follow the wavelet analysis for distributions from Holschneider’s book [95].

For this, we will use the spaces of highly localized functions over the real line and

the upper half-plane.

By a progressive function (or distribution), we mean a function whose Fourier

transform, whenever the Fourier transform makes sense, is supported in R+; sim-
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ilarly, the term regressive function (or distribution) refers to those whose Fourier

transform is supported in R−.

We define the space of highly time-frequency localized progressive functions over

the real line as the set of those elements of S(R) which are progressive functions;

this is a closed subspace of S(R) and it is denoted by S+(R). The image of S+(R)

under the parity operator is denoted by S−(R), that is, φ ∈ S−(R) if and only if

φ̌(x) := φ(−x) ∈ S+(R), equivalently, φ ∈ S−(R) if and only if φ(x) := φ(x) ∈

S+(R). Observe that the elements of S+(R) are precisely of those elements of

S(R) which are in H2
+(R), the Hardy space of L2(R)-boundary values of analytic

functions on H. The space S0(R) is defined then as the direct sum of S+(R) and

S−(R)

S0(R) = S−(R)⊕ S+(R) .

Alternatively, we may define S0(R) as those elements of S(R) for which all the

moments vanish, i.e., φ ∈ S0(R) if and only if∫ ∞

−∞
xnφ(x)dx = 0 , (11.2.1)

for all n ∈ N. We call S0(R) the space of highly time-frequency localized functions

over the real line. Note that S0(R) is a closed subspace of S(R). The dual spaces of

S+(R), S−(R) and S0(R) (these spaces provided with the relative topology inhered

from S(R)) are S ′−(R) = (S+(R))′, S ′+(R) = (S−(R))′ and S ′0(R), respectively. It

should be noticed that the space S ′+(R) defined above is different from the one

used in [231], for example.

Observe that we have a well-defined continuous linear projector from S ′(R) to

S ′0(R) as the transpose of the trivial inclusion from the closed subspace S0(R) to

S(R). Due to Hahn-Banach theorem, this map is subjective; however, there is no

continuous right inverse for this projection [51]. Note also that the kernel of this

projection is the space of polynomials; hence, the space S ′0(R) can be regarded
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as the quotient space of S ′(R) by the space of polynomials. We do not want to

introduce a notation for this map, so if f ∈ S ′(R), we will keep calling by f the

restriction of f to S0(R). We will come back to this matter later, in Section 11.5,

in connection with the quasiasymptotic behavior of distributions.

The corresponding space S(H) of highly localized function, over the upper half-

plane H = R× R+, is defined as those smooth functions on H such that

sup
(b,a)∈H

(
a+

1

a

)m (
1 + b2

)n
2

∣∣∣∣ ∂k+lΦ∂ak∂bl
(b, a)

∣∣∣∣ <∞ ,

for all m,n, k, l ∈ N. It is topologized in the obvious way. We will also consider its

dual space, S ′(H). Any locally integrable function F of “slow growth” on H, that

is,

|F (b, a)| ≤ C
(
1 + b2

) l
2

(
a+

1

a

)m
, (b, a) ∈ H ,

for some C > 0 and integers m, l ∈ N, can be identified with an element of S ′(H).

Our convention for identifying it with an element of S ′(H) is to keep using the

notation F ∈ S ′(H) and the evaluation of F at Φ ∈ S(H) is given by

〈F (b, a),Φ(b, a)〉 =

∫ ∞

0

∫ ∞

−∞
F (b, a)Φ(b, a)

dbda

a
.

By a wavelet (or analyzing wavelet) we simply mean an element ψ ∈ S0(R). A

wavelet η is called a reconstruction wavelet for the analyzing wavelet ψ if the two

constants

c±ψ,η =

∫ ∞

0

ψ̂(±x)η̂(±x)
dx

x
<∞

are non-zero and equal to each other; in such case we write

cψ,η = c+ψ,η = c−ψ,η =
1

2

∫ ∞

−∞
ψ̂(x)η̂(x)

dx

|x|
.

Note that any wavelet admits a reconstruction wavelet as long as supp ψ̂∩R+ 6= ∅

and supp ψ̂ ∩ R− 6= ∅. In the case of a progressive wavelet ψ we require η to

satisfy only the positive frequency part of the above condition. Analogously for
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regressive ones. We will mainly use wavelets admitting a reconstruction wavelet.

If a wavelet is its own reconstruction wavelet, we say that it is admissible. An

explicit example of an admissible wavelet is the wavelet ψ given in the Fourier side

by ψ̂(x) = e−|x|+
1
|x| , x ∈ R.

The wavelet transform of f ∈ S ′0(R) with respect to an analyzing wavelet ψ is

given by the C∞-function on H

Wψf(b, a) =
〈
f(b+ ax), ψ̄(x)

〉
=

〈
f(t),

1

a
ψ̄

(
t− b

a

)〉
= f ∗ ˇ̄ψa(b), (11.2.2)

where ψa(·) = 1
a
ψ( ·

a
). For a Φ ∈ S(H), we define the wavelet synthesis operator

with respect to the wavelet ψ as

MψΦ(x) =

∫ ∞

0

∫ ∞

−∞
Φ(b, a)

1

a
ψ

(
x− b

a

)
dbda

a
, x ∈ R .

Observe that Wψ : S0(R) → S(H) and Mψ : S(H) → S0(R) are continuous

linear maps [95, p.74]. Moreover, one has the reconstruction formula for the wavelet

transform with respect an analyzing wavelet ψ

IdS0(R) =
1

cψ,η
MηWψ ,

where η is a reconstruction wavelet for ψ. Because of the results of [95], we may

have alternatively defined the wavelet transform of distributions by duality

〈Wψf(b, a),Φ(b, a)〉 =
〈
f(x),Mψ̄Φ (x)

〉
, Φ ∈ S(H) .

These two definitions coincide and we have, for Φ ∈ S(H),

〈Wψf(b, a),Φ(b, a)〉 =

∫ ∞

0

∫ ∞

−∞
Wψf(b, a)Φ(b, a)

dbda

a
.

Similarly, one defines the wavelet synthesis Mψ : S ′(H) → S ′0(R) by

〈MψF (x), φ(x)〉 =
〈
F (b, a),Wψ̄φ(b, a)

〉
.
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Here we have again that if η is a reconstruction wavelet for ψ, then

IdS′0(R) =
1

cψ,η
MηWψ .

Therefore, if f ∈ S ′0(R) and φ ∈ S0(R), we have the desingularization formula

〈f(x), φ(x)〉 =
1

cψ,η

∫ ∞

0

∫ ∞

−∞
Wψf(b, a)Wη̄φ(b, a)

dbda

a
.

We will also make use of the projection operator of S ′(H) onto the image of the

wavelet transform [95], it is given by the projector

1

cψ,η
WψMη .

Observe also that ImWψ is a closed subspace of S ′(H). Sometimes, for instance

if the distribution is a locally integrable distribution of slow growth on H, it is

possible to write the projection by the integral transform

WψMηF (b, a)

cψ,η
=

1

cψ,η

∫ ∞

0

∫ ∞

−∞
Wψη

(
b− b′

a′
,
a

a′

)
F (b′, a′)

db′da′

(a′)2
. (11.2.3)

We can also define the wavelet transform of a tempered distribution f ∈ S ′(R)

by formula (11.2.2), but this integral transformation will be no longer invertible

because the moment vanishing condition (11.2.1) gives that the wavelet transform

of any polynomial vanishes.

Let us now turn our attention to quasiasymptotics. In this chapter we are mainly

interested in tempered distributions. Besides quasiasymptotics in the space S ′(R),

we will consider quasiasymptotics in S ′0(R). Following our usual convention, we

write

f(x0 + εx) ∼ εαL(ε)g(x) as ε→ 0+ in S ′0(R) , (11.2.4)

or

f(x0 + εx) = εαL(ε)g(x) + o(εαL(ε)) as ε→ 0+ in S ′0(R) , (11.2.5)
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where L is slowly varying at the origin, if f ∈ S ′0(R) (or S ′(R)) and

lim
ε→0+

1

εαL(ε)
〈f (x0 + εx) , φ(x)〉 = 〈g(x), φ(x)〉 ,∀φ ∈ S0(R) . (11.2.6)

Observe that, by shifting to x = x0, in most cases is enough to consider x0 = 0.

Similarly, we consider the quasiasymptotics at infinity in the space S ′0(R),

f(λx) ∼ λαL(λ)g(x) as λ→∞ in S ′0(R) , (11.2.7)

where L is slowly varying at infinity.

Observe that slowly varying functions are very convenient objects to be employed

in wavelet analysis since they are asymptotic invariant under rescaling at small

scale (resp. large scale).

11.3 Wavelet Characterization of

Quasiasymptotics in S ′0(R)

Recently, Saneva and Bučkovska ([174, 175, 176]) investigated the asymptotic be-

havior of the wavelet transform of a distribution having quasiasymptotic behavior

at a point. Indeed, it is fairly easy to show that if

f (x0 + εx) ∼ εαL(ε)g(x) as ε→ 0+ in S ′(R) , (11.3.1)

then

Wψf(x0, a) ∼ L(a)Wψg(0, a) = aαL (a)Wψg (0, 1) , a→ 0+ . (11.3.2)

The above result is of abelian nature. Let us mention that to conclude (11.3.2),

it is enough to assume a weaker hypothesis. Indeed, if we only assume the quasi-

asymptotic behavior of the tempered distribution in the space S ′0(R), we are still

able to deduce (11.3.2). Actually, the angular asymptotic behavior over cones with

vertex at x0 can also be obtained.
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Theorem 11.1. Let f ∈ S ′(R) have quasiasymptotic behavior in S ′0(R),

f (x0 + εx) ∼ εαL(ε)g(x) as ε→ 0+ in S ′0(R) . (11.3.3)

Then, given any 0 < σ ≤ π/2 and r > 0, we have

Wψf(x0 + εr cosϑ, εr sinϑ) ∼ εαL (ε)Wψg(r cosϑ, r sinϑ), ε→ 0+ , (11.3.4)

uniformly for σ ≤ ϑ ≤ π − σ.

Proof. In view of (11.3.3), Banach-Steinhaus theorem and the compactness of the

set

Cσ =

{
1

sinϑ
ψ̄

(
· − cosϑ

sinϑ

)
∈ S0(R) : σ ≤ ϑ ≤ π − σ

}
(11.3.5)

we have, as ε→ 0+,

Wψf(x0 + εr cosϑ, εr sinϑ) =
〈
f(x0 + εr cosϑ+ εr sinϑx), ψ̄(x)

〉
=

〈
f(x0 + εrx),

1

sinϑ
ψ̄

(
x− cosϑ

sinϑ

)〉
∼ (rε)αL(rε)

〈
g(x),

1

sinϑ
ψ̄

(
x− cosϑ

sinϑ

)〉
= εαL(rε)

〈
g(rx),

1

sinϑ
ψ̄

(
x− cosϑ

sinϑ

)〉
= εαL (rε)Wψg(r cosϑ, r sinϑ)

∼ εαL (ε)Wψg(r cosϑ, r sinϑ) .

We have a similar assertion at ∞.

Theorem 11.2. Let f ∈ S ′(R) have quasiasymptotic behavior at infinity in S ′0(R)

f (λx) ∼ λαL(λ)g(x) as λ→∞ in S ′0(R) . (11.3.6)
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Then, given any 0 < σ ≤ π/2 and r > 0, we have

Wψf(λr cosϑ, λr sinϑ) ∼ λαL (λ)Wψg(r cosϑ, r sinϑ), λ→∞ , (11.3.7)

uniformly for σ ≤ ϑ ≤ π − σ.

Proof. In view of (11.3.6), Banach-Steinhaus theorem and the compactness of the

set Cσ given by (11.3.5), we have, as λ→∞,

Wψf(λr cosϑ, λr sinϑ) =
〈
f(λr cosϑ+ λr sinϑx), ψ̄(x)

〉
=

〈
f(λrx),

1

sinϑ
ψ̄

(
x− cosϑ

sinϑ

)〉
∼ (rλ)αL(rλ)

〈
g(x),

1

sinϑ
ψ̄

(
x− cosϑ

sinϑ

)〉
∼ λαL (λ)Wψg(r cosϑ, r sinϑ) .

Our next goal is to provide an inverse theorem for these two abelian results, under

some natural additional tauberian conditions. Actually, we characterize below the

quasiasymptotics in S ′0(R) in terms of the wavelet transform. Later, we will use

this characterization to study the quasiasymptotic behavior in the space S ′(R)

(Sections 11.6 and 11.7).

Theorem 11.3. Let f ∈ S ′0(R). Let ψ ∈ S0(R) be a wavelet admitting a recon-

struction wavelet. The following two conditions:

lim
ε→0+

1

εαL(ε)
Wψf (x0 + εb, εa) = Mb,a <∞, (b, a) ∈ H , (11.3.8)

and the existence of constants γ, β,M > 0 such that

|Wψf (x0 + εb, εa)|
εαL(ε)

< M

(
a+

1

a

)γ
(1 + |b|)β, (b, a) ∈ H , ε < 1 , (11.3.9)

are necessary and sufficient for the existence of a homogeneous distribution g of

degree α such that

f (x0 + εx) ∼ εαL(ε)g(x) as ε→ 0+ in S ′0(R) . (11.3.10)
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In this case we have Mb,a = Wψg(b, a), (b, a) ∈ H.

Proof. We may assume that x0 = 0. Let η be a reconstruction wavelet for ψ.

That (11.3.8) is necessary follows from the abelian theorem, Theorem 11.1. The

necessity of (11.3.9) follows from the characterization of bounded sets in S ′0(R)

(c.f. [95, Thm. 28.0.1]). For the converse, notice that (11.3.8) and (11.3.9) imply

that the function given by J(b, a) = Mb,a , (b, a) ∈ H, is measurable and satisfies

the estimate

|J(b, a)| = |Mb,a| < M

(
a+

1

a

)γ
(1 + |b|)β, (b, a) ∈ H ,

hence it is in S ′(H). Moreover, because of (11.3.8) and (11.3.9), we can use Lebesgue

dominated convergence theorem and the wavelet desingularization formula to con-

clude that for each φ ∈ S0(R)

lim
ε→0+

〈
f(εx)

εαL(ε)
, φ(x)

〉
=

1

cψ,η
lim
ε→0+

∫ ∞

0

∫ ∞

−∞

Wψf (εb, εa)

εαL(ε)
Wη̄φ(b, a)

dbda

a

=
1

cψ,η

∫ ∞

0

∫ ∞

−∞
Mb,aWη̄φ(b, a)

dbda

a
.

Since the last limit exists for each φ ∈ S0(R), it follows that f has quasiasymptotic

behavior in the space S ′0(R) and the existence of a homogeneous distribution g

satisfying (11.3.10) and Mb,a = Wψg(b, a).

Theorem 11.3 is of intermediate character, it will be improved in Section 11.4.

It should be noticed that Theorem 11.3 uses global information of the wavelet

transform; however, the quasiasymptotic behavior at a point is a local concept.

Therefore, it is still somehow unsatisfactory. Nevertheless, this result will be used

obtain a much better characterization only using local information on the trans-

formed side (Theorem 11.5).

We now focus in the case of asymptotic behavior at ∞. Observe that the argu-

ments given in the proof of Theorem 11.3 may lead us to a proof of the following
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theorem, but we choose to present an alternative version of the proof, where we

use some basic results from functional analysis ([208]).

Theorem 11.4. Let f ∈ S ′0(R). Let ψ ∈ S0(R) be a wavelet admitting a recon-

struction wavelet. The following two conditions:

lim
λ→∞

1

λαL(λ)
Wψf (λb, λa) = Mb,a <∞, (b, a) ∈ H, (11.3.11)

and the existence of constants γ, β,M > 0 such that

|Wψf (λb, λa)|
λαL(λ)

< M

(
a+

1

a

)γ
(1 + |b|)β, (b, a) ∈ H , λ > 1 , (11.3.12)

are necessary and sufficient for the existence of a homogeneous distribution g of

degree α such that

f (λx) ∼ λαL(λ)g(x) as λ→∞ in S ′0(R) . (11.3.13)

In this case we have Mb,a = Wψg(b, a), (b, a) ∈ H.

Proof. The necessity is clear, we concentrate in the sufficiency. Let

B =
{
ψb,a := a−1ψ̄

(
a−1( · − b)

)
, (b, a) ∈ H

}
.

