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Abstract. This paper provides new cases of the prime number theorem
for Beurling’s generalized prime numbers. Let N be the distribution of
a generalized number system and let π be the distribution of its primes.
It is shown that N(x) = ax + O(x/ logγ x) (C), γ > 3/2, where (C)
stands for the Cesàro sense, is sufficient for the prime number theorem
to hold, i.e., π(x) ∼ x/ log x. The Cesàro asymptotic estimate explicitly
means that ∫ x

1

N(t)− at
t

(
1− t

x

)m
dt = O

(
x

logγ x

)
,

for somem ∈ N. Therefore, it includes Beurling’s classical condition. We
also show that under these conditions the Möbius function, associated
to the generalized number system, has mean value equal to 0. The
methods of this article are based on complex Tauberian theorems for
local pseudo-function boundary behavior and arguments from the theory
of asymptotic behavior of Schwartz distributions.

1. Introduction

Let 1 < p1 ≤ p2, . . . be a non-decreasing sequence of real numbers tending
to infinity. Following Beurling [3], we shall call such a sequence P = {pk}∞k=1
a set of generalized prime numbers. We arrange the set of all possible prod-
ucts of generalized primes in a non-decreasing sequence 1 < n1 ≤ n2, . . . ,
where every nk is repeated as many times as it can be represented by
pα1
ν1 p

α2
ν2 . . . p

αm
νm with νj < νj+1. The sequence {nk}∞k=1 is called the set of

generalized integers.
The function π denotes the distribution of the generalized prime numbers,

(1.1) π(x) = πP (x) =
∑
pk<x

1 ,
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while the function N denotes the distribution of the generalized integers,

(1.2) N(x) = NP (x) =
∑
nk<x

1 .

Beurling’s problem is then to find conditions over the function N which
ensure the validity of the prime number theorem (PNT), i.e.,

(1.3) π(x) ∼ x

log x
, x→∞ .

In his seminal work [3], Beurling proved that the condition

(1.4) N(x) = ax+O

(
x

logγ x

)
, x→∞ ,

where a > 0 and γ > 3/2, suffices for the PNT to hold. If γ = 3/2,
then the PNT need not hold, as showed first by Beurling by a continuous
analog of a generalized prime number system, and then by Diamond [6] who
exhibited an explicit example of generalized primes not satisfying the PNT.
For further studies about Beurling’s generalized numbers we refer the reader
to [1, 5, 6, 7, 13, 22, 23, 38, 39, 40].

The present article studies new cases of the prime number theorem for
generalized primes. Our main goal is to show the following theorem.

Theorem 1.1. Suppose there exist constants a > 0 and γ > 3/2 such that

(1.5) N(x) = ax+O

(
x

logγ x

)
(C) , x→∞ ,

Then the prime number theorem (1.3) holds.

In (1.5) the symbol (C) stands for the Cesàro sense [10]. It explicitly
means that there exists some (possibly large) m ∈ N such that the following
average estimate is satisfied:

(1.6)
∫ x

1

N(t)− at
t

(
1− t

x

)m
dt = O

(
x

logγ x

)
, x→∞ .

We might have written (C,m) in (1.5) if (1.6) holds for a specific m; how-
ever, the value of m will be totally unimportant for our arguments and we
therefore choose to omit it from the notation.

Naturally, if Beurling’s condition (1.4) is verified, then (1.6) is automat-
ically satisfied for all m ∈ N. Thus, Theorem 1.1 is a natural extension of
Beurling’s theorem. Observe that our theorem is sharp, namely, the PNT
does not necessary hold if γ = 3/2 in (1.5), as shown by Diamond coun-
terexample itself.

To demonstrate that Theorem 1.1 really generalizes Beurling’s result, we
construct a number system for which the counting function becomes regular
only after smoothing.
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Proposition 1.2. There exists a system of generalized integers such that we
have |N(x)−x| > c(x/ log4/3 x) infinitely often, for some constant c > 0, but
N(x) = x + O(x/ log5/3 x) in Cesàro sense. Furthermore, for this number
system we have π(x) = x/ log x+O(x/ log4/3−ε x), for any ε > 0.

Kahane has provided yet another extension of Beurling’s theorem. He
proved in [13] that the L2 hypothesis

(1.7)
∫ ∞

1

∣∣∣∣(N(t)− at) log t
t

∣∣∣∣2 dt
t
<∞ ,

for some a > 0, also implies the PNT. The sufficiency of (1.7) was conjec-
tured by Bateman and Diamond [1]. Observe that (1.7) includes Beurling’s
condition (1.4). On the other hand, (1.5) and (1.7) have completely different
nature. We therefore believe that it is very unlike that either of them be
contained in the other. It would be very interesting to find concreate ex-
amples of generalized number systems supporting our claim. It would also
be of great interest to find a general condition that included both (1.5) and
(1.7) at the same time.

