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Abstract. We give a characterization of measures in terms of the
boundary behavior of the φ−transform, and obtain results on the
almost everywhere convergence of the φ−transform at the bound-
ary.

1. Introduction

The aim of this article is to use the distributional φ−transform, intro-
duced in [8] in the one variable case, and here in the multidimensional
case, in order to characterize the (positive) measures that belong to
the distribution space D′ (Rn) .

We use the notation H = {(x, t) : x ∈ Rn and t > 0} . Let F (x, t) ,
(x, t) ∈ H, be the φ−transform of a distribution f ∈ D′ (Rn) , namely
F (x, t) = 〈f (x + ty) , φ (y)〉 , where φ is a fixed positive test function
of the space D (Rn) . We prove that f is a measure if and only if the
inferior limit of F (x, t) , as (x, t) approaches any point in the boundary
∂H = Rn×{0} , in an angular fashion, is positive. Since any measure is
equal to a function almost everywhere, this result provides a technique
to show the existence of the almost everywhere angular limits of the
φ−transform of a distribution.

The plan of the article is as follows. We start by giving some neces-
sary background in Section 2, and then continue by proving some useful
properties of the multidimensional φ−transform in Section 3. Then we
consider the characterization of measures in Section 4.

2. Preliminaries

We shall use the notion of the distributional point value of general-
ized functions introduced by  Lojasiewicz, in one [5] and several vari-
ables [6]. Let f ∈ D′ (Rn) , and let x0 ∈ Rn. We say that f has the
distributional point value γ at x = x0, and write

(2.1) f (x0) = γ, distributionally ,
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if limε→0 f (x0 + εx) = γ in the space D′ (Rn) , that is, if

(2.2) lim
ε→0

〈f (x0 + εx) , φ (x)〉 = γ

∫
Rn

φ (x) dx ,

for all test functions φ ∈ D (Rn) . It can be shown that f (x0) = γ,
distributionally, if and only if there exists a multi-index k0 ∈ Nn such
that for all multi-indices k ≥ k0 there exists a k primitive of f, G with
DkG = f, that is a continuous function in a neighborhood of x = x0

and satisfies

(2.3) G (x) =
γ (x− x0)

k

k!
+ o

(
|x− x0||k|

)
, as x → x0 .

It is important to observe that the distributional point values determine
a distribution if they exist everywhere, that is, if f ∈ D′ (Rn) is such
that f (x0) = 0 distributionally ∀x0 ∈ Ω, where Ω is an open set, then
f = 0 in Ω [5, 6].

We shall follow [2, 4] for the notions related to Cesàro behavior of
distributions. If f ∈ D′ (Rn) and α ∈ R is not a negative integer, we
say that f is bounded by |x|α in the Cesàro sense for |x| large, and
write

(2.4) f (x) = O (|x|α) (C) , as |x| → ∞ ,

if there exists a multi-index k ∈ Nn and a k primitive, DkG = f, which
is a (locally integrable) function for |x| large and satisfies the ordinary
order relation

(2.5) G (x) = O
(
|x|α+|k|

)
, as |x| → ∞ .

Naturally (2.5) will not hold for all primitives of f, and if it holds for
k it will also hold for bigger multi-indices.

3. The φ−transform

In this section we explain how we can extend to several variables the
φ−transform introduced in [8] (see also [1]). Let φ ∈ D (Rn) be a fixed
normalized test function, that is, one that satisfies

(3.1)

∫
Rn

φ (x) dx = 1 .

If f ∈ D′ (Rn) we introduce the function of n+ 1 variables F = Fφ {f}
by the formula

(3.2) F (x, t) = 〈f (x + ty) , φ (y)〉 ,
where (x, t) ∈ H, the half space Rn × (0,∞) . Naturally the evaluation
in (3.2) is with respect to the variable y. We call F the φ−transform
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of f. Whenever we consider φ−transforms we assume that φ satisfies
(3.1).