We claim that the linear span of B is dense in S0(R). Let h ∈ S ′0(R). If we suppose

that 〈
h(x),

1

a
ψ̄

(
x− b

a

)〉
= Wψh (b, a) = 0, for all (b, a) ∈ H ,

then, by wavelet desingularization, we have that for every φ ∈ S0(R),

〈h(x), φ(x)〉 =
1

cψ,η
〈Wψh (b, a) ,Wη̄φ (b, a)〉 = 0 ;

and hence h = 0. Thus, by the Hahn-Banach theorem, we conclude that the

linear span of B is dense in S0(R). Furthermore, let F = {fλ;λ ≥ 1} where

fλ = f(λ ·)/(λαL(λ)). The estimate (11.3.12) and the characterization of bounded
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sets in S ′0(R) (c.f. [95, Thm. 28.0.1]) imply that F is a bounded family in S ′0(R),

which in turn implies, by Banach-Steinhaus theorem, that F is an equicontinuous

set. It is known that, for equicontinuous sets, the pointwise convergence over a com-

plete test space and over some dense subset coincide. But observe that (11.3.11)

exactly gives us the convergence over the linear span of B; so, for some g ∈ S ′0(R),

we have fλ → g, λ→∞, in the weak sense.

In conclusion, we have characterized the quasiasymptotic behavior of distribu-

tions in the space S ′0(R) in terms of the asymptotic behavior of the wavelet trans-

form at approaching points of the boundary. Our main aim is now to extend these

results to S ′(R), that is, we want to give tauberian theorems for quasiasymp-

totics at points and infinity of tempered distributions in terms of the behavior

of the wavelet transform. We have reduced this question to the following one: if

f ∈ S ′(R) has quasiasymptotic at x = x0 or x = ∞ in S ′0(R), what can we say

about the existence of the quasiasymptotic of f at x = x0 or x = ∞ in S ′(R)? We

postpone the study of this question for Section 5, where we will give a complete

answer.

11.4 Tauberian Characterization with Local

Conditions

As we remarked before, conditions (11.3.8) and (11.3.9) are of global character, we

want to replace them by local conditions. This is done in the next theorem. We

may refer to relation (11.4.2) as a tauberian condition of Vladimirov-Drozhzhinov-

Zavialov type, because they have made extensive use of these types of conditions in

the study of tauberian theorems for local behavior of generalized functions in terms

of several integral transforms such as the Laplace transform and Mellin convolution

type transforms, among others [39, 40, 231, 232].
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Theorem 11.5. Let f ∈ S ′0(R). Let ψ ∈ S0(R) be a wavelet admitting a recon-

struction wavelet. The following two conditions:

lim
ε→0+

1

εαL(ε)
Wψf (x0 + εb, εa) = Mb,a <∞ (11.4.1)

exists for each (b, a) ∈ H satisfying a2 + b2 = 1 and a > 0, and there exists m ∈ N

such that

lim sup
ε→0+

sup
a2+b2=1, a>0

am

εαL(ε)
|Wψf (x0 + εb, εa)| <∞ , (11.4.2)

are necessary and sufficient for the existence of a homogeneous distribution g of

degree α such that

f (x0 + εx) ∼ εαL(ε)g(x) as ε→ 0+ in S ′0(R) . (11.4.3)

In this case we have Mb,a = Wψg(b, a).

Proof. The necessity follows from Theorem 11.3. Therefore, we concentrate in

showing the sufficiency.

We assume that x0 = 0 for simplicity. Let η be a reconstruction wavelet for ψ.

Let F = χIWψf where χI is the characteristic function of the set I = |b| ≤

1, 0 < a ≤ 1. Let G = Wψf − F . Consider f0 = c−1
ψ,η MηF and h0 = c−1

ψ,ηMηG.

Notice that Wψf = Wψh0 +Wψf0, and hence f = h0 + f0.

The plan is to show that an extension h of h0 ∈ S ′0(R) to S ′(R) is C∞ in a

neighborhood of the origin and that f0 has quasiasymptotic behavior at the origin.

This would imply that h0(εx) = o (ε∞) in S ′0(R), that is, h0(εx) = o (εσ) for every

σ > 0. Hence, we would have that f (εx)− f0 (εx) = o (ε∞) in S ′0(R), showing that

f has the quasiasymptotic behavior (11.4.3) in S ′0(R) if and only if f0 does.

Let h be an extension of h0 to S ′(R). We will show that Wψh(b, a) = o (a∞)

uniformly for b in a neighborhood of the origin as a→ 0+. Let σ be a positive real
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number. Find n ∈ N and B > 0 such that

|G(b, a)| ≤ B

(
a+

1

a

)n
(1 + |b|)n

and

|Wψη(b, a)| ≤ B

(
a+

1

a

)−1−2n−σ

(1 + |b|)−2−n .

If |b| ≤ 1
2

and a < 1, then, by (11.2.3),

|cψ,ηWψh(b, a)| =

∣∣∣∣∫ ∞

1

∫
|b′|≥1

Wψη

(
b− b′

a′
,
a

a′

)
G(b′, a′)

db′da′

(a′)2

∣∣∣∣
≤ 4nB2

∫ ∞

1

∫
|b′|≥1

|b′|n (a′)n
(

a′

|b− b′|

)2+n ( a
a′

)1+2n+σ db′da′

(a′)2

≤ a1+2n+σ4nB2

(∫
|b′|≥1

|b′|n db′(
|b′| − 1

2

)n+2

)(∫ ∞

1

da′

(a′)σ+1

)
= o (aσ) .

We use the characterization of the singular support of distributions given in [95,

Thm. 27.0.2], and conclude that h is C∞ in (−1/2, 1/2).

Next, we show that Wψf0 has quasiasymptotic in S ′0(R). For this, in view of

Theorem 11.3, it is enough to show that f0 satisfies (11.3.8) and an estimate of the

form (11.3.9).

We first show that Wψf0 satisfies

1

εαL(ε)
|Wψf0(εb, εa)| ≤M

(
a+

1

a

)γ
(1 + |b|)β , (11.4.4)

for some constants γ, β,M > 0 and all (b, a) ∈ H, 0 < ε ≤ 1. Observe that (11.4.2)

implies

am

εαL(ε)
|Wψf (εb, εa)| < M1, for all a2 + b2 = 1, a > 0, 0 < ε ≤ ε0 ,

for some M1 > 0 and ε0. After rescaling we can put ε0 =
√

2. Let a′ ∈ (0, ε−1)

and b′ ∈ (−ε−1, ε−1) . Then we have for ε < 1 that ε
√

(a′)2 + (b′)2 ≤
√

2. So, if
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we replace a, b and ε by a′/
√

(a′)2 + (b′)2, b′/
√

(a′)2 + (b′)2 and ε
√

(a′)2 + (b′)2, we

obtain that for a′ ∈ (0, ε−1) , b′ ∈ (−ε−1, ε−1)

(a′)m |Wψf (εb′, εa′)|

εα
(√

(a′)2 + (b′)2

)m+α

L

(
ε
√

(a′)2 + (b′)2

) < M1 , 0 < ε ≤ 1 . (11.4.5)

In addition, we can assume that α + m ≥ 1. We also need to make a technical

assumption over L which can be always made since only the values of L near 0

matter for the quasiasymptotic at zero; indeed, as seen in Section 10.3.1 of Chapter

10, we can assume (see also [227, Section 3],[15, p.25]) that there exists a constant

M2 > 0 such that

L(εx)

L(ε)
≤M2 max

{
x, x−1

}
≤M2

1 + x2

x
, for all ε, x > 0 . (11.4.6)

Let

β = α +m+ 3, γ = max {m+ 2, α + β + 1} . (11.4.7)

Find now a constant M3 > 0 such that

|Wψη(b, a)| ≤M3

(
a+

1

a

)−γ
(1 + |b|)−β . (11.4.8)

In the following, we will also make repeated use of the elementary inequality

1 + |x+ y| ≤ (1 + |x|) (1 + |y|) . (11.4.9)
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Then for 0 < ε ≤ 1, we have from (11.4.5), (11.4.6) and (11.4.9) that

|cψ,ηWψf0(εb, εa)| =

∣∣∣∣∫ ∞

0

∫ ∞

−∞
Wψη

(
εb− b′

a′
,
εa

a′

)
F (b′, a′)

db′da′

(a′)2

∣∣∣∣
=

∣∣∣∣∣
∫ ε−1

0

∫ ε−1

−ε−1

Wψη

(
b− b′

a′
,
a

a′

)
Wψf(εb′, εa′)

db′da′

(a′)2

∣∣∣∣∣
≤M1ε

α

∫ ε−1

0

∫ ε−1

−ε−1

(√
(a′)2 + (b′)2

)α+m

L
(
ε
√

(a′)2 + (b′)2
) ∣∣∣∣Wψη

(
b− b′

a′
,
a

a′

)∣∣∣∣ db′da′

(a′)m+2

≤M1M2ε
αL(ε)

∫ ε−1

0

∫ ε−1

−ε−1

(√
(a′)2 + (b′)2

)α+m−1

(
1 + (a′)

2
+ (b′)

2
) ∣∣∣∣Wψη

(
b− b′

a′
,
a

a′

)∣∣∣∣ db′da′

(a′)m+2

≤M1M2ε
αL(ε)

∫ ε−1

0

∫ ε−1

−ε−1

(a′ + |b′|)α+m−1
(1 + a′)

2
(1 + |b′|)2∣∣∣∣Wψη

(
b− b′

a′
,
a

a′

)∣∣∣∣ db′da′

(a′)m+2

≤M1M2ε
αL(ε)

(
4I1 + 4I2 + 2α+m+1I3

)
,

where

I1 =

∫ 1

0

∫
|b−b′|≤1

(1 + |b′|)α+m+1

∣∣∣∣Wψη

(
b− b′

a′
,
a

a′

)∣∣∣∣ db′da′

(a′)m+2
,

I2 =

∫ 1

0

∫
1≤|b−b′|

(1 + |b′|)α+m+1

∣∣∣∣Wψη

(
b− b′

a′
,
a

a′

)∣∣∣∣ db′da′

(a′)m+2
,

I3 =

∫ ∞

1

∫ ∞

−∞
(a′)

α−1
(1 + |b′|)α+m+1

∣∣∣∣Wψη

(
b− b′

a′
,
a

a′

)∣∣∣∣ db′da′ .
To estimate the last three integrals, we make use of (11.4.7), (11.4.8) and the

elementary inequality (11.4.9). We have

I1 ≤M3

∫ 1

0

∫
|b′|≤1+|b|

(1 + |b′|)α+m+1

(
a′

a

)γ
db′da′

(a′)m+2

≤ 2M3

(
1

a

)γ
(1 + |b|)(2 + |b|)α+m+1

∫ 1

0

(a′)
γ−m−2

da′

< 2α+m+2M3

(
a+

1

a

)γ
(1 + |b|)β ;
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for I2,

I2 ≤M3

∫ 1

0

∫
1<|b−b′|

(1 + |b′|)α+m+1

(
a′

a

)γ (
a′

a′ + |b− b′|

)β
db′da′

(a′)m+2

≤M3

(
a+

1

a

)γ (∫ 1

0

(a′)
γ+β−m−2

da′
)(∫

1<|b−b′|

(1 + |b′|)α+m+1

|b− b′|β
db′

)

≤M3

(
a+

1

a

)γ ∫
1<|b′|

(1 + |b′|+ |b|)α+m+1

|b′|β
db′

≤ 2M3

(
a+

1

a

)γ
(1 + |b|)α+m+1

∫ ∞

1

(1 + b′)α+m+1

(b′)β
db′

≤ 2α+m+2M3

(
a+

1

a

)γ
(1 + |b|)β ;

and finally I3,

I3 ≤M3a
γ

∫ ∞

1

∫ ∞

−∞

(a′)α+β−γ−1 (1 + |b′|)α+m+1

(a′ + |b− b′|)β
db′da′

≤M3

(
a+

1

a

)γ (∫ ∞

−∞

(1 + |b′|)α+m+1

(1 + |b− b′|)β
db′

)(∫ ∞

1

da′

(a′)γ+1−β−α

)
≤M3

(
a+

1

a

)γ
(1 + |b|)β

∫ ∞

−∞

db′

(1 + |b′|)2

≤ 2M3

(
a+

1

a

)γ
(1 + |b|)β .

Hence (11.4.4) is satisfied with M = 2α+m+6M1M2M3.

In order to apply Theorem 11.3 to f0, it remains to show that f0 satisfies (11.3.8).

Let us show that (11.4.1) is valid for all (b, a) ∈ H. Indeed, for (b, a) ∈ H fixed,

write b = r cosϑ and a = r sinϑ, with r > 0 and 0 < ϑ < π. Then we have that

lim
ε→0+

Wψf (εb, εa)

εαL(ε)
= lim

ε→0+

Wψf (εr cosϑ, εr sinϑ)

εαL(ε)

= rα lim
ε→0+

L(ε)

L(ε/r)

Wψf (ε cosϑ, ε sinϑ)

εαL(ε)
= rαMcosϑ, sinϑ := Mb,a .

Define J(b, a) = Mb,a, for (b, a) ∈ H, we can use the above relation in combination

with (11.4.5) to conclude that J ∈ S ′(H) is a function of slow growth. In fact, for

(b, a) ∈ H

|J(b, a)| = rα |Mcosϑ, sinϑ| ≤M1

(√
a2 + b2

)α
(sinϑ)m

≤M1
(a+ |b|)α+m

am
.
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Moreover, relation (11.4.5) and (11.4.6) also imply the estimate (already used

above!),∣∣∣∣Wψf (εb, εa)

εαL(ε)

∣∣∣∣ ≤M1M2

(√
a2 + b2

)α+m

am
max

{√
a2 + b2,

1√
a2 + b2

}
,

for 0 < ε
√
a2 + b2 ≤

√
2.

Finally, using the last two facts and Lebesgue dominated convergence theorem,

we conclude that

lim
ε→0+

Wψf0 (εb, εa)

εαL(ε)

= lim
ε→0+

1

cψ,η

∫ ε−1

0

∫ ε−1

−ε−1

Wψη

(
b− b′

a′
,
a

a′

)
Wψf(εb′, εa′)

εαL(ε)

db′da′

(a′)2

=
1

cψ,η

∫ ∞

0

∫ ∞

−∞
Wψη

(
b− b′

a′
,
a

a′

)
J(b′, a′)

db′da′

(a′)2
,

and this completes the argument.

Remark 11.6. In Theorem 11.5, we have used the half-circle a2 + b2 = 1, a > 0,

to formulate (11.4.1) and (11.4.2), but it is clear from the proof that if we use any

half-circle a2 + b2 = r2, a > 0, with r being any positive number, the conclusions

of the theorem would still hold.

11.5 Quasiasymptotic Extension from S ′0(R) to

S ′(R).

In this section we investigate what the quasiasymptotic in S ′0(R) tells us about

the quasiasymptotic in S ′(R). Since S ′0(R) is the quotient space of S ′(R) mod-

ule the space of polynomials, we expect naturally all of our results hold module

polynomials. We reformulate the problem with the aid of the Fourier transform.

Let S(R+), respectively S(R−), be the closed subspace of S(R) consisting of

functions having support in R+, respectively R−. Note that F(S+(R)) = S(R+)

and F(S−(R)) = S(R−). The space D(R+) has different nature than S(R+), it is

defined as the set of those elements of φ ∈ D(R) such that suppφ ⊂ R+ (not R+).
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Similarly for D(R−). Their dual spaces are then S ′(R−) = (S(R−))′, S ′(R+) =

(S(R+))′, D′(R−) = (D(R−))′ and D′(R+) = (D(R+))′ . Let R0 = R \ {0}. We also

consider spaces D(R0), S(R0) := S(R−)⊕S(R+) and their dual spaces D′(R0) and

S ′(R0), respectively.

The problem of extending distributions from S ′0(R) to S ′(R), together with its

asymptotic properties, can be reduced to that of extending distributions from

S ′(R0) to S ′(R). For S ′0(R) different extensions to S ′(R) differ by polynomials,

and on S ′(R0) extensions to S ′(R) differ by distributions concentrate at the origin,

i.e., finite sums of δ, the Dirac delta distribution, and its derivatives. Indeed, the

images under Fourier transform of S ′+(R) and S ′−(R) are F(S ′+(R)) = S ′(R+)

and F(S ′−(R)) = S ′(R−), respectively; finally the image of S ′0(R) under Fourier

transform is S ′(R0).