In addition to the PNT, we will show that the Möbius function of a
generalized number system has mean value equal to zero, provided that the
condition (1.5) be satisfied for γ > 3/2. We actually conjecture that γ > 1
is enough for the Möbius function to have zero mean value (cf. Section 5),
such a conjecture is suggested by the results of Zhang [38].

Our approach to the proof of Theorem 1.1 is through Tauberian theorems,
and it is close to Landau-Ikehara way to the PNT [12, 20] (see also [1]).
Therefore, we shall study first the zeta function associated to a generalized
prime number system satisfying the hypothesis of Theorem 1.1. In Section 3,
we show the non-vanishing property of the zeta function on the line <es = 1,
it will be the main ingredient for the application of Tauberian arguments.
The use of methods from distribution theory and generalized asymptotics
(asymptotic analysis on distribution spaces [10, 26, 36]) is crucial for our
arguments in this part of the article, it provides a very convenient language
of translation between the condition (1.5) and the key properties of the
zeta function. Therefore, we have chosen to include a preliminary section,
Section 2.2, explaining the notation of generalized asymptotics. In Section
4 we show several Tauberian theorems for Laplace transforms and Dirichlet
series. The results from Section 4 are inspired by a recent distributional
proof of the PNT (for ordinary primes) obtained by the second author and
R. Estrada in [34]; some of such Tauberian results were implicitly obtained
by the second author in his dissertation [32, Chap. II]. These Tauberian
theorems involve local pseudo-function boundary behavior, which relax the
boundary requirements to a minimum. We point out that J. Korevaar has
recently made extensive use of local pseudo-function boundary behavior in
complex Tauberian theory [14, 15, 17] and applications to number theory
[15, 18]. We deduce Theorem 1.1 in Section 5, where we also provide other
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related results. Finally, in Section 6 we construct a number system proving
Proposition 1.2.

2. Preliminaries and Notation

Throughout this article, the sequence P = {pk}∞k=1 stands for a fixed set of
generalized prime numbers with generalized integers {nk}∞k=1. The functions
N and π are given by (1.2) and (1.1), respectively. We shall always assume
that the distribution of the generalized integers satisfies (1.5) for some γ > 0.
The letter s stands for complex numbers s = σ + it.

2.1. Functions Related to Generalized Primes. We denote by Λ = ΛP
the von Mangoldt function of P , defined on the set of generalized integers
as

(2.1) Λ(nk) =

{
log pj , if nk = pmj ,

0 , otherwise .

The Chebyshev function of P is defined as usual by

(2.2) ψ(x) = ψP (x) =
∑
pmk <x

log pk =
∑
nk<x

Λ(nk) .

Observe that (1.5) (even for γ > 0) implies ( [9, Lem. 3],[14],[37]) the
ordinary asymptotic behavior

(2.3) N(x) ∼ ax , x→∞ ,

hence, the Dirichlet series
∑
n−sk is easily seen to have abscissa of conver-

gence less or equal to 1. The zeta function of P is then the analytic function

(2.4) ζ(s) = ζP (s) =
∞∑
k=1

1
nsk

, <e s > 1 .

Because of the well known result [1, Lem. 2E], the relation (1.3) is equivalent
to the statement

(2.5) ψ(x) ∼ x .

Our approach to the PNT (Theorem 1.1) will be to show (2.5).
The Möbius function of P is defined on the generalized integers by

(2.6) µ(nk) = µP (nk) =

{
(−1)m , if nk = pν1pν2 . . . pνm with νj < νj+1 ,

0 , otherwise .

Finally, note [1, Lem. 2D] that we have

(2.7)
∞∑
k=1

Λ(nk)
nsk

= −ζ
′(s)
ζ(s)

, <e s > 1 .
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Likewise, one readily verifies the identity

(2.8)
∞∑
k=1

µ(nk)
nsk

=
1
ζ(s)

, <e s > 1 .

2.2. Distributions and Generalized Asymptotics. We shall make ex-
tensive use of the theory of Schwartz distributions and some elements from
asymptotic analysis on distribution spaces.

We denote by D(R) and S(R) the Schwartz spaces of test functions con-
sisting of smooth compactly