The definition of the φ−transform tell us that if f (x0) = γ, then
F (x0, t) → γ as t → 0+, but actually F (x, t) → γ as (x, t) → (x0, 0)
in an angular or non-tangential fashion, that is if |x− x0| ≤ Mt for
some M > 0 (just replace φ (x) in (2.2) by φ (x− rω) where |ω| = 1
and 0 ≤ r ≤M.)

We can also consider the φ−transform if φ ∈ A (Rn) satisfies (3.1)
and f ∈ A′ (Rn) , where A (Rn) is a suitable space of test functions,
such as S (Rn) or K (Rn).

We start with the distributional convergence of the φ−transform.

Theorem 1. If φ ∈ D (Rn) and f ∈ D′ (Rn) , then

(3.3) lim
t→0+

F (x, t) = f (x) ,

distributionally in the space D′ (Rn) , that is, if ρ ∈ D (Rn) then

(3.4) lim
t→0+

〈F (x, t) , ρ (x)〉 = 〈f (x) , ρ (x)〉 .

Proof. We have that

(3.5) 〈F (x, t) , ρ (x)〉 = 〈% (ty) , φ (y)〉 ,
where

(3.6) % (z) = 〈f (x) , ρ (x− z)〉 ,
is a smooth function of z. The  Lojasewicz point value % (0) exists and
equals the ordinary value and thus

(3.7) lim
t→0+

〈% (ty) , φ (y)〉 = % (0) = 〈f (x) , ρ (x)〉 ,

as required. �

The result of the Theorem 1 also hold in other cases. In order to
obtain those results we need some lemmas. Recall that an asymptotic
order relation is strong if it remains valid after differentiation of any
order.

Lemma 1. Let f ∈ E ′ (Rn) be a distribution with compact support K.
Let φ ∈ E (Rn) be a test function that satisfies (3.1) and

(3.8) φ (x) = O
(
|x|β

)
, strongly as |x| → ∞ ,

where β < −n. Then

(3.9) lim
t→0+

F (x, t) = 0 ,

uniformly on compacts of Rn \K.
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Proof. There exits a constants M > 0 and q ∈ N such that

(3.10) |〈f (y) , ρ (y)〉| ≤M

q∑
|j|=0

∥∥Djρ
∥∥

K,∞ ∀ρ ∈ E (Rn) ,

where ‖ρ‖K,∞ = sup {|ρ (x)| : x ∈ K} . There exist r0 > 0 and con-

stants Mj > 0 such that
∣∣Djφ (x)

∣∣ ≤Mj |x|β−|j| for |x| ≥ r0 and |j| ≤ q.
Let L be a compact subset of Rn \ K, and let t0 > 0 be such that if
0 < t ≤ t0 then t−1 |x− y| ≥ r0 for all x ∈ L, y ∈ K. Then, since

(3.11) F (x, t) = t−n
〈
f (y) , φ

(
t−1 (y − x)

)〉
,

it follows that for 0 < t ≤ t0,

(3.12) |F (x, t)| ≤M2t
−n−β, ∀x ∈ L,

where M2 = M
∑q

|j|=0Mj is a constant. Since −β − n > 0, we obtain

that (3.9) holds uniformly on x ∈ L. �

The definition of the  Lojasiewicz point value is that if f ∈ D′ (Rn)
then f (x0) = γ distributionally if 〈f (x0 + εx) , φ (x)〉 → γ

∫
Rn

φ (x) dx,

whenever φ ∈ D (Rn) . If f belongs to a smaller class of distributions,
then 〈f (x0 + εx) , φ (x)〉 will be defined for test functions of a larger
class, not only for those of D (Rn) , and one may ask whether this
remains true in that case. There are cases where it is not true, for
instance if f ∈ E ′ (R) [3]. However, it was shown in [3] that in the one
variable case, it holds if f (x0) = γ distributionally and the following
conditions are satisfied:

(3.13) f (x) = O (|x|α) (C) , as |x| → ∞ ,

(3.14) φ (x) = O
(
|x|β

)
, strongly as |x| → ∞ ,

and α+β < −1, β < −1. In particular, it is valid when f ∈ S ′ (R) and
φ ∈ S (R) [3, 7, 9]. Actually a corresponding result is valid in several
variables, and the proof is basically the same.