Suppose now that f ∈ S ′(R) and

f (x0 + εx) ∼ εαL(ε)g(x) as ε→ 0+ in S ′0(R), (11.5.1)

then if we take Fourier transform and replace ε = λ−1, we obtain the equivalent

expression

eiλx0xf̂(λx) ∼ λ−1−αL(λ−1)ĝ(x) as λ→∞ in S ′(R0) . (11.5.2)

Therefore the problem we are addressing is equivalent to the problem of determin-

ing the asymptotic behavior of a tempered distribution at infinity upon knowledge

of the quasiasymptotic at infinity in S ′(R0). Since S ′(R0) = S ′(R−) ⊕ S ′(R+) is

enough to work in the space S ′(R+). Observed that, as pointed out in Chapter 10,

such problem has much relevance in renormalization procedures in Quantum Field

Theory [21, 125, 233, 234] and in the study of singular integral equations on spaces

of distributions [60]. Furthermore, the solution to the quasiasymptotic extension

problem from S ′(R+) to S ′(R+) was completely solved in Section 10.7.1 of Chapter
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10, after adding the information of Corollary 10.76. Thus, Theorem 10.70 implies

the following result. Notice that new terms appear in the extension, polynomial

terms, as expected, and asymptotically homogeneous functions of degree zero.

Theorem 11.7. Let f ∈ S ′(R). Let L be slowly varying at the origin and x0, α ∈ R.

Suppose that

f(x0 + εx) ∼ εαL(ε)g(x) as ε→ 0+ in S ′0(R) . (11.5.3)

(i) If α < 0, then f has the quasiasymptotic behavior (11.5.3) in S ′(R).

(ii) If α > 0 and α /∈ Z+, then there exists a polynomial p, of degree less than α,

such that

f(x0 + εx) = p(εx) + εαL(ε)g(x) + o(εαL(ε)) as ε→ 0+ in S ′(R) . (11.5.4)

(iii) If α = k, k ∈ N, then g is of the form g(x) = C−x
k
− +C+x

k
+ +βxk log |x|, and

there are a polynomial p of degree at most (k− 1) and an associate asymptotically

homogeneous function of degree 0 at the origin with respect to L, satisfying c(ax) =

c(x) + βL(x) log a+ o(L(x)), such that

f(x0 + εx) = p(εx) + c(ε)εkxk + εkL(ε)g(x) + o(εkL(ε)) . (11.5.5)

as ε→ 0+ in S ′(R).

Proof. As in (11.5.2), take Fourier transform to f(x0+ ·). In S ′0(R), we have unique

decompositions eix0xf̂ = f−+f+ and ĝ = g−+g+, where f±, g± ∈ S ′(R±). A direct

application of Theorem 10.70 to f±, g± and L(1/λ) yields the result on the Fourier

side, after a routine calculation which is left to the reader. The fact that c in

(11.5.5) is associate asymptotically homogeneous follows from a computation, but

we can also verify it directly; indeed, take φ ∈ D(R) such that
∫∞
−∞ xkφ(x)dx = 1,
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and
∫∞
−∞ xjφ(x)dx = 0, for j < k, if we evaluate it in (11.5.5), we have that

(aε)kc(aε)

∫ ∞

−∞
xkφ(x)dx+ (aε)kL(aε) 〈g(x), φ(x)〉+ o(εkL(ε))

= 〈f(aεx), φ(x)〉 =
1

a

〈
f(εx), φ

(x
a

)〉
= (aε)kc(ε)

∫ ∞

−∞
xkφ(x)dx+ εkL(ε) 〈g(ax), φ(x)〉+ o(εkL(ε)) ,

and so c(aε) = c(ε) + βL(ε) log a+ o(L(ε)), ε→ 0+.

The same arguments given in the proof of Theorem 11.7, but now using Theorem

10.66 and Corollary 10.76, lead to the following theorem.

Theorem 11.8. Let f ∈ S ′(R). Let L be slowly varying at infinity and α ∈ R.

Suppose that

f(λx) ∼ λαL(λ)g(x) as λ→∞ in S ′0(R) . (11.5.6)

(i) If α /∈ N, then there exists a polynomial p, which may be chosen to be divisible

by xmax{0, [α]+1}, such that

f(λx) = p(λx) + λαL(λ)g(x) + o(λαL(λ)) as λ→∞ in S ′(R) . (11.5.7)

(ii) If α = k, k ∈ N, then g is of the form g(x) = C−x
k
− + C+x

k
+ + βxk log |x|,

and there are a polynomial p, which may be chosen divisible by xk+1, and an as-

sociate asymptotically homogeneous function of degree 0 at infinity with respect to

L, satisfying c(ax) = c(x) + βL(x) log a+ o(L(x)), such that,

f(x0 + λx) = p(λx) + c(λ)λkxk + λkL(λ)g(x) + o(λkL(λ)) , (11.5.8)

as λ→∞ in S ′(R).

11.6 Wavelet Tauberian Theorems for

Quasiasymptotics at Points

As a consequence of our analysis from Sections 11.4 and 11.5, we obtain the taube-

rian theorems for quasiasymptotics at points of tempered distributions. The proofs
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of the next three theorems follow at once by applying Theorem 11.5 and Theorem

11.7.

Theorem 11.9. Let f ∈ S ′(R) and α < 0. Suppose the wavelet ψ ∈ S0(R) admits a

reconstruction wavelet. Necessary and sufficient conditions in terms of the wavelet

transform for f to have quasiasymptotic behavior at x = x0 of degree α with respect

to a slowly varying function L are the existence of the limits

lim
ε→0+

1

εαL(ε)
Wψf (x0 + εb, εa) = Mb,a <∞ , a2 + b2 = 1, a > 0 , (11.6.1)

and the existence of m such that

lim sup
ε→0+

sup
a2+b2=1, a>0

am

εαL(ε)
|Wψf (x0 + εb, εa)| <∞ . (11.6.2)

In such a case there is a homogeneous distribution g of degree α such that Mb,a =

Wψg(b, a).

Theorem 11.10. Let f ∈ S ′(R) and α > 0, α /∈ N. Suppose the wavelet ψ ∈ S0(R)

admits a reconstruction wavelet. Conditions (11.6.1) and (11.6.2) are necessary

and sufficient for the existence of a polynomial p of degree less than α such that

f − p has quasiasymptotic behavior of degree α with respect to L at the point

x = x0. In such a case there is a homogeneous distribution g of degree α such that

Mb,a = Wψg(b, a).

Theorem 11.11. Let f ∈ S ′(R) and k ∈ N. Suppose the wavelet ψ ∈ S0(R)

admits a reconstruction wavelet. Conditions (11.6.1) and (11.6.2) with α = k are

necessary and sufficient for the existence of a polynomial of degree at most k − 1,

an associate asymptotically homogeneous function c of degree 0 with respect to L,

satisfying c(ax) = c(x)+βL(x) log a+o(L(x)), and two constants C− and C+ such

that
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f (x0 + εx) = p(εx)+ c(ε)εkxk +εkL(ε)
(
C−x

k
− + C+x

k
+ + βxk log |x|

)
+o(εkL(ε)) ,

(11.6.3)

as ε→ 0+ in S ′(R).

We may formulate tauberian conditions in order to guarantee quasiasymptotic

behavior in the case α ≥ 0. We also point out that test functions can always be

found satisfying the hypothesis of the next two theorems [44].

Theorem 11.12. Let the hypotheses of Theorem 11.10 be satisfied. Let n = [α].

Let ϕ ∈ S(R) be such that its moments µj :=
∫∞
−∞ xjϕ(x)dx 6= 0, for 0 ≤ j ≤ n.

The condition

〈f(x0 + εx), ϕ(x)〉 = O (εαL(ε)) , ε→ 0+ , (11.6.4)

implies that f has quasiasymptotic behavior of degree α with respect to L at the

point x = x0.

Proof. By Theorem 11.11, there exist (n+ 1) constants c0, c1, . . . , cn and a homo-

geneous distribution g of degree α such that

f(εx) =
n∑
j=0

cjε
jxj + εαL(ε)g(x) + o (εαL(ε)) as ε→ 0+ in S ′(R) .

Evaluating the last asymptotic expansion at ϕ and comparing with (11.6.4), one

has that
n∑
j=0

εjcjµj = O (εαL(ε))

which readily implies that cj = 0, for each 0 ≤ j ≤ n.

Theorem 11.13. Let the hypotheses of Theorem 11.11 be satisfied and α = k. Let

ϕ ∈ S(R) be such that its moments µj :=
∫∞
−∞ xjϕ(x)dx 6= 0, for 0 ≤ j ≤ k. The

condition

〈f(x0 + εx), ϕ(x)〉 ∼ CεkL(ε) , ε→ 0+ , (11.6.5)
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for some constant C, implies that f has quasiasymptotic behavior of degree k with

respect to L at the point x = x0.

Proof. Comparison between (11.6.5) and (11.6.3), evaluated at ϕ, gives that the

polynomial vanishes and the asymptotic relation

c(ε) ∼ L(ε)

µk

(
C − C−

∫ ∞

0

xkϕ(−x)dx− C+

∫ ∞

0

xkϕ(x)dx

)
,

from where we obtain the result.

Our next tauberian theorems makes use of quasiasymptotic boundedness [213]

as the tauberian condition. Recall the distribution f is quasiasymptotic bounded

of degree α at x = x0 with respect to a function L, slowly varying at the origin,

if f(x0 + ε ·)/(εαL(ε)) is a weak bounded set in S ′(R), for ε small enough, and we

denote the order relation f(x0 + εx) = O(εαL(ε)) as ε→ 0+ in S ′(R).

Theorem 11.14. Let f ∈ S ′(R), x0 ∈ R, α /∈ N, and L be a slowly varying

function at the origin. Let ψ ∈ S0(R) be a wavelet admitting a reconstruction

wavelet. Suppose that the following limits exist:

lim
ε→0+

1

εαL(ε)
Wψf (x0 + εb, εa) = Mb,a <∞ , a2 + b2 = 1, a > 0 . (11.6.6)

Then, the tauberian condition

f(x0 + εx) = O(εαL(ε)) as ε→ 0+ in S ′(R) , (11.6.7)

implies the existence of a homogeneous distribution g of degree α such that Mb,a =

Wψg(b, a) and

f(x0 + εx) ∼ εαL(ε)g(x) as ε→ 0+ in S ′(R) . (11.6.8)

Conversely, the quasiasymptotic behavior (11.6.8) implies (11.6.6) and (11.6.7).
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Proof. The converse is clear; indeed the abelian theorem, Theorem 11.1, implies

(11.6.6), and, obviously, quasiasymptotic behavior implies quasiasymptotic bound-

edness. On the other hand, relation (11.6.7) holds in particular in S ′0(R), hence,

the characterization of bounded sets of S ′0(R) [95, Thm.28.0.1] implies that (11.6.2)

is satisfied. If α < 0, then Theorem 11.9 implies (11.6.8). Now, if α > 0, we can

always select a test function ϕ such that its moments µj :=
∫∞
−∞ xjϕ(x)dx 6= 0,

for 0 ≤ j ≤ [α]. But if we evaluate (11.6.7) at ϕ, we obtain (11.6.4), and thus,

Theorem 11.12 yields the result in this case.

Theorem 11.15. Let f ∈ S ′(R), x0 ∈ R, k ∈ N, and L be a slowly varying

function at the origin. Let ψ ∈ S0(R) be a wavelet admitting a reconstruction

wavelet. Suppose that the following limits exist:

lim
ε→0+

1

εkL(ε)
Wψf (x0 + εb, εa) = Mb,a <∞ , a2 + b2 = 1, a > 0 . (11.6.9)

Then, the tauberian condition

f(x0 + εx) = O(εkL(ε)) as ε→ 0+ in S ′(R) , (11.6.10)

implies the existence of a distribution of the form g(x) = C−x
k
−+C+x

k
++βxk log |x|,

and an associate asymptotically homogeneous function c of degree zero with respect

to L such that Mb,a = Wψg(b, a) and

f(x0 + εx) = c(ε)εkxk + εkL(ε)g(x) + o(εkL(ε)) as ε→ 0+ in S ′(R) . (11.6.11)

Moreover, c(ε) = O(L(ε)). Additionally, if there exists a test function ϕ ∈ S ′(R)

satisfying (11.6.5) and having non-zero kth-moment, i.e. µk =
∫∞
−∞ xkϕ(x)dx 6= 0,

then f has quasiasymptotic behavior of degree k with respect to L.

Proof. As in the proof of Theorem 11.14, we obtain that (11.6.9) and (11.6.10)

imply f satisfies an asymptotic expansion of the form (11.6.3); furthermore, eval-

uating the asymptotic relation (11.6.3) at a φ with non-zero first k moments
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and using the quasiasymptotic boundedness (11.6.10), we obtain (11.6.11) and

c(ε) = O(L(ε)). Evaluating (11.6.11) at ϕ, we obtain that c(ε) ∼ BL(ε), for some

constant B. This completes the proof.

11.7 Wavelet Tauberian Theorems for

Quasiasymptotics at Infinity

We now state the tauberian theorems for asymptotic behavior at infinity, the proofs

of Theorem 11.16 and Theorem 11.17 follow immediately from Theorem 11.4 and

Theorem 11.8. The proofs of Theorems 11.18–11.21 are analogous to those of The-

orems 11.12–11.15, and then we choose to omit them.

Theorem 11.16. Let f ∈ S ′(R) and α /∈ N. Suppose the wavelet ψ ∈ S0(R)

admits a reconstruction wavelet. Necessary and sufficient conditions in terms of

the wavelet transform for the existence of a polynomial p such that f − p has

quasiasymptotic behavior at infinity of degree α with respect to a slowly varying

function L are the existence of the limits

lim
λ→∞

1

λαL(λ)
Wψf (λb, λa) = Mb,a, for each (b, a) ∈ H , (11.7.1)

and the existence constants of γ, β,M > 0 such that

1

λαL(λ)
|Wψf (λb, λa)| < M

(
a+

1

a

)γ
(1 + |b|)β, (11.7.2)

for all (b, a) ∈ H and λ ≥ 1. In such a case there is a homogeneous distribution g

of degree α such that Mb,a = Wψg(b, a), (b, a) ∈ H.

Theorem 11.17. Let f ∈ S ′(R) and k ∈ N. Suppose the wavelet ψ ∈ S0(R)

admits a reconstruction wavelet. The conditions (11.7.1) and (11.7.2) with α = k

are necessary and sufficient for the existence of a polynomial p, which is divisible by

xk+1, an associate asymptotically homogeneous function c of degree 0 with respect

to L, satisfying c(ax) = c(x) + βL(x) log a + o(L(x)), and two constants C− and
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C+ such that

f (λx) = p(λx) + c(λ)xk + λkL(λ)
(
C−x

k
− + C+x

k
+ + βxk log |x|

)
+ o(λkL(λ)),

(11.7.3)

as λ→∞ in S ′(R).

Theorem 11.18. Let the hypotheses of Theorem 11.16 be satisfied. Set n = [α].

Let ϕ ∈ S(R) be such that its moments µj :=
∫∞
−∞ xjϕ(x)dx 6= 0, for n < j. The

condition

〈f(λx), ϕ(x)〉 = O(λkL(λ)) , λ→∞ , (11.7.4)

implies that f has quasiasymptotic behavior of degree α with respect to L at infinity.

Theorem 11.19. Let the hypotheses of Theorem 11.17 be satisfied. Let ϕ ∈ S(R)

be such that its moments µj :=
∫∞
−∞ xjϕ(x)dx 6= 0, for k ≤ j. The condition

〈f(λx), ϕ(x)〉 ∼ CλkL(λ) , λ→∞ , (11.7.5)

for some constant C, implies that f has quasiasymptotic behavior of degree k with

respect to L at infinity.

Theorem 11.20. Let f ∈ S ′(R), α /∈ N, and L be a slowly varying function at

infinity. Let ψ ∈ S0(R) be a wavelet admitting a reconstruction wavelet. Suppose

that the following limits exist:

lim
λ→∞

1

λαL(λ)
Wψf (λb, λa) = Mb,a, for each (b, a) ∈ H . (11.7.6)

Then, the tauberian condition

f(λx) = O(λαL(λ)) as λ→∞ in S ′(R) , (11.7.7)

implies the existence of a homogeneous distribution g of degree α such that Mb,a =

Wψg(b, a) and

f(λx) ∼ λαL(λ)g(x) as λ→∞ in S ′(R) . (11.7.8)

Conversely, the quasiasymptotic behavior (11.7.8) implies (11.7.6) and (11.7.7).
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Theorem 11.21. Let f ∈ S ′(R), k ∈ N, and L be a slowly varying function at

infinity. Let ψ ∈ S0(R) be a wavelet admitting a reconstruction wavelet. Suppose

that the following limits exist:

lim
λ→∞

1

λkL(λ)
Wψf (λb, λa) = Mb,a, for each (b, a) ∈ H . (11.7.9)

Then, the tauberian condition

f(λx) = O(λαL(λ)) as λ→∞ in S ′(R) , (11.7.10)

implies the existence of a distribution of the form g(x) = C−x
k
−+C+x

k
++βxk log |x|,

and an associate asymptotically homogeneous function c of degree zero with respect

to L such that Mb,a = Wψg(b, a) and

f(λx) = c(λ)λkxk + λkL(λ)g(x) + o(λkL(λ)) as λ→∞ in S ′(R) . (11.7.11)

Moreover, c(λ) = O(L(λ)). Additionally, if there exists ϕ ∈ S ′(R) satisfying

(11.7.5) and having non-zero kth-moment, i.e. µk =
∫∞
−∞ xkϕ(x)dx 6= 0, then f

has quasiasymptotic behavior of degree k with respect to L.