Theorem 2. Let f ∈ D′ (Rn) with f (x0) = γ distributionally. Let
φ ∈ E (Rn) . Suppose that

(3.15) f (x) = O (|x|α) (C) , as |x| → ∞ ,

(3.16) φ (x) = O
(
|x|β

)
, strongly as |x| → ∞ ,

(3.17) α + β < −n , and β < −n .



MEASURES AND THE φ−TRANSFORM 5

Then

(3.18) lim
ε→0

〈f (x0 + εx) , φ (x)〉 = γ

∫
Rn

φ (x) dx .

Proof. Suppose that x0 = 0. There exists a muti-index k and two
primitives of f, DkG1 = DkG2 = f such that they are continuous and

(3.19) G1 (x) = O
(
|x|α+|k|

)
, as |x| → ∞ ,

(3.20) G2 (x) =
γxk

k!
+ o

(
|x||k|

)
, as |x| → 0 .

Hence we can combine them into a single function G that satisfies

G(x) =
γxk

k!
+ o

(
|x||k|

)
, as |x| → 0 ,

|G (x)| ≤M |x||k| , for |x| ≤ 1 ,

|G (x)| ≤M |x|α+|k| , for |x| ≥ 1 ,

and

(3.21) f = g + DkG ,

where g has compact support and g vanishes near the origin. Then
(3.18) holds for g (with γ = 0), because of the Lemma 1. Therefore it
is enough to prove (3.18) if f = DkG; but in this case we may use the
Lebesgue dominated convergence theorem to obtain

lim
ε→0

〈f (εx) , φ (x)〉 = lim
ε→0

(−1)|k| ε−|k|
∫

Rn

G (εx) Dkφ (x) dx

=
(−1)|k| γ

k!

∫
Rn

xkDkφ (x) dx

= γ

∫
Rn

φ (x) dx ,

as required. �

In particular, (3.18) holds if f ∈ S ′ (Rn) and φ ∈ S (Rn) .
Using the same argument as in the last proof we can prove that if

f (x) = 0 for x ∈ Ω, an open set, and the conditions (3.15), (3.16),
and (3.17) are satisfied, then the convergence in (3.18) is uniform on
compacts of Ω.

We can now extend the distributional convergence of the φ−transform,
Theorem 1, to other cases.
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Theorem 3. If φ ∈ E (Rn) and f ∈ D′ (Rn) satisfy the conditions
(3.15), (3.16), and (3.17), then

(3.22) lim
t→0+

F (x, t) = f (x) ,

distributionally in the space D′ (Rn) , that is, if ρ ∈ D (Rn), then

(3.23) lim
t→0+

〈F (x, t) , ρ (x)〉 = 〈f (x) , ρ (x)〉 .

In particular, distributional convergence, (3.22), holds if φ ∈ S (Rn)
and f ∈ S ′ (Rn) .

Proof. We proceed as in the proof of the Theorem 1 by observing that
〈F (x, t) , ρ (x)〉 = 〈% (ty) , φ (y)〉 , where % (z) = 〈f (x) , ρ (x− z)〉 .
Next we observe that % is a smooth function, and that it satisfies
% (x) = O (|x|α) (C) , as |x| → ∞. Indeed, there exists a multi-index
k and a primitive of f of that order, DkG = f, which is an ordinary

function for large arguments and satisfies |G (x)| = O
(
|x||k|+α

)
as

|x| → ∞. We have then that

% (z) =
〈
Dk

xG (x) , ρ (x− z)
〉

= Dk
z 〈G (x) , ρ (x− z)〉 ,

and 〈G (x) , ρ (x− z)〉 =
∫

supp ρ
G (x + z) ρ (x) dx =O

(
|z||k|+α

)
as |z| →

∞, since supp ρ is compact. Hence, Theorem 2 allows us to obtain that
limt→0+ 〈% (ty) , φ (y)〉 = % (0) = 〈f (x) , ρ (x)〉 . �

Observe also if φ ∈ E (Rn) and f ∈ D′ (Rn) satisfy the conditions
(3.15), (3.16), and (3.17), then when the distributional point value
f (x0) exists, then F (x, t) → f (x0) as (x, t) → (x0, 0) in an angular
fashion.

4. Measures and the φ−transform

We shall use the following nomenclature. A (Radon) measure would
mean a positive functional in the space of compactly supported contin-
uous functions, which would be denoted by integral notation such as
dµ, or by distributional notation, f = fµ, so that

(4.1) 〈f, φ〉 =

∫
Rn

φ (x) dµ(x) ,

and 〈f, φ〉 ≥ 0 if φ ≥ 0. A signed measure is a real continuous functional
in the space of compactly supported continuous functions, denoted as,
say dν, or as g = gν . Observe that any signed measure can be writ-
ten as ν = ν+ − ν−, where ν± are measures concentrated on disjoint
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sets. We shall also use the Lebesgue decomposition, according to which
any signed measure ν can be written as ν = νabs + νsig, where νabs is
absolutely continuous with respect to the Lebesgue measure, so that
it corresponds to a regular distribution, while νsig is a signed measure
concentrated on a set of Lebesgue measure zero. We shall also need
to consider the measures (νsig)± = (ν±)sig, the positive and negative
singular parts of ν.

Our first results are very simple, but useful.

Theorem 4. Let f ∈ D′ (Rn) . Let U be an open set of Rn. Then
f is a measure in U if and only if its φ−transform F = Fφ {f} with
respect to a given normalized, positive test function φ ∈ D (Rn) satisfies
F (x, t) ≥ 0 for all (x, t) ∈ U, where U is some open subset of H with
U ⊂ U ∩ ∂H.

Proof. If f is a measure in U, and φ (x) = 0 for |x| ≥ R, then F (x, t) ≥
0 if the ball of center x and radius Rt is contained in U, and the set
of such points (x, t) ∈ H could be taken as U. Conversely, if such U
exists then 〈f, ψ〉 = limt→0 〈F (x, t) , ψ (x)〉 ≥ 0 whenever ψ ∈ D (Rn) ,
ψ ≥ 0, and suppψ ⊂ U. �

Theorem 5. Let f ∈ D′ (Rn) . Then f is a measure if and only if its
φ−transform F = Fφ {f} with respect to a given normalized, positive
test function φ ∈ D (Rn) satisfies F (x, t) ≥ 0 for all (x, t) ∈ H.

Proof. The proof is clear. �

If x0 ∈ Rn we shall denote by Cx0,θ the cone in H starting at x0 of
angle θ ≥ 0,

(4.2) Cx0,θ = {(x, t) ∈ H : |x− x0| ≤ (tan θ)t} .

If f ∈ D′ (Rn) is real valued and x0 ∈ Rn then we consider the upper
and lower angular values of its φ−transform,

(4.3) f+
φ,θ (x0) = lim sup

(x,t)→(x0,0)
(x,t)∈Cx0,θ

F (x, t) ,

(4.4) f−φ,θ (x0) = lim inf
(x,t)→(x0,0)
(x,t)∈Cx0,θ

F (x, t) .

The quantities f±φ,θ (x0) are well defined at all points x0, but, of course,
they could be infinite.
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Theorem 6. Let f ∈ D′ (Rn) . Let U be an open set. Then f is a
measure in U if and only if its φ−transform F = Fφ {f} with respect
to a given normalized, positive test function φ ∈ D (Rn) satisfies

(4.5) f−φ,θ (x) ≥ 0 ∀x ∈ U , ∀θ ∈ [0, π/2) .