11.8 Remarks on Progressive and Regressive

Distributions

We end this chapter with some comments about progressive and regressive distri-

butions.

Suppose first that f ∈ S ′+(R). Since only the positive frequency part of a wavelet

is relevant for the wavelet transform of f , and any non-vanishing ψ ∈ S+(R) is

a progressive admissible wavelet (hence it is its own reconstruction wavelet), it is

enough to assume in Theorems 11.3–11.5 that ψ is an arbitrary non-zero element of

S+(R). Likewise, if f ∈ S ′−(R), Theorems 11.3–11.5 hold for an arbitrary non-zero

regressive ψ ∈ S−(R).
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Assume now that f ∈ S ′(R) is a progressive distribution, that is, supp f̂ ⊆

[0,∞). Then, Theorems 11.9–11.21 hold if ψ is an arbitrary non-zero element of

S+(R). Similarly, for a regressive distribution, they hold for a arbitrary non-zero

regressive ψ ∈ S−(R).

363



Chapter 12
Measures and the Multidimensional
φ−transform

12.1 Introduction

The aim of this chapter is to use the distributional φ−transform, introduced in

Chapter 7 (see also [215]) in the one variable case, and here in the multidimensional

case, in order to characterize the positive measures that belong to the distribution

space D′ (Rn) . As seen in Section 7.6, the φ−transform is a very powerful tool to

study global properties of distributions from local information. It is also our objec-

tive to provide extensions of the results from Section 7.4 to the multidimensional

setting.

We use the notation H = {(x, t) : x ∈ Rn and t > 0} . Let F (x, t) , (x, t) ∈ H,

be the φ−transform of a distribution f ∈ D′ (Rn) , namely

F (x, t) = 〈f (x + ty) , φ (y)〉 ,

where φ is a fixed positive test function of the space D (Rn) . We prove that f is

a positive measure if and only if the inferior limit of F (x, t) , as (x, t) approaches

any point in the boundary ∂H = Rn×{0} , in an angular fashion, is positive. Since

any positive measure is equal to a function almost everywhere, this result provides

a technique to show the existence of the almost everywhere angular limits of the

φ−transform of a distribution.

The plan of this chapter is as follows. We start by giving some necessary back-

ground in Section 12.2, we are particularly interested in the concepts of distri-

butional point values and Cesàro order symbols for distributions of several vari-

ables. We then continue by proving some useful properties of the multidimensional

φ−transform in Section 12.3, an important result to be established is the distri-

364



butional convergence of the transform to the analyzed distribution. Finally, we

consider the characterization of positive measures in Section 12.4. The results to

be discussed in this chapter have already been published in [219].

12.2 Preliminaries

We will discuss in this section how to extend the notions of distributional point val-

ues and Cesàro order symbols to distributions of several variables. The definitions

are essentially the same as in the one-dimensional case.

12.2.1 Distributional Point Values in Several Variables

We shall use the notion of the distributional point value of distributions introduced

by  Lojasiewicz for the multidimensional case in [129]. Actually, the definition does

not differ from the one variable case. Let f ∈ D′ (Rn) , and let x0 ∈ Rn. We say

that f has the distributional point value γ at x = x0, and write

f (x0) = γ, distributionally , (12.2.1)

if limε→0 f (x0 + εx) = γ in the space D′ (Rn) , that is, if

lim
ε→0

1

εn

〈
f (x) , φ

(
x− x0

ε

)〉
= γ

∫
Rn

φ (x) dx , (12.2.2)

for all test functions φ ∈ D (Rn) . It can be shown that f (x0) = γ, distributionally,

if and only if there exists a multi-index k0 ∈ Nn such that for all multi-indices

k ≥ k0 there exists a k primitive of f, G with DkG = f, that is a continuous

function in a neighborhood of x = x0 and satisfies

G (x) =
γ (x− x0)

k

k!
+ o

(
|x− x0||k|

)
, as x → x0 . (12.2.3)

It is important to observe that the distributional point values determine a distri-

bution if they exist everywhere, that is, if f ∈ D′ (Rn) is such that f (x0) = 0

distributionally ∀x0 ∈ Ω, where Ω is an open set, then f = 0 in Ω [128, 129].
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There is a related but different notion of distributional point value in several

variables, that of a radial symmetric value. It extends the corresponding one-

dimensional notion studied in Section 3.10. We say that f has the (radial) sym-

metric distributional value γ at x = x0, and write

fsym (x0) = γ, distributionally , (12.2.4)

if (12.2.2) holds for radial test functions, that is, test functions φ ∈ D′(Rn) such

that φ(x) = φ(Tx), for all T ∈ O(n), the group of orthogonal linear transfor-

mations. In the one variable case this means that (f (x0 + x) + f (x0 − x))/2 has

the distributional value γ at x = 0. In several variables it means that R (r) =∫
S f (x0 + rω) dσ (ω) , when suitable extended to D′ (R) , has the value γ at r = 0,

where S is the unit sphere. A distribution like δ′ (x) has the symmetric value 0 at all

points, so, in general, the symmetric distributional point values do not determine

a distribution uniquely.

12.2.2 Multidimensional Cesàro Order Symbols

We shall follow [49, 61] for the notions related to Cesàro behavior of distributions.

If f ∈ D′ (Rn) and α ∈ R is not a negative integer, we say that f is bounded by

|x|α in the Cesàro sense for |x| large, and write

f (x) = O (|x|α) (C) , as |x| → ∞ , (12.2.5)

if there exists a multi-index k ∈ Nn and a k- primitive, DkG = f, which is a

(locally integrable) function for |x| large and satisfies the ordinary order relation

G (x) = O
(
|x|α+|k|

)
, as |x| → ∞ . (12.2.6)

Naturally (12.2.6) will not hold for all primitives of f, and if it holds for k it will

also hold for bigger multi-indices. Naturally, we may also include k in the notation

by writing (C,k) in (12.2.5) instead of (C), but the nature of the problems to be

consider will not require us to do so.
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12.3 The Multidimensional φ−transform

In this section we explain how we can extend to several variables the φ−transform

introduced in Section 7.4 of Chapter 7 (see also [215, 40, 41] ). Let φ ∈ D (Rn) be

a fixed normalized test function, that is, one that satisfies

∫
Rn

φ (x) dx = 1 . (12.3.1)

If f ∈ D′ (Rn) we introduce the function of n + 1 variables F = Fφ {f} by the

formula

F (x, t) = 〈f (x + ty) , φ (y)〉 , (12.3.2)

where (x, t) ∈ H, the half-space Rn × (0,∞) . Naturally the evaluation in (12.3.2)

is with respect to the variable y. We call F the φ−transform of f. This transform

also receives other names, such as the standard average with kernel φ [40, 41].

Whenever we consider φ−transforms we assume that φ satisfies (12.3.1).

The definition of the φ−transform tells us that if f (x0) = γ, distributionally,

then F (x0, t) → γ as t → 0+, but actually F (x, t) → γ as (x, t) → (x0, 0) in

an angular or non-tangential fashion, that is if |x− x0| ≤ Mt for some M > 0

(just replace φ (x) in (12.2.2) by φ (x− rω) where |ω| = 1 and 0 ≤ r ≤ M). On

the other hand, if fsym (x0) = γ, distributionally, then F (x0, t) → γ as t → 0+

whenever φ is radial. However, in general F (x, t) does not approach γ radially for

general test functions and in general F (x, t) does not approach γ in an angular

fashion even if φ is radial.

We can also consider the φ−transform if φ ∈ A (Rn) satisfies (12.3.1) and f ∈

A′ (Rn) , where A (Rn) is a suitable space of test functions, such as S (Rn) or

K (Rn).

We start with the distributional convergence of the φ−transform.
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Theorem 12.1. If φ ∈ D (Rn) and f ∈ D′ (Rn) , then

lim
t→0+

F (x, t) = f (x) , (12.3.3)

distributionally in the space D′ (Rn) , that is, if ρ ∈ D (Rn) then

lim
t→0+

〈F (x, t) , ρ (x)〉 = 〈f (x) , ρ (x)〉 . (12.3.4)

Proof. We have that

〈F (x, t) , ρ (x)〉 = 〈% (ty) , φ (y)〉 , (12.3.5)

where

% (z) = 〈f (x) , ρ (x− z)〉 , (12.3.6)

is a smooth function of z. The  Lojasewicz point value % (0) exists and equals the

ordinary value and thus

lim
t→0+

〈% (ty) , φ (y)〉 = % (0) = 〈f (x) , ρ (x)〉 , (12.3.7)

as required.

The result of the Theorem 12.1 also hold in other cases. In order to obtain those

results we need some lemmas. Recall that an asymptotic order relation is strong if

it remains valid after differentiation of any order. So, we write

φ (x) = O
(
|x|β

)
, strongly as |x| → ∞ ,

if φ ∈ E(Rn) and it satisfies

Djφ (x) = O
(
|x|β−|j|

)
,

for each multi-index j ∈ Nn.
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Lemma 12.2. Let f ∈ E ′ (Rn) be a distribution with compact support K. Let

φ ∈ E (Rn) be a test function that satisfies (12.3.1) and

φ (x) = O
(
|x|β

)
, strongly as |x| → ∞ , (12.3.8)

where β < −n. Then

lim
t→0+

F (x, t) = 0 , (12.3.9)

uniformly on compacts of Rn \K.

Proof. There exits a constants M > 0 and q ∈ N such that

|〈f (y) , ρ (y)〉| ≤M

q∑
|j|=0

∥∥Djρ
∥∥
K,∞ ∀ρ ∈ E (Rn) , (12.3.10)

where ‖ρ‖K,∞ = sup {|ρ (x)| : x ∈ K} . There exist r0 > 0 and constants Mj > 0

such that
∣∣Djφ (x)

∣∣ ≤ Mj |x|β−|j| for |x| ≥ r0 and |j| ≤ q. Let L be a compact

subset of Rn \K, and let t0 > 0 be such that if 0 < t ≤ t0 then t−1 |x− y| ≥ r0 for

all x ∈ L, y ∈ K. Then, since

F (x, t) = t−n
〈
f (y) , φ

(
t−1 (y − x)

)〉
, (12.3.11)

it follows that for 0 < t ≤ t0,

|F (x, t)| ≤M2t
−n−β, ∀x ∈ L, (12.3.12)

where M2 = M
∑q

|j|=0Mj is a constant. Since −β − n > 0, we obtain that (12.3.9)

holds uniformly on x ∈ L.

The definition of the  Lojasiewicz point value is that if f ∈ D′ (Rn) then f (x0) =

γ, distributionally, if

lim
ε→0

〈f (x0 + εx) , φ (x)〉 = γ

∫
Rn

φ (x) dx , (12.3.13)

whenever φ ∈ D (Rn) . If f belongs to a smaller class of distributions, then the

evaluation 〈f (x0 + εx) , φ (x)〉 will be defined for test functions of a larger class,
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not only for those of D (Rn) , and one may ask whether (12.3.13) remains true in

that case. There are cases where (12.3.13) is not true, for instance if f ∈ E ′ (R)

sometimes there are φ ∈ E (R) that do not satisfy (12.3.13) (see Remark 7.5).

However, it was shown in [54], and already used in Chapter 7, that in the one

variable case, (12.3.13) holds if f (x0) = γ, distributionally, and the following

conditions are satisfied:

f (x) = O (|x|α) (C) , as |x| → ∞ , (12.3.14)

φ (x) = O(|x|β) , strongly as |x| → ∞ , (12.3.15)

α + β < −1 , β < −1 . (12.3.16)

In particular, (12.3.13) is valid when f ∈ S ′ (R) and φ ∈ S (R) [54, 153, 227]. Ac-

tually a corresponding result is valid in several variables, and the proof is basically

the same.

Theorem 12.3. Let f ∈ D′ (Rn) with f (x0) = γ, distributionally. Let φ ∈ E (Rn) .

Suppose that

f (x) = O (|x|α) (C) , as |x| → ∞ , (12.3.17)

φ (x) = O
(
|x|β

)
, strongly as |x| → ∞ , (12.3.18)

α + β < −n , and β < −n . (12.3.19)

Then

lim
ε→0

〈f (x0 + εx) , φ (x)〉 = γ

∫
Rn

φ (x) dx . (12.3.20)

Proof. Suppose that x0 = 0. There exists a multi-index k and two primitives of f,

DkG1 = DkG2 = f such that they are continuous and

G1 (x) = O
(
|x|α+|k|

)
, as |x| → ∞ , (12.3.21)

G2 (x) =
γxk

k!
+ o

(
|x||k|

)
, as |x| → 0 . (12.3.22)
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Hence we can combine them into a single function G that satisfies

G(x) =
γxk

k!
+ o

(
|x||k|

)
, as |x| → 0 ,

|G (x)| ≤M |x||k| , for |x| ≤ 1 ,

|G (x)| ≤M |x|α+|k| , for |x| ≥ 1 ,

and

f = g + DkG , (12.3.23)

where g has compact support and g vanishes near the origin. Then (12.3.20) holds

for g (with γ = 0), because of the Lemma 12.2. Therefore it is enough to prove

(12.3.20) if f = DkG; but in this case we may use the Lebesgue dominated con-

vergence theorem to obtain

lim
ε→0

〈f (εx) , φ (x)〉 = lim
ε→0

(−1)|k| ε−|k|
∫

Rn

G (εx) Dkφ (x) dx

=
(−1)|k| γ

k!

∫
Rn

xkDkφ (x) dx

= γ

∫
Rn

φ (x) dx ,

as required.

In particular, (12.3.20) holds if f ∈ S ′ (Rn) and φ ∈ S (Rn) .

Corollary 12.4. Let f ∈ S ′ (Rn) with f (x0) = γ, distributionally. Let φ ∈ S (Rn) .

Then

lim
ε→0

〈f (x0 + εx) , φ (x)〉 = γ

∫
Rn

φ (x) dx . (12.3.24)

Using the same argument as in the last proof we can prove that if f (x) = 0

for x ∈ Ω, an open set, and the conditions (12.3.17), (12.3.18), and (12.3.19) are

satisfied, then the convergence in (12.3.20) is uniform on compacts of Ω.
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Corollary 12.5. If φ ∈ E (Rn) and f ∈ D′ (Rn) satisfy the conditions (12.3.17),

(12.3.18), and (12.3.19). Then

lim
t→0+

F (x, t) = 0 , (12.3.25)

uniformly on compact subsets of Rn \ supp f . In particular, (12.3.25) holds if φ ∈

S (Rn) and f ∈ S ′ (Rn).

We can now extend the distributional convergence of the φ−transform, Theorem

12.1, to other cases.

Theorem 12.6. If φ ∈ E (Rn) and f ∈ D′ (Rn) satisfy the conditions (12.3.17),

(12.3.18), and (12.3.19), then

lim
t→0+

F (x, t) = f (x) , (12.3.26)

distributionally in the space D′ (Rn) , that is, if ρ ∈ D (Rn), then

lim
t→0+

〈F (x, t) , ρ (x)〉 = 〈f (x) , ρ (x)〉 . (12.3.27)

In particular, distributional convergence, (12.3.26), holds if φ ∈ S (Rn) and f ∈

S ′ (Rn) actually in the space S ′ (Rn).

Proof. We proceed as in the proof of the Theorem 12.1 by observing that

〈F (x, t) , ρ (x)〉 = 〈% (ty) , φ (y)〉 ,

where % (z) = 〈f (x) , ρ (x− z)〉 . Next we observe that % is a smooth function, and

that it satisfies % (x) = O (|x|α) (C) , as |x| → ∞. Indeed, there exists a multi-index

k and a primitive of f of that order, DkG = f, which is an ordinary function for

large arguments and satisfies |G (x)| = O
(
|x||k|+α

)
as |x| → ∞. We have then

that

% (z) =
〈
Dk

xG (x) , ρ (x− z)
〉

= Dk
z 〈G (x) , ρ (x− z)〉 ,
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and 〈G (x) , ρ (x− z)〉 =
∫

supp ρ
G (x + z) ρ (x) dx =O

(
|z||k|+α

)
as |z| → ∞, since

supp ρ is compact. Hence, Theorem 12.3 allows us to obtain that

lim
t→0+

〈% (ty) , φ (y)〉 = % (0) = 〈f (x) , ρ (x)〉 .

Remark 12.7. Observe also if φ ∈ E (Rn) and f ∈ D′ (Rn) satisfy the conditions

(12.3.17), (12.3.18), and (12.3.19), then when the distributional point value f (x0)

exists, then F (x, t) → f (x0) as (x, t) → (x0, 0) in an angular fashion, while if

the distributional symmetric value fsym (x0) exists and φ is radial then F (x0, t) →

fsym (x0) as t→ 0+.

12.4 Measures and the φ−transform

We shall use the following nomenclature. As usual, a positive (Radon) measure µ

is a positive functional in the space of compactly supported continuous functions,

which would be denoted by integral notation, or by distributional notation, f = fµ,

so that

〈f, φ〉 =

∫
Rn

φ (x) dµ(x) . (12.4.1)

Recall [180] that a distribution f is a positive measure if and only if 〈f, φ〉 ≥ 0

whenever φ ≥ 0. A signed measure is a real continuous functional in the space

of compactly supported continuous functions, denoted as, say ν, or as g = gν .

Observe that any signed measure can be written as ν = ν+ − ν−, where ν± are

positive measures concentrated on disjoint sets. We shall also use the Lebesgue

decomposition, according to which any signed measure ν can be written as ν =

νabs+νsig, where νabs is absolutely continuous with respect to the Lebesgue measure,

so that it corresponds to a regular distribution, while νsig is a signed measure

concentrated on a set of Lebesgue measure zero. We shall also need to consider the

positive measures (νsig)± = (ν±)sig, the positive and negative singular parts of ν.
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Our first results are very simple, but useful.

Theorem 12.8. Let f ∈ D′ (Rn) . Let U be an open set of Rn. Then f is a positive

measure in U if and only if its φ−transform F = Fφ {f} with respect to a given

normalized, positive test function φ ∈ D (Rn) satisfies F (x, t) ≥ 0 for all (x, t) ∈ U,

where U is some open subset of H with U ⊂ U ∩ ∂H.

Proof. If f is a positive measure in U, and φ (x) = 0 for |x| ≥ R, then F (x, t) ≥

0 if the ball of center x and radius Rt is contained in U, and the set of such

points (x, t) ∈ H could be taken as U . Conversely, if such U exists then 〈f, ψ〉 =

limt→0 〈F (x, t) , ψ (x)〉 ≥ 0 whenever ψ ∈ D (Rn) , ψ ≥ 0, and suppψ ⊂ U.

Theorem 12.9. Let f ∈ D′ (Rn) . Then f is a positive measure if and only if its

φ−transform F = Fφ {f} with respect to a given normalized, positive test function

φ ∈ D (Rn) satisfies F (x, t) ≥ 0 for all (x, t) ∈ H.

Proof. The proof is clear.

If x0 ∈ Rn we shall denote by Cx0,ϑ the cone in H starting at x0 of angle ϑ ≥ 0,

Cx0,ϑ = {(x, t) ∈ H : |x− x0| ≤ (tanϑ)t} . (12.4.2)

If f ∈ D′ (Rn) is real valued and x0 ∈ Rn then we consider the upper and lower

angular values of its φ−transform,

f+
φ,ϑ (x0) = lim sup

(x,t)→(x0,0)
(x,t)∈Cx0,ϑ

F (x, t) , (12.4.3)

f−φ,ϑ (x0) = lim inf
(x,t)→(x0,0)
(x,t)∈Cx0,ϑ

F (x, t) . (12.4.4)

The quantities f±φ,ϑ (x0) are well defined at all points x0, but, of course, they could

be infinite.
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Theorem 12.10. Let f ∈ D′ (Rn) . Let U be an open set. Then f is a positive

measure in U if and only if its φ−transform F = Fφ {f} with respect to a given

normalized, positive test function φ ∈ D (Rn) satisfies

f−φ,ϑ (x) ≥ 0 ∀x ∈ U , ∀ϑ ∈ [0, π/2) . (12.4.5)

Proof. If f is a positive measure in U, then F ≥ 0 in some open set of H, U with

U ⊂ U ∩ ∂H, and thus (12.4.5) is satisfied. Conversely, let us show that if f is not

a positive measure in U then (12.4.5) is not satisfied. First, if f is not a positive

measure then there exists σ > 0 such that g = f + σ is not a positive measure; let

G be the φ−transform of g. There exists an open ball B, with B ⊂ U, such that

g is not a positive measure in B. Using Theorem 12.8, if 0 < ε < 1 we can find

(x1, t1) ∈ H with x1 ∈ B and t1 < ε, such that G (x1, t1) < 0.

The test function φ has compact support, so suppose that φ (x) = 0 for |x| ≥ R.

Since G (x1, t1) depends only on the values of g on the closed ball |ξ − x1| ≤ Rt1,

it follows that g is not a positive measure in that ball and consequently given

S > R and σ small enough, there exist tσ and ξσ with |ξσ−x1| ≤ St1 such that

G (ξσ, tσ) < 0. Let 0 < α < 1, and choose ε such that the distance from B to the

complement of U is bigger than Sε (1− α)−1 . Hence we can define recursively two

sequences {xn} and {tn} such that

|xn − xn−1| ≤ Stn−1 , 0 < tn < αtn−1 , G (xn, tn) < 0 . (12.4.6)

The sequence {xn} converges to some x∗, because
∑∞

n=1 |xn+1 − xn| converges,

due to the inequality |xn+1 − xn| ≤ Sαn−1t1. Then x∗ ∈ U, since |x∗ − x1| ≤

Sε (1− α)−1 . Actually,

|x∗ − xn| ≤
∞∑
k=n

|xk+1 − xk| ≤
Stn

1− α
, (12.4.7)

and it also follows that (xn, tn) ∈ Cx∗,ϑ if tanϑ = S (1− α)−1 , and thus

g−φ,ϑ (x∗) ≤ 0 . (12.4.8)
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But (12.4.8) in turn yields that f−φ,ϑ (x∗) < −σ < 0, in contradiction with the

hypothesis.

If f is a signed measure then it has distributional point values almost everywhere

and thus the angular limit of its φ−transform exists almost everywhere and equals

the absolutely continuous part of the distribution. Therefore we immediately obtain

the following result.

Theorem 12.11. Let f ∈ D′ (Rn) . Suppose its φ−transform F = Fφ {f} with

respect to a given normalized, positive test function φ ∈ D (Rn) satisfies

f−φ,ϑ (x) ≥ −M , ∀x ∈ U , ∀ϑ ∈ [0, π/2) , (12.4.9)

where U is an open set and where M is a constant. Then the angular boundary

limit

fang (x) = lim
(x,t)→(x0,0)

angular

F (x, t) , (12.4.10)

exists almost everywhere in U and defines a locally integrable function. Also there

exists a singular positive measure µ+ such that in U

f = fang + µ+ . (12.4.11)

Proof. Indeed, Theorem 12.10 yields that f +M is a positive measure in U, whose

Lebesgue decomposition yields (12.4.11), after a small rearrangement of terms.

We also obtain the following result on the existence of almost everywhere angular

limits of the φ−transform.

Theorem 12.12. Let f ∈ D′ (Rn) . Suppose its φ−transform F = Fφ {f} with

respect to a given normalized, positive test function φ ∈ D (Rn) satisfies

M+ ≥ f+
φ,ϑ (x) ≥ f−φ,ϑ (x) ≥ −M− , ∀x ∈ U , ∀ϑ ∈ [0, π/2) . (12.4.12)
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where U is an open set and where M± are constants. Then the angular boundary

limit

fang (x) = lim
(x,t)→(x0,0)

angular

F (x, t) , (12.4.13)

exists almost everywhere in U and defines a function in L∞(U), and the distribution

f is a regular distribution equal to fang in U :

〈f (x) , ψ (x)〉 =

∫
Rn

fang (x)ψ (x) dx , (12.4.14)

for all ψ ∈ D (Rn) with suppψ ⊂ U.

We end this chapter with an useful remark.

Remark 12.13. It is clear from the proof of Theorem 12.10 that is enough to

assume (12.4.5), (12.4.9), or (12.4.12) for just some ϑ > arctanRφ in order to

obtain the same conclusions of Theorems 12.10, 12.11, or 12.12, respectively, where

the number Rφ is given by Rφ = inf {R > 0 : suppφ ⊆ [−R,R]}.
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Chapter 13
Characterizations of the Support of
Distributions

13.1 Introduction

In a recent study, González Vieli and Graham [75] characterized the support of cer-

tain tempered distributions in several variables in terms of the uniform convergence

over compacts of the symmetric Cesàro means of its Fourier inversion formula. In-

deed, they proved that for a large class of tempered distributions f ∈ S ′ (Rn) , if

for some k ∈ N

lim
r→∞

∫
|u|≤r

f̂ (u) eiu•xdu = 0 (C,k) , (13.1.1)

uniformly on compacts of an open set Ω ⊂ Rn, then Ω ⊂ Rn\ supp f. See also

[72, 74, 78, 79]. Results on this subject have a rich tradition that goes back to the

work of Kahane and Salem [105] and that of Walter [236]. Here we use the constants

in the Fourier transform such that f̂ (u) =
∫

Rn f (x) e−iu•xdx if the integral exists.

Hence, the inversion formula becomes f (x) = (2π)−n
∫

Rn f̂ (u) eiu•xdu when the

integral makes sense. If instead of uniform convergence one has only pointwise

convergence, then it is easy to see that maybe Ω ∩ supp f 6= ∅.

The aims of this chapter are the following:

1. To obtain the characterization of the support of any tempered distribution.

2. To prove the result under weaker conditions than uniform convergence of the

means, in particular, when the means are locally L1 bounded.

3. To obtain the corresponding result for other summability methods such as

Abel summability and Gauss-Weierstrass summability.

It should be pointed out that in the one-variable case one can completely char-

acterize the support of a tempered distribution in term of the pointwise Cesàro
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behavior if one uses slightly asymmetric means. It was proved in Chapter 3 (see

also [47]) that a periodic distribution of period 2π, f ∈ S ′ (R) , with Fourier series∑∞
n=−∞ cne

inx, has the distributional point value f (x0) = γ in the  Lojasiewicz

sense if and only if there exists k such that ∀a > 0,

lim
y→∞

∑
−ay<n≤y

cne
inx0 = γ (C,k) . (13.1.2)

This result was recently generalized to arbitrary tempered distributions [215, 216],

we presented a complete discussion of such a generalization in Chapter 3 and

obtained in Theorem 3.21 that if f ∈ S ′ (R) then

f (x0) = γ distributionally , (13.1.3)

if and only if

e.v.
〈
f̂ (u) , eiux0

〉
= 2πγ (C,k) , (13.1.4)

where the e.v. involves slightly Cesàro asymmetric means of the distributional

evaluation.

Therefore, since the  Lojasiewicz point values determine a distribution completely

if they exist at all points [128], we obtain the following characterization of the

support of a distribution.

Theorem 13.1. Let f ∈ S ′ (R) . Let Ω be an open set of R. If there exists k such

that

e.v.
〈
f̂ (u) , eiux0

〉
= 0 (C,k) , ∀x0 ∈ Ω , (13.1.5)

then Ω ⊂ R\ supp f .

We introduced in Section 3.11 the principal value distributional evaluations in

the Cesàro sense. Naturally the Theorem 13.1 is not true for principal value evalu-

ations, as the example f (x) = δ′ (x) shows, since here the means converge to zero

in the p.v. sense for all x ∈ R.
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The plan of the chapter is as follows. The basic summability procedures for the

Fourier inversion formula, and their relation with the distributional φ−transform

are presented in Section 13.2; we observe that summability results for the Fourier

transform and its inverse can be considered as particular cases of the results for the

distributional φ−transform that were obtained in Section 12.3. In Section 13.3 we

show the uniform convergence on compacts of the distributional φ−transform of a

function continuous in an open set and its converse, and consequently for summa-

bility in the Fourier inversion formula. Finally in Section 13.4 we characterize the

complement of the support of a distribution in the case when the means are locally

L1 bounded.

It should be mentioned that the results of this chapter will be published soon in

[221].

13.2 Summability Methods in Several Variables

In this section we explain several methods of summability that one can use in

connection with the multidimensional Fourier inversion formula. We start with the

ψ−summability.

13.2.1 The ψ−summability

Let ψ ∈ S (Rn) be any function with ψ (0) = 1. If g ∈ S ′ (Rn) and ρ is a smooth

function in Rn with ρg ∈ S ′ (Rn) , then the evaluation

〈g (x) , ρ (x)〉 , (13.2.1)

is not defined, in general, because ρ may not longer belong to S (Rn) . However, if

ε > 0, the evaluation

G (ε) = 〈g (x) , ρ (x)ψ (εx)〉 , (13.2.2)

is well-defined. If

lim
ε→0

G (ε) = S , (13.2.3)
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exists, then we say that the evaluation 〈g (x) , ρ (x)〉 is ψ−summable to S, and

write

〈g (x) , ρ (x)〉 = S (ψ) . (13.2.4)

When g is locally integrable, then (13.2.4) can be written as∫
Rn

g (x) ρ (x) dx = S (ψ) , (13.2.5)

while if g (x) =
∑∞

n=1 cnδ (x− bn) , then (13.2.4) becomes

∞∑
n=1

cnρ (bn) = S (ψ) . (13.2.6)

In particular, if ψ (x) = e−|x|
2

then the (ψ) summability becomes the Gauss-

Weierestrass summability; we may write 〈g (x) , ρ (x)〉 (G-W) in this case.

Proposition 13.2. Let ψ ∈ S (Rn) with ψ (0) = 1. Let f ∈ S ′ (Rn) . Then

f (x) =
1

(2π)n

〈
f̂ (u) , eiu•x

〉
(ψ) , (13.2.7)

distributionally in the space S ′ (Rn) , that is, ∀ρ ∈ S (Rn) ,

lim
ε→0+

〈
1

(2π)n

〈
f̂ (u) , eiu•xψ (εu)

〉
, ρ (x)

〉
= 〈f (x) , ρ (x)〉 . (13.2.8)

Moreover, relation (13.2.7) holds pointwise at any point x = x0 where the distri-

butional point value f (x0) exists.

Proof. The result follows immediately from Theorem 12.6 and Corollary 12.4 be-

cause

1

(2π)n

〈
f̂ (u) , eiu•xψ (εu)

〉
= F (x, ε) , (13.2.9)

where F is the φ−transform of f for φ (x) = (2π)−n ψ̂ (x) .

Observe, in particular, that the Fourier inversion formula is always valid distri-

butionally, in the space D′ (Rn) , in the Gauss-Weierestrass summability sense for

any tempered distribution.
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We also have pointwise convergence at all points where the symmetric point

value exists, provided that ψ is radial.

Proposition 13.3. Let ψ ∈ S (Rn) be a radial test function with ψ (0) = 1. Let

f ∈ S ′ (Rn) . Let x0 ∈ Rn be a point where the distributional symmetric value

fsym (x0) exists. Then

fsym (x0) =
1

(2π)n

〈
f̂ (u) , eiu•x0

〉
(ψ) . (13.2.10)

13.2.2 Abel Summability

The Abel method of summability follows by taking ψ (x) = e−|x| in the (ψ) summa-

bility procedure:

〈g (x) , ρ (x)〉 = S (A) . (13.2.11)

if

lim
ε→0+

〈
g (x) , ρ (x) e−ε|x|

〉
= S . (13.2.12)

There is an obvious problem in the application of this method, namely, the

function e−|x| does not belong to S (Rn) since it is not differentiable at x = 0. It

is fair to say, however, that e−|x| does have the behavior of the space S (Rn) as

|x| → ∞. If g satisfies certain conditions near x = 0, then
〈
g (x) , ρ (x) e−ε|x|

〉
can

be computed, for instance, if g is a locally integrable function in a neighborhood

of x = 0, or more generally if it is a Radon measure in such a neighborhood.