Proof. If f is a measure in U, then F ≥ 0 in some open set of H, U
with U ⊂ U ∩ ∂H, and thus (4.5) is satisfied. Conversely, let us show
that if f is not a measure in U then (4.5) is not satisfied. First, if f
is not a measure then there exists η > 0 such that g = f + η is not a
measure; let G be the φ−transform of g. There exists an open ball B,
with B ⊂ U, such that g is not a measure in B. Using Theorem 4, if
0 < ε < 1 we can find (x1, t1) ∈ H with x1 ∈ B and t1 < ε, such that
G (x1, t1) < 0.

The test function φ has compact support, so suppose that φ (x) = 0
for |x| ≥ R. Since G (x1, t1) depends only on the values of g on the
closed ball |ξ − x1| ≤ Rt1, it follows that g is not a measure in that
ball and consequently given S > R and δ small enough, there exist tδ
and ξδ with |ξδ−x1| ≤ St1 such that G (ξδ, tδ) < 0. Let 0 < α < 1, and
choose ε such that the distance from B to the complement of U is bigger
than Sε (1− α)−1 . Hence we can define recursively two sequences {xn}
and {tn} such that

(4.6) |xn − xn−1| ≤ Stn−1 , 0 < tn < αtn−1 , G (xn, tn) < 0 .

The sequence {xn} converges to some x∗, because
∑∞

n=1 |xn+1 − xn|
converges, due to the inequality |xn+1 − xn| ≤ Sαn−1t1. Then x∗ ∈ U,
since |x∗ − x1| ≤ Sε (1− α)−1 . Actually,

(4.7) |x∗ − xn| ≤
∞∑

k=n

|xk+1 − xk| ≤
Stn

1− α
,

and it also follows that (xn, tn) ∈ Cx∗,θ if tan θ = S (1− α)−1 , and thus

(4.8) g−φ,θ (x∗) ≤ 0 .

But (4.8) in turn yields that f−φ,θ (x∗) < −η < 0. �

If f is a signed measure then it has point values almost everywhere
and thus the angular limit of its φ−transform exists almost everywhere
and equals the absolutely continuous part of the distribution. Therefore
we immediately obtain the following result.

Theorem 7. Let f ∈ D′ (Rn) . Suppose its φ−transform F = Fφ {f}
with respect to a given normalized, positive test function φ ∈ D (Rn)
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satisfies

(4.9) f−φ,θ (x) ≥ −M , ∀x ∈ U , ∀θ ∈ [0, π/2) ,

where U is an open set and where M is a constant. Then the angular
boundary limit

(4.10) fang (x) = lim
(x,t)→(x0,0)

angular

F (x, t) ,

exists almost everywhere in U and defines a locally integrable function.
Also there exists a singular measure µ+ such that in U

(4.11) f = fang + µ+ .

Proof. Indeed, Theorem 6 yields that f +M is a measure in U, whose
Lebesgue decomposition yields (4.11), after a small rearrangement of
terms. �

We also obtain the following result on the existence of almost every-
where angular limits of the φ−transform.

Theorem 8. Let f ∈ D′ (Rn) . Suppose its φ−transform F = Fφ {f}
with respect to a given normalized, positive test function φ ∈ D (Rn)
satisfies

(4.12) M+ ≥ f+
φ,θ (x) ≥ f−φ,θ (x) ≥ −M− , ∀x ∈ U , ∀θ ∈ [0, π/2) .

where U is an open set and where M± are constants. Then the angular
boundary limit

(4.13) fang (x) = lim
(x,t)→(x0,0)

angular

F (x, t) ,

exists almost everywhere in U and defines a locally integrable function,
and the distribution f is a regular distribution equal to fang in U :

(4.14) 〈f (x) , ψ (x)〉 =

∫
Rn

fang (x)ψ (x) dx ,

for all ψ ∈ D (Rn) with suppψ ⊂ U.
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