We can consider Abel means for general g if we accept that in some cases these

means are not unique. Indeed, let e (g) be an extension of g ∈ S ′ (Rn) to the dual

space
(
X⊗̂D (S)

)′
, where we use polar coordinates x =rω, r ≥ 0, ω ∈ S, and

where X is the space of restrictions of functions ρ (r) for ρ ∈ S (R) to [0,∞),

i.e., X = S[0,∞). Then ρ (x) e−ε|x| belongs to X⊗̂D (S) and thus we can consider

the Abel means G (ε) =
〈
e(g) (x) , ρ (x) e−ε|x|

〉
, and its limit as ε ↘ 0 instead
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of (13.2.12). Some g have canonical extensions e (g) , but in general e (g) is not

uniquely defined.

If we use Abel summability in the Fourier inversion formula, we obtain the means

U (x, t) =
1

(2π)n

〈
e
(
f̂
)

(u) , eiu•x−t|u|
〉
, (13.2.13)

which is harmonic in H : Utt +
∑n

j=1 Uxjxj
= 0. A similar analysis to that of

Proposition 13.2 yields

lim
t→0+

U (x, t) = f (x) . (13.2.14)

We also observe that for a fixed t > 0 the function U (x, t) belongs to S ′ (Rn) .

We can thus say that the Abel means in the Fourier inversion formula of a

tempered distribution f ∈ S ′ (Rn) are those harmonic functions in H with these

properties. Functions like U (x, t) = t or U (x, t) = 3x2
j t − t3 are Abel means of

f = 0, and thus the source of non-uniqueness.

If f ∈ E ′ (Rn) , or more generally if f (x) = O (1) (C) as |x| → ∞, then one can

define a canonical Abel mean for the Fourier inversion formula as

U (x, t) = cn

〈
f (y) ,

t(
t2 + ‖x− y‖2)n+1

2

〉
, (13.2.15)

where

cn =
Γ
(
n+1

2

)
π

n+1
2

=

∫
Rn

dy(
1 + ‖y‖2)n+1

2

−1

, (13.2.16)

and where the kernel in (13.2.15) is the Poisson kernel for H. In this case U (x, t)

is the φ−transform of f for φ (y) = cn
(
1 + ‖y‖2)−n+1

2 .

Observe that if the distributional symmetric value fsym (x0) exists then for any

Abel mean U (x, t) we have that U (x0, t) → fsym (x0) , that is,

fsym (x0) =
1

(2π)n

〈
f̂ (u) , eiu•x0

〉
(A) . (13.2.17)
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13.2.3 Cesàro Summability

We can also consider Cesàro summability by spherical means [61, Section 6.8].

Summability by spherical means can actually be reduced to summability in one

variable since using polar coordinates, x =rω, r ≥ 0, ω ∈ S, we obtain

〈f (x) , 1x〉 =
〈
F (r) , rn−1

〉
(C) , (13.2.18)

where

F (r) = 〈f (rω) , 1ω〉D′(S)×D(S) . (13.2.19)

The distribution F is not uniquely defined at r = 0, however we can always write

f = f1 + f2, where f1 has compact support and where 0 /∈ supp f2. The evaluation

〈f1 (x) , φ (x)〉 is well-defined for any φ ∈ E (Rn) , so we need to consider only the

case when f = f2 satisfies that supp f ⊂ {x : |x| ≥ a} for some a > 0. Then F will

be uniquely defined if we require that suppF ⊂ [a,∞).

We now explain when 〈f (x) , φ (x)〉 is Cesàro summable by spherical means of

order N,

〈f (x) , φ (x)〉 = ` (C,N)r . (13.2.20)

If φ ≡ 1 the (C,N)r summability means that the one-variable evaluation

〈
F (r) , rn−1

〉
= ` (C,N) , (13.2.21)

exists in the (C,N) sense. For a general φ it means that 〈φ (x) f (x) , 1x〉 = `

(C,N)r . The notation (C)r is used for Cesàro summability by spherical means,

namely when there exists some N such that the evaluation is (C,N)r .

Observe that the (C,N)r summability corresponds to the case where

ψN (x) = H (1− |x|) (1− |x|)N

N !
, (13.2.22)

in the ψ−summability. Here H is the Heaviside function.

384



If f ∈ K′ (Rn) and φ ∈ K (Rn) , then the evaluation 〈f, φ〉 exists in the (C)r

sense, that is, it exists (C,N)r for some N. The value of N depends on φ in this

case: Consider the example where f (x) = eix and φ (x) = xn. On the other hand,

if f ∈ S ′ (Rn) and φ ∈ S (Rn) then the evaluation 〈f, φ〉 also exists (C)r since

〈f, φ〉 = 〈φf, 1〉 , and φf ∈ K′ (Rn) , but now if f ∈ S ′ (Rn) is fixed then there

exists N such that 〈f, φ〉 exists (C,N)r for all test functions φ ∈ S (Rn) .

The Cesàro means of the Fourier inversion formula will converge distributionally,

as in the case of the Abel means and the (ψ) means, but this happens if N is large.

Proposition 13.4. Let f ∈ S ′ (Rn) . Then there exists N such that

f (x) =
1

(2π)n

〈
f̂ (u) , eiu•x

〉
(C,N)r , (13.2.23)

distributionally in the space S ′ (Rn) , in the sense that for each ρ ∈ S (Rn)

lim
ε→0+

〈
1

(2π)n

〈
f̂ (u) , eiu•xψN (εu)

〉
, ρ (x)

〉
= 〈f (x) , ρ (x)〉 (C,N)r . (13.2.24)

Proof. Indeed,〈
1

(2π)n

〈
f̂ (u) , eiu•xψN (εu)

〉
, ρ (x)

〉
=

1

(2π)n

〈
f̂ (u) , ρ̂ (−u)ψN (εu)

〉
,

(13.2.25)

and there exists N such that the evaluation
〈
f̂ , φ

〉
exists (C,N)r for all test func-

tions φ ∈ S (Rn) , in particular for φ (u) = ρ̂ (−u) . But since

(2π)−n
〈
f̂ (u) , ρ̂ (−u)

〉
= 〈f (x) , ρ (x)〉 ,

then (13.2.24) is obtained.

It is interesting to observe if f ∈ E ′ (Rn) then there is no need to use Cesàro

summability in (13.2.23), that is, we actually get convergence of the spherical

means. Similarly, if f is periodic of periods in
∏n

j=1 τjZ, so that its Fourier trans-

form is concentrated on a discrete set, and the Fourier inversion formula is the
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Fourier series, then we also get convergence. However, for a general f ∈ S ′ (Rn)

there is a value N for which (13.2.23) holds, but the spherical means are not (C,M)

summable if M < N.

When the distributional symmetric value fsym (x0) exists then (13.1.4) implies

that we have pointwise Cesàro summability,

fsym (x0) =
1

(2π)n

〈
f̂ (u) , eiu•x0

〉
(C,N)r ,

if N is large.

13.3 Continuity

If U (x, t) is harmonic in H, with distributional boundary value f (x) = U (x, 0+) ∈

S ′ (Rn) , and f is continuous in an open set Ω ⊂ Rn, then it is well-known that

actually U (x, t) can be extended as a continuous function to H∪ (Ω× {0}) , and

consequently, U (x, t) → f (x) uniformly on compacts of Ω. In fact, this is a general

result for the φ−transform.

Proposition 13.5. Let f ∈ D′ (Rn) and let F (x, t) be its φ−transform. Suppose

that φ ∈ D (Rn) or that (12.3.17), (12.3.18), and (12.3.19) are satisfied. If f is

an ordinary bounded function in a neighborhood of a point x0 and that function is

continuous at x = x0 then

lim
(x,t)→(x0,0)

F (x,t) = f (x0) , (13.3.1)

so that F can be extended as a continuous function to H∪ ({x0} × {0}) .

Proof. The results of Section 12.3 show that (13.3.1) holds if x0 ∈ Rn \ supp f.

Hence, it is enough to prove (13.3.1) when f is an ordinary bounded function

with compact support. Let ε > 0, and let B be an open neighborhood of x0, with

compact closure, such that |f (y)− f (x0)| < ε for y ∈ B. Write F (x,t)−f (x0) =
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G1 (x,t) +G2 (x,t) , where

G1 (x,t) = t−n
∫
B

(f (y)− f (x0))φ
(
t−1 (y − x)

)
dy , (13.3.2)

G2 (x,t) = t−n
∫

Rn\B
(f (y)− f (x0))φ

(
t−1 (y − x)

)
dy . (13.3.3)

Then G2 (x,t) → 0 as t→ 0 uniformly on compacts of B, while

|G1 (x,t)| ≤ ε

∫
Rn

|φ (y)| dy , (13.3.4)

and (13.3.1) follows.

Observe that if the conditions of the Proposition 13.5 are satisfied and f (x0) = γ

distributionally then F (x,t) → γ as (x,t) → (x0,0) in a non-tangential fashion,

while if the distributional symmetric value exists, fsym (x0) = γ, and φ is radial

then F (x0,t) → γ as t → 0+. According to Proposition 13.5 if f is continuous at

x = x0 then F (x,t) → γ as (x,t) → (x0,0) in an unrestricted fashion.

Proposition 13.6. Let f ∈ D′ (Rn) and let F (x, t) be its φ−transform. Suppose

that φ ∈ D (Rn) or that (12.3.17), (12.3.18), and (12.3.19) are satisfied. If f

is a continuous function in an open set Ω ⊂ Rn then F can be extended as a

continuous function to H∪ (Ω× {0}) , and F (x, t) → f (x) uniformly on compacts

of Ω. Conversely, if F (x, t) → f (x) uniformly on compacts of Ω, then f is a

continuous function in Ω.

Proof. The direct part follows immediately from the previous proposition, while

the converse result follows because uniform convergence on compacts implies dis-

tributional convergence.

In particular, we have the following result for summability of the Fourier inver-

sion formula.
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Corollary 13.7. Let f ∈ S ′ (Rn) . If f is a continuous function in an open set

Ω ⊂ Rn then the ψ means, for any ψ ∈ S (Rn) , any Abel means, or the Cesàro

means of large order converge to f uniformly on compacts of Ω :

f (x) =
1

(2π)n

〈
f̂ (u) , eiu•x

〉
(T) , (13.3.5)

uniformly on x ∈ K, K a compact subset of Ω, for (T) = (ψ) , (A) , or (C,N)r

for N large. Conversely, if (13.3.5) holds uniformly on compacts of Ω then f is a

continuous function on Ω.

13.4 The Support of a Distribution

We now show how we can obtain a characterization of the complement of the sup-

port of a distribution if we add some extra conditions to the pointwise convergence

to zero of the symmetric means. Naturally, the uniform convergence to zero of

the means on compacts of an open set Ω gives that Ω ⊂ Rn \ supp f, because

of the Corollary 13.7; this is the result of González Vieli and Graham [75] when

(T) = (C,N)r for N large.

Let us start with the φ−transform.

Theorem 13.8. Let f ∈ D′ (Rn) and let F (x, t) be its φ−transform. Assume that

φ (x) ≥ 0 ∀x ∈ Rn, while φ (0) > 0. Suppose that φ ∈ D (Rn) or that (12.3.17),

(12.3.18), and (12.3.19) are satisfied. Suppose that pointwise

lim
t→0+

F (x, t) = 0 , ∀x ∈ Ω , (13.4.1)

where Ω is an open set. Let p ∈ [1,∞] and suppose that for 0 < t ≤ t0 the function

F (x, t) is locally bounded in Lp (Ω) , i.e., if K is compact in Ω, there exists a

constant M = M (K, p) such that(∫
K

|F (x, t)|p dx

)1/p

≤M , (13.4.2)
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for p <∞, or if p = ∞,

sup {|F (x, t)| : x ∈ K} ≤M . (13.4.3)

Then Ω ⊂ Rn \ supp f.

Proof. It is enough to do it when p = 1, since local boundedness in Lq (Ω) for

q ≥ 1 implies local boundedness in L1 (Ω) . Now, local boundedness in L1 (Ω) plus

distributional convergence yield that f is a Radon measure in Ω : if {tn} is any

sequence of positive numbers that converges to zero then local boundedness in

L1 (Ω) implies that there exists a subsequence {tnk
} such that F (x, tnk

) converges

∗−weakly in the dual space of Cc (Ω) , the continuous functions with compact

support in Ω, that is, F (x, tnk
) → ν (x) where ν is a measure in Ω; but clearly

f = ν in Ω.

We can then write, in Ω, f = fac + fdis + fsin, where fac, the absolutely con-

tinuous part, is a locally integrable function in Ω, fdis (x) =
∑

a∈A caδ (x− a)

where A is countable at the most and
∑

a∈A∩K |ca| converges for all K compact

with K ⊂ Ω, and where fsin is a continuous measure concentrated on a set of

Lebesgue measure zero. But the distributional point value fac (x) exists almost ev-

erywhere because fac is locally integrable and equals the distributional point value

f (x) almost everywhere since fdis (x) = fsin (x) = 0 almost everywhere, and from

(13.4.1) those values are 0, so that the function fac is null a.e. in Ω, and so the

distribution fac = 0 in Ω. On the other hand, if ca0 6= 0 then the contributions

form
∑

a∈A\{a0} caδ (x− a) and from fsin (x) give parts of F (a0, t) that are of order

o (t−n) as t → 0+, so that the main contribution comes from ca0δ (x− a0) , which

yields F (a0, t) ∼ ca0t
−nφ (0) as t → 0+. However, this is not possible because of

(13.4.1); hence the discrete part fdis also vanishes. Thus f = fsin = µ, a singular

measure. We can write µ = µ+ − µ−, where µ± are positive continuous measures,
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concentrated on disjoint sets, Z±. But using the results of [173, Chap.4], the set of

points x0 with infinite upper symmetric derivative

lim sup
ε→0+

ε−n
∫
|x−x0|<ε

dµ± (x) = ∞ , (13.4.4)

is of full measure with respect to |µ| , and at those points, because φ (x) ≥ 0

∀x ∈ Rn and φ (0) > 0,

lim sup
ε→0+

|F (x0, ε)| ≥ lim sup
ε→0+

ε−n
∫
|x−x0|<ε

φ (0) dµ± (x) , (13.4.5)

contradicting (13.4.1); therefore fsin = 0.

We immediately obtain a corresponding result for the characterization of the

complement of the support in the Fourier inversion formula.

Corollary 13.9. Let f ∈ S ′ (Rn) . Suppose that pointwise

1

(2π)n

〈
f̂ (u) , eiu•x

〉
= 0 (T) , (13.4.6)

for all x ∈ Ω, where Ω is an open set, and where (T) = (ψ) , (A) , or (C,N)r

for N large. If the means are locally bounded in Lp (Ω) for some p ∈ [1,∞] then

Ω ⊂ Rn \ supp f.
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Chapter 14
Global Behavior of Integral Transforms

14.1 Introduction

In this chapter we investigate global estimates for various integral transforms of a

certain class of functions.

In a recent article, R. Berndt [13] obtained the following global estimate for the

Fourier sine transform of the function f,

A

x
f

(
1

x

)
≤
∫ ∞

0

f(u) sin(ux) du ≤ B

x
f

(
1

x

)
, ∀x > 0 , (14.1.1)

where A and B are positive constants, provided that f is a differentiable function

defined on (0,∞) that satisfies

c1
f(x)

x
≤ −f ′(x) ≤ c2

f(x)

x
, (14.1.2)

where c1 and c2 are constants with

0 < c1 ≤ c2 < 2 . (14.1.3)

It should be remarked that asymptotic estimates of the behavior of the sine and

of other integral transforms of regularly varying functions [183] in terms of the

function f (1/x) had been obtained before [189, 190, 191], both as x → 0+ and

as x → ∞. However, (14.1.1) is a global estimate, that considers not only the

endpoint behavior but that holds for all x > 0.

Our aim is to generalize (14.1.1) in two directions. On the one hand, we want

to consider other kernels than sine, so we shall give conditions on the kernel k (x)

such that an estimate of the form

A′

x
f

(
1

x

)
≤
∫ ∞

0

f(u)k(ux) du ≤ B′

x
f

(
1

x

)
, ∀x > 0 , (14.1.4)
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holds if f satisfies (14.1.2).

On the other hand, we shall remove the condition c2 < 2 for the sine transform.

Actually, this condition was imposed by R. Berndt to guarantee the integrability

of sin(ux)f(x) at x = 0; if c2 ≥ 2, it may not be longer integrable near from

0. In such a case, the ordinary sine transform of f will not exist, but one may

consider regularizations of f which are tempered distribution of the space S ′(R),

and whose Fourier sine transforms satisfy a global estimate as in (14.1.1), modulo

a polynomial. In this way, we remove the problem of nonintegrability at x = 0.

We are also able to remove the integrability condition (in general, if c2 ≥ 1, f may

not be integrable at 0) and obtain global estimates modulo a polynomial for the

Laplace transform of f.

Our analysis is based on a characterization of the class of function V, which

consists of those differentiable functions that satisfy (14.1.2). This characterization

is given in Section 14.3. Using this characterization we are able to give several global

estimates for integral transforms of elements of V both for general oscillatory

kernels, particularly for the sine transform, and for the Laplace transform; it is

done in Sections 14.4 and 14.5.

The results of the chapter are already published in [214].

14.2 Preliminaries

We shall briefly discuss the concept of regularization [48, 61, 108]. Let f be a real-

valued function, which we assume to be locally integrable in R \ {0} ; we say that

a distribution f̃ ∈ S ′(R) is a regularization of f at 0, if for all φ ∈ S(R) with

suppφ ⊆ (−∞, 0) ∪ (0,∞) , we have〈
f̃(x), φ(x)

〉
=

∫ ∞

−∞
f(x)φ(x) dx .

In other words, f̃ is an extension of f ∈ S ′(R \ {0}) to the whole real line. The

function f has a regularization at x = 0 if and only if it has algebraic growth near
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the origin, in the Cesàro sense [48]. If a function f has a regularization at 0, then

it has infinitely many regularizations at 0, and all of them are obtained by adding

a linear combination of the Dirac delta function and its derivatives concentrated

at 0 [61, 208, 252]. Thus, given f̃ and f̃1, two regularizations of f at 0, they satisfy

f̃1 (x) = f̃ (x) +
n∑
i=0

aiδ
(i) (x) , (14.2.1)

for some constants a0, . . . , an.

We shall define the sine transform of an odd tempered distribution by duality.

Note that if φ ∈ S(R) is an odd function, then its sine transform, defined as∫ ∞

0

φ(u) sin(xu) du =
i

2
φ̂(x) , (14.2.2)

is also an odd element of S(R). So, the sine transform is an isomorphism on the

subspace of odd elements of S(R). We define the sine transform for odd distri-

butions in S ′(R) as the transpose of the sine transform on the subspace of S(R)

consisting of odd functions. Alternatively, the sine transform of an odd distribution

f ∈ S ′(R) is the odd tempered distribution F ∈ S ′(R) given by

F =
i

2
f̂ . (14.2.3)

14.3 Characterization of the Class V

In this section we shall define and characterize the class of functions V. The study

of integral transforms of elements in this class will be the central subject of this

chapter.

Definition 14.1. A positive, differentiable function f defined on (0,∞) is said to

be an element of V if it satisfies

c1
f(x)

x
≤ −f ′(x) ≤ c2

f(x)

x
, (14.3.1)

where c1 and c2 are positive numbers.
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We shall prove that the functions in V satisfy a variational property. Let us start

by setting

ε(t) =
−tf ′(t)
f(t)

. (14.3.2)

It follows that ε satisfies

c1 ≤ ε(t) ≤ c2 , ∀t > 0 . (14.3.3)

By integrating −ε(t)/t, we obtain

log f(x) = −
∫ x

1

ε(t)

t
dt+ log f(1) , (14.3.4)

and hence

f(x) = f(1) exp

{
−
∫ x

1

ε(t)

t
dt

}
, (14.3.5)

which gives us a representation formula for f . Conversely, if (14.3.5) and (14.3.3)

hold, then f satisfies (14.3.1). This fact is stated in the following lemma.

Lemma 14.2. A function f defined on (0,∞) belongs to the class V if and only

if it satisfies (14.3.5), where ε satisfies (14.3.3).

We now give another characterization of the elements of V.

Theorem 14.3. A function f , defined on (0,∞), belongs to V if and only if it is

a positive differentiable function and satisfies

1

uc1
≤ f(ux)

f(x)
≤ 1

uc2
, ∀x ∈ (0,∞) , ∀u ∈ (0, 1] , (14.3.6)

and

1

uc2
≤ f(ux)

f(x)
≤ 1

uc1
, ∀x ∈ (0,∞) , ∀u ∈ [1,∞) . (14.3.7)

Proof. We assume that f ∈ V. By the Lemma 14.2,

f(x) = f(1) exp

{
−
∫ x

1

ε(t)

t
dt

}
,
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where c1 ≤ ε(t) ≤ c2. Therefore,

f(ux)

f(x)
= exp

{∫ x

1

ε(t)

t
dt−

∫ xu

1

ε(t)

t
dt

}
. (14.3.8)

Let us take u ∈ (0, 1]. Then we have∫ x

1

ε(t)

t
dt−

∫ xu

1

ε(t)

t
dt =

∫ x

xu

ε(t)

t
dt . (14.3.9)

Moreover,

log

(
1

uc1

)
= c1

∫ x

xu

dt

t
≤
∫ x

xu

ε(t)

t
dt ≤ c2

∫ x

xu

dt

t
= log

(
1

uc2

)
.

Therefore, (14.3.6) holds. By using a similar argument, we can see that (14.3.7)

follows.

Let us now assume the converse. First of all, we shall show that f is a decreasing

function. Let us take y ≥ x; by setting u = x/y in (14.3.6), we obtain

f(x)

f(y)
=
f(y(x/y))

f(y)
≥
(
x

y

)−c1
≥ 1 ,

and so f is a decreasing function. Set now g(y) = log f(ey); by (14.3.6), we have

−c1u ≤ g(y + u)− g(y) ≤ −c2u, ∀ u < 0 ,

or

−c2 ≤
g(y + u)− g(x)

u
≤ −c1, ∀ u < 0 .

Taking u→ 0−, we obtain

−c2 ≤ g′(y) ≤ −c1 ,

and hence

c1 ≤
−f ′(ey)
f(ey)

ey ≤ c2 .

Therefore,

c1f(x)

x
≤ −f ′(x) ≤ c2f(x)

x
.

and thus f ∈ V.
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Corollary 14.4. If f belongs to V, with constants c1 and c2, then

f(t) = O

(
1

tc2

)
, t→ 0+ . (14.3.10)

Proof. According to the Theorem 14.3,

t−c1 ≤ f(t)

f(1)
≤ t−c2 , for all t ∈ (0, 1] .

Thus,

0 < tc2f(t) ≤ f(1), for all t ∈ (0, 1] ,

as required.

Note that the last corollary implies the integrability of f(u) sin(ux) (with respect

to u), in any interval (0, a) , a < ∞, only for c2 < 2. Moreover, if k is continuous

on (0,∞) and

k(t) = O (tα) , as t→ 0 ,

then for the integrability of f(u)k(ux) at 0 it is sufficient to have c2 < α + 1. We

observe also that the corollary implies that any f ∈ V admits regularizations in

the space S ′(R) since f (t) is bounded by a power of t as t→ 0+.

It is interesting that one may obtain inequalities similar to (14.3.6) and (14.3.7)

for functions that do not belong to V. Indeed, the following result applies to

oscillatory functions like f (x) = x−c (2 + sin ln x) .

Theorem 14.5. Let f be a positive function defined in (0,∞) . Suppose that for

each compact set J ⊂ (0,∞) there are constants m = m (J) and M = M (J) with

0 < m < M such that

m ≤ f (ux)

f (x)
≤M , ∀x ∈ (0,∞) , ∀u ∈ J . (14.3.11)

Then there exist constants Kq, 1 ≤ q ≤ 4, and c1, c2 such that

K1

uc1
≤ f(ux)

f(x)
≤ K2

uc2
, ∀x ∈ (0,∞) , ∀u ∈ (0, 1] , (14.3.12)
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and

K3

uc2
≤ f(ux)

f(x)
≤ K4

uc1
, ∀x ∈ (0,∞) , ∀u ∈ [1,∞) . (14.3.13)

Proof. Let

M+ (u) = sup

{
f (ux)

f (x)
: x ∈ (0,∞)

}
. (14.3.14)

Then M+ is locally bounded in (0,∞) and satisfies

M+ (uv) ≤M+ (u)M+ (v) . (14.3.15)

If we now write log u = n + θ, where n ∈ N and where 0 ≤ θ < 1, for u ≥ 1, we

obtain

M+ (u) ≤ sup
{
M+

(
eθ
)

: 0 ≤ θ ≤ 1
}
M+ (e)log u , (14.3.16)

whenever u ≥ 1, and thus the right inequality in (14.3.12) follows with K2 =

sup
{
M+

(
eθ
)

: 0 ≤ θ ≤ 1
}

and c2 = − log max {M+ (e) , 1} . This also gives us the

left inequality in (14.3.13) with K3 = 1/K2. The proof of the other two inequalities

is similar (or can be obtained by applying what we already proved to the function

1/f).

14.4 Oscillatory Kernels

Let f ∈ V. Suppose that c2 < 2 in Definition 14.1. It was proved by R. Berndt

[13, 14] that its sine transform satisfies

A

x
f

(
1

x

)
≤
∫ ∞

0

f(u) sin(ux) du ≤ B

x
f

(
1

x

)
, ∀x > 0 . (14.4.1)

The previous inequality provides us with an estimate of the global behavior for the

sine transform of f in terms of f (1/x).

Our aim is to generalize (14.4.1) in two directions. First , we want to consider

other kernels than sine, so we shall give conditions on the kernel such that an

estimate similar to (14.4.1) holds. Second, we shall remove the condition c2 < 2 for
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the sine transform; in such a case, the sine transform of f will exist as a tempered

distribution satisfying a global estimate as in (14.4.1), modulo a polynomial.

For our first goal, we define the k transform of f as the function F given by

F (x) =

∫ ∞

0

k(xu)f(u) du . (14.4.2)

We shall assume that k satisfies:

1. k is continuous on [0,∞) .

2. k has only simple zeros, located at t = λn, where {λn}∞n=0 satisfies that

λ0 = 0, and λ0 < λ1 < . . . < λn < . . . , where λn →∞ as n→∞; k changes

sign at every λn, being positive on (λ0, λ1) , and∣∣∣∣∫ λn+1

λn

k(t) dt

∣∣∣∣ ≥ ∣∣∣∣∫ λn+2

λn+1

k(t) dt

∣∣∣∣ . (14.4.3)

3. k(t) = O(tα), α ≥ 0, t→ 0.

We can now state our first theorem.

Theorem 14.6. Let f be an element of the class V. If k satisfies (1), (2) and (3),

and c2 < α + 1, then

F (x) =
1

x
f

(
1

x

)
h(x) , ∀ x > 0 , (14.4.4)

where h is continuous and bounded above and below by positive constants. Hence

there exist positive constants A and B such that

A

x
f

(
1

x

)
≤ F (x) ≤ B

x
f

(
1

x

)
, ∀ x > 0 . (14.4.5)

Note that Theorem 14.6 is applicable to a wide variety of kernels. For example,

it applies to the Hankel kernel defined by

k(t) = t1/2Jν(t), ν > −1

2
, (14.4.6)

under the assumption c2 < ν + 3
2
. Let us consider the proof of the Theorem 14.6.

398



Proof. If we perform a change of variables we obtain

F (x) = x−1

∫ ∞

0

f
(u
x

)
k(u) du . (14.4.7)

Let

dn(x) =

∫ λn+1

λn

f
(u
x

)
k(u) du . (14.4.8)

It follows that

F (x) = x−1

∞∑
n=0

dn(x) . (14.4.9)

Since
∑∞

n=0 dn(x) is an alternating series and |dn(x)| decreases to zero as n→∞,

we have

x−1

2n+1∑
j=0

dj(x) ≤ F (x) ≤ x−1

2n∑
j=0

dj(x) , n ≥ 0 , (14.4.10)

which is equivalent to∫ λ2n+2

0

f
(
u
x

)
f
(

1
x

)k(u) du ≤ F (x)

x−1f
(

1
x

) ≤ ∫ λ2n+1

0

f
(
u
x

)
f
(

1
x

)k(u) du . (14.4.11)

In particular, for n = 0,∫ λ2

0

f
(
u
x

)
f
(

1
x

)k(u) du ≤ F (x)

x−1f
(

1
x

) ≤ ∫ λ1

0

f
(
u
x

)
f
(

1
x

)k(u) du . (14.4.12)

Next, we shall find positive constants A, B <∞ such that∫ λ1

0

f
(
u
x

)
f
(

1
x

)k(u) du ≤ B , ∀ x > 0 , (14.4.13)

and ∫ λ2

0

f
(
u
x

)
f
(

1
x

) du ≥ A , ∀ x > 0 , (14.4.14)

and then (14.4.5) will follow. By Theorem 14.3,

f
(
u
x

)
f
(

1
x

) ≤ max

{
1

uc1
,

1

uc2

}
, (14.4.15)

and hence ∫ λ1

0

f
(
u
x

)
f
(

1
x

)k(u) du ≤
∫ λ1

0

max

{
1

uc1
,

1

uc2

}
k(u) du . (14.4.16)
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If we set

B =

∫ λ1

0

max

{
1

uc1
,

1

uc2

}
k(u) du , (14.4.17)

then (14.4.13) follows. Since f is a decreasing function and k is negative on (λ1, λ2) ,∫ λ1

0

f
(
u
x

)
f
(

1
x

)k(u) du+

∫ λ2

λ1

f
(
u
x

)
f
(

1
x

)k(u) du

≥
∫ λ1

0

f
(
u
x

)
f
(

1
x

)k(u) du+

∫ λ2

λ1

f
(
λ1

x

)
f
(

1
x

) k(u) du

=

∫ λ1

0

(
f
(
u
x

)
− f

(
λ1

x

))
f
(

1
x

) k(u) du+
f
(
λ1

x

)
f
(

1
x

) ∫ λ2

0

k(u) du ,

so that ∫ λ2

0

f
(
u
x

)
f
(

1
x

)k(u) du ≥
∫ λ1

0

(
f
(
u
x

)
− f

(
λ1

x

))
f
(

1
x

) k(u) du . (14.4.18)

Therefore, applying the mean value theorem, we obtain

f
(u
x

)
− f

(
λ1

x

)
= −f ′

(η
x

)(λ1 − u

x

)
,

for some point η ∈ (u, λ1) . Then, by the left inequality in the Definition 14.1,

f
(u
x

)
− f

(
λ1

x

)
≥ c1f

(η
x

) λ1 − u

η
.

Since 1
η
f
(
η
x

)
≥ 1

λ1
f
(
λ1

x

)
, we have

f
(u
x

)
− f

(
λ1

x

)
≥ f

(
λ1

x

)
c1 (λ1 − u)

λ1

≥ c1f

(
λ1

x

)
.

Combining (14.4.18) and the last inequality, it follows that∫ λ2

0

f
(
u
x

)
f
(

1
x

)k(u) du ≥
f
(
λ1

x

)
f
(

1
x

) ∫ λ1

0

c1k(u) du .

By Theorem 14.3, this implies that∫ λ2

0

f
(
u
x

)
f
(

1
x

)k(u) du ≥ c1 min

{
1

λc11
,

1

λc21

}∫ λ1

0

k(u) du . (14.4.19)

Setting A equal to the right side of the last inequality, the relation (14.4.14) has

been proved.
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Set now

h(x) =
F (x)

x−1f
(

1
x

) , x > 0 , (14.4.20)

so that

h(x) = lim
n→∞

2n∑
j=0

dj(x)

f
(

1
x

) . (14.4.21)

We shall show that each dj is continuous. Pick x0 ∈ (0,∞) and choose a such that

a > max {x0, 1}. By Theorem 14.3∣∣∣f (u
x

)
k(u)

∣∣∣ ≤ max {xc1 , xc2} f(u)k(u) ,

so that, for any x ∈ (0, a] , it follows that∣∣∣f (u
x

)
k(u)

∣∣∣ ≤ ac2f(u) |k(u)| .

We have found an integrable function that dominates f
(
u
x

)
k(u) for x ∈ (0, a] , this

implies that

lim
x→x0

dj(x) = dj(x0) .

Finally, we show that h is continuous. We claim that the convergence in (14.4.21)

is uniform on each interval [a, b] , 0 < a < b <∞. By (14.4.10),∣∣∣∣∣h(x)−
2n∑
j=0

dj(x)

f
(

1
x

)∣∣∣∣∣ ≤ |d2n+1(x)|
f
(

1
x

) .

We also have

|d2n+1(x)|
f
(

1
x

) =

∫ λ2n+2

λ2n+1

f
(
u
x

)
f
(

1
x

) |k(u)| du

≤ 1

f
(

1
a

) ∫ λ2n+2

λ2n+1

f
(u
x

)
|k(u)| du

≤
f
(
λ2n+1

b

)
f
(

1
a

) ∫ λ2n+2

λ2n+1

|k(u)| du

≤
f
(
λ2n+1

b

)
f
(

1
a

) ∫ λ1

0

k(u) du .

Since the last term approaches to 0 as n → ∞, the convergence in (14.4.21) is

uniform on any interval [a, b] , 0 < a < b <∞. Therefore, h is continuous.
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We now consider the second generalization of the estimate (14.4.1). We want to

emphasize that the sine transform in this analysis shall be considered as a tempered

distribution, so that we shall take a regularization of f, instead of f. If we let c2 > 2

with no restriction, the sine transform of f may not exist, as we remarked at the

end of Section 14.3. In order to define a regularization of f , we need to extend f

to the whole real line; we do this by setting f(x) = −f(−x) for x < 0, so that

it becomes an odd function; for the sake of simplicity, we shall keep denoting this

extension by f .

We state our second result.

Theorem 14.7. Let f be an odd function such that its restriction to (0,∞) belongs

to ∈ V. Suppose that f̃ is any regularization of f in S ′(R) which defines an odd

distributions. Denote the sine transform of f̃ by F . Then, for x > 0, either

F (x) =
h(x)

x
f

(
1

x

)
+ P (x) , (14.4.22)

or

F (x) = −h(x)

x
f

(
1

x

)
+ P (x) , (14.4.23)

where h is continuous and bounded above and below by positive constants and P is

a polynomial.

Proof. It is known that any two odd regularization of f, say f̃ and f̃1, satisfy

f̃ (x) = f̃1 (x) +
m∑
i=0

aiδ
(2i+1) (x) , (14.4.24)

where a0, a1, . . . , am are constants. Observe that the sine transform of the sum of

delta functions and its derivatives on the right side is a polynomial. To see this

fact, let φ be a test function of the space S(R), k ∈ N; then,〈
δ(k)(x),

∫ ∞

0

φ(u) sin(ux) du

〉
= 0, if k is even ;
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〈
δ(k)(x),

∫ ∞

0

φ(u) sin(ux) du

〉
=

∫ ∞

0

(−x)kφ(x) dx , if k = 4j + 1 ;

〈
δ(k)(x),

∫ ∞

0

φ(x) sin(ux) du

〉
=

∫ ∞

0

xkφ(x) dx , if k = 4j + 3 .

Therefore, it suffices to work with any particular odd regularization of f . So we

shall find a regularization of f for which the conclusion of the theorem holds. We

shall suppose that c2 ≥ 2; otherwise, the conclusion of this theorem would be a

consequence of the Theorem 4.1. Let n be the unique natural number such that

2n+ 1 ≤ c2 < 2n+ 3 . (14.4.25)

We shall divide the proof into two cases. We consider the cases when n is odd and

then when n is even.

Assume first that n is odd. Define now f̃ as

〈
f̃(x), φ(x)

〉
= p.v.

∫ 2π

−2π

f(x)

(
φ(x)−

2n+1∑
i=0

φ(i)(0)

i!
xi

)
dx (14.4.26)

+

∫
2π≤|x|

f(x)φ(x) dx ,

for φ ∈ S(R). Here p.v. stands for the Cauchy principal value of the integral at

the origin, that is, p.v.
∫

= limε→0+

∫
ε≤|x|. We shall prove that f̃ is well-defined.

Let φ ∈ S(R), then by Corollary 14.4

f(x)

(
φ(x)−

2n+1∑
i=0

φ(i)(0)

i!
xi

)
= O(x2n+2−c2) , x→ 0 ,

and so, by (14.4.25), it is integrable on (0, 2π) . The integrability on (2π,∞) is

clear since φ ∈ S(R). By an standard argument, f̃ ∈ S ′(R). Observe that f̃ is odd,

in fact the principal value integral in the definition of the distribution ensures that〈
f̃(x), φ(x)

〉
= 0, if φ is an even test functions. On the other hand, if the test
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function φ is odd, then〈
f̃(x), φ(x)

〉
= 2

∫ 2π

0

f(x)

(
φ(x)−

n∑
i=0

φ(2i+1)(0)

(2i+ 1)!
x2i+1

)
dx (14.4.27)

+ 2

∫ ∞

2π

f(x)φ(x) dx ,

We shall prove the formula for the sine transform of f̃ . Denote by F̃ the sine

transform of f̃ . Let us now set

K(x) = sinx−
n∑
i=0

(−1)i

(2i+ 1)!
x2i+1. (14.4.28)

Since n is odd,

K(x) ≥ 0, for x ≥ 0 .

Using the definition of F̃ , we have for an odd test function φ,〈
F̃ (x), φ(x)

〉
=

〈
f̃(x),

∫ ∞

0

φ(u) sin(xu) du

〉
= 2

∫ 2π

0

f(x)

(∫ ∞

0

φ(u)K(xu) du

)
dx

+ 2

∫ ∞

2π

f(x)

(∫ ∞

0

φ(u) sin(xu) du

)
dx

= 2

∫ ∞

0

φ(x)

x

(∫ 2π

0

f
(u
x

)
K(u) du+

∫ ∞

2π

f
(u
x

)
sinu du

)
dx ,

For a general φ ∈ S(R), we then obtain that〈
F̃ (x), φ(x)

〉
= p.v.

∫ ∞

−∞
φ(x)F̃ (x)dx , (14.4.29)

where

F̃ (x) =
1

|x|

[∫ 2π

0

f
(u
x

)
K(u) du+

∫ ∞

2π

f
(u
x

)
sinu du

]
. (14.4.30)

Hence F̃ can be identified with a classical function, in the sense that F̃ is the

distribution generated by the function given by (14.4.30) .

Next we set

h(x) =
F̃ (x)

x−1f
(

1
x

) , for x > 0 . (14.4.31)
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We shall find two constants, A and B, so that

A ≤ h(x) ≤ B , x > 0 . (14.4.32)

Notice that

h(x)−
∫ 2π

0

f
(
u
x

)
f
(

1
x

)K(u) du =

∫ ∞

2π

f
(
u
x

)
f
(

1
x

) sinu du . (14.4.33)

We also have that∫ 4π

2π

f
(
u
x

)
f
(

1
x

) sinu du ≤
∫ ∞

2π

f
(
u
x

)
f
(

1
x

) sinu du ≤
∫ 3π

2π

f
(
u
x

)
f
(

1
x

) sinu du . (14.4.34)

We can apply the argument that we used in Theorem 14.6 to find positive constants

A′ and B′ such that ∫ 3π

2π

f
(
u
x

)
f
(

1
x

) sinu du ≤ B′ , (14.4.35)

and

A′ ≤
∫ 4π

2π

f
(
u
x

)
f
(

1
x

) sinu du , (14.4.36)

for all x ∈ (0,∞) . Using the last inequalities, we obtain that

A′ ≤
∫ ∞

2π

f
(
u
x

)
f
(
u
x

) sinu du ≤ B′ . (14.4.37)

It follows that ∫ 2π

0

min

{
1

uc1
,

1

uc2

}
K(u) du+ A′ ≤ h(x) , (14.4.38)

and

h(x) ≤
∫ 2π

0

max

{
1

uc1
,

1

uc2

}
K(u) du+B′ , (14.4.39)

which shows that h is bounded above and below by positive constants.

We now prove the continuity of h. The continuity of∫ ∞

2π

f
(u
x

)
sinu du

follows from the proof of Theorem 14.6. Moreover, since

f
(
u
x

)
f
(

1
x

)K(u) ≤ max

{
1

uc1
,

1

uc2

}
K(u) , (14.4.40)
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it follows by the Lebesgue Dominated Convergence Theorem that

h(x)−
∫ ∞

2π

f
(
u
x

)
f
(

1
x

) sinu du ,

is continuous, and so is h(x). This completes the proof for the odd case.

We now assume that n is an even number. Define f̃ as〈
f̃(x), φ(x)

〉
= p.v.

∫ 3π

−3π

f(x)

(
φ(x)−

2n+1∑
i=0

φ(i)(0)

i!
xi

)
dx (14.4.41)

+

∫
3π≤|x|

f(x)φ(x) dx ,

for φ ∈ S(R). It follows that f̃ ∈ S ′(R). Set

J(x) =
n∑
i=0

(−1)i

(2i+ 1)!
x2i+1 − sin x , (14.4.42)

which is a positive function, since n is an even number. Let F̃ be the sine transform

of f̃ . We have that if x > 0

F̃ (x) =
1

x

[
−
∫ 3π

0

f
(u
x

)
J(u) du+

∫ ∞

3π

f
(u
x

)
sinu du

]
. (14.4.43)

Set

h(x) = − F̃ (x)

x−1f
(

1
x

) , x > 0 . (14.4.44)

It follows that

h(x) =

∫ 3π

0

f
(
u
x

)
f
(

1
x

)J(u) du−
∫ ∞

3π

f
(
u
x

)
f
(

1
x

) sinu du , (14.4.45)

for x > 0. We can find two positive constants, A′′ and B′′, such that

−
∫ 4π

3π

f
(
u
x

)
f
(

1
x

) sinu du ≤ B′′ ,

and

−
∫ 5π

3π

f
(
u
x

)
f
(

1
x

) sinu du ≥ A′′ .

From these inequalities, it follows that∫ 3π

0

min

{
1

uc1
,

1

uc2

}
J(u) du+ A′′ ≤ h(x) ,
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and,

h(x) ≤
∫ 3π

0

max

{
1

uc1
,

1

uc2

}
J(u) du+B′′ ,

which proves the required inequalities. The continuity of h can be established as

in the odd case.

14.5 Laplace Transform

In this section, we shall give a result analogous to Theorem 14.7 for the Laplace

transform. The estimate is as follows.

Theorem 14.8. Let f ∈ V. Suppose that f̃ is any regularization of f in S ′(R)

such that supp f ⊆ [0,∞). Then, for x > 0, the Laplace transform satisfies either

L
{
f̃ ;x

}
=
h(x)

x
f

(
1

x

)
+ P (x) , (14.5.1)

or

L
{
f̃ ;x

}
= −h(x)

x
f

(
1

x

)
+ P (x) , (14.5.2)

where h is continuous and bounded above and below by positive constants, and P

is a polynomial.

Proof. We proceed as in Theorem 14.7. It suffices to consider a particular regular-

ization of f . Let n be the integer part of c2. We shall consider two cases. First, we

assume that n is odd, and then we consider the even case.

Assume that n is odd. Define f̃ as

〈
f̃(x), φ(x)

〉
=

∫ 1

0

f(x)

(
φ(x)−

n∑
i=0

φi(0)

i!

)
dx (14.5.3)

+

∫ ∞

1

f(x)φ(x) dx ,

for φ ∈ S(R). Then, f̃ is a regularization of f in S ′(R). Since supp f̃ = [0,∞) ,

its Laplace transform is well-defined. Let us denote its Laplace transform by L̃, so
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that

L̃(x) =

∫ 1

0

f(u)

(
e−ux −

n∑
i=0

(−ux)i

i!

)
du+

∫ ∞

1

f(u)e−ux du

=
1

x

[∫ 1

0

f
(u
x

)(
e−u −

n∑
i=0

(−u)i

i!

)
du+

∫ ∞

1

f
(u
x

)
e−u du

]
.

We now consider the following inequality,

e−x −
n∑
i=0

(−x)i

i!
> 0, for x > 0 . (14.5.4)

Set

h(x) =
L̃(x)

x−1f
(

1
x

) , (14.5.5)

and

K(x) = e−x −
n∑
i=0

(−x)i

i!
. (14.5.6)

Then, we have∫ 1

0

K(u)

uc1
du+

∫ ∞

1

e−u

uc2
du ≤ h(x) ≤

∫ 1

0

K(u)

uc2
du+

∫ ∞

0

e−u

uc1
du .

This completes the proof for the odd case.

Assume now that n is even. Set

J(x) =
n∑
i=0

(−x)i

i!
− e−x ; (14.5.7)

it follows that

J(x) > 0 , for x > 0 .

Take A > 1 such that ∫ 1

0

J(u)

uc1
du−

∫ ∞

A

e−u

uc1
du > 0 , (14.5.8)

and ∫ 1

0

J(u)

uc2
du−

∫ ∞

A

e−u

uc2
du < 0 . (14.5.9)
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We define f̃ , a regularization of f , as

〈
f̃(x), φ(x)

〉
=

∫ A

0

f(x)

(
φ(x)−

n∑
i=0

φ(i)(0)

i!

)
dx (14.5.10)

+

∫ ∞

A

f(x)φ(x) dx .

It follows that L̃, the Laplace transform of f̃ , is given by

L̃(x) =
1

x

(
−
∫ A

0

f
(u
x

)
J(u) du+

∫ ∞

A

f
(u
x

)
e−u du

)
. (14.5.11)

Define now h by

h(x) =
−L̃(x)

x−1f
(

1
x

) . (14.5.12)

We have that ∫ 1

0

J(u)

uc1
du+

∫ A

1

J(u)

uc2
du−

∫ ∞

A

e−u

uc1
du ≤ h(x) ,

and

h(x) ≤
∫ 1

0

J(u)

uc2
du+

∫ A

1

J(u)

uc1
du−

∫ ∞

A

e−u

uc2
du ,

so h is bounded above and below by positive constants.
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[6] P. Antosik, J. Mikusiński, R. Sikorski, Theory of distributions. The sequen-
tial approach, Elsevier Scientific Publishing Co., Amsterdam; PWN—Polish
Scientific Publishers, Warsaw, 1973.

[7] W. Arendt, C. Batty, M Hieber, F. Neubrander, Vector-valued Laplace trans-
forms and Cauchy problems, Monographs in Mathematics, 96, Birkhäuser
Verlag, Basel, 2001.
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[81] T. H. Gronwall, Über eine Summationsmethode und ihre Anwendung auf die
Fouriersche Reihe, J. reine angew. Math. 147 (1916), 16–35 (in German).

[82] A. Grossman, G. Loupias, E. M. Stein, An algebra of pseudodifferential oper-
ators and Quantum Mechanics in phase space, Ann. Inst. Fourier 18 (1968),
343–368.

[83] O. von Grudzinski, Quasihomogeneous distributions, North-Holland Mathe-
matics Studies 165, North-Holland Publishing Co., Amsterdam, 1991.

[84] L. de Haan, On regular variation and its application to the weak conver-
gence of sample extremes, Mathematical Centre Tracts, 32, Mathematisch
Centrum, Amsterdam, 1970.

[85] G. H. Hardy, Divergent Series, Clarendon Press, Oxford, 1949.

[86] G. H. Hardy, J. E. Littlewood, Contributions to the arithmetic theory of
series, Proc. London Math. Soc. 11 (1913), 411-478.

[87] G. H. Hardy, J. E. Littlewood, Tauberian theorems concerning power series
and Dirichlet’s series whose coefficients are positive, Proc. London Math.
Soc. 13 (1914), 174–191.

[88] G. H. Hardy, J. E. Littlewood, Some theorems concerning Dirichlet’s series
Messenger of Mathematics 43 (1914), 134–147.

[89] G. H. Hardy, J. E. Littlewood, Solution of the Cesàro summability problem
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[97] L. Hörmander, The analysis of linear partial differential operators. I. Distri-
bution theory and Fourier analysis, second edition. Grundlehren der Mathe-
matischen 256, Springer-Verlag, Berlin, 1990.
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Cesàro de limz→∞

∫ z
a
f(x)cosxydx, Math. Annalen 76 (1915), 315–326.

[167] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag,
Berlin, 1992.

[168] C.T. Rajagopal, Note on some Tauberian theorems of O. Szász, Pacific J.
Math. 2 (1952), 377–384.
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[175] K. Saneva, A. Bučkovska, Asymptotic expansion of distributional wavelet
transform, Integral Transforms Spec. Funct. 17 (2006), 85–91.
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[203] A. Takači, On Sebastiao e Silva’s order of growth of distributions, Univ. u
Novom Sadu. Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20 (1) (1990), 155–166.

[204] A. Tauber, Ein Satz aus der Theorie der unendlichen Reihen, Monatsh.
Math. Phys. 8 (1897), 273–277 (in German).

[205] N. Teofanov, Convergence of multiresolution expansions in the Schwartz
class, Math. Balkanica (N.S.) 20 (2006), 101–111.

[206] E. C. Titchmarsh, Introduction to the theory of Fourier Integrals, second
edition, Clarendon Press, Oxford, 1948.

[207] E. C. Titchmarsh, The Theory of Functions, second edition, Oxford Univer-
sity Press, Oxford, 1979.
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Distribution, Studia Math. 19 (1960), 27–52 (in German).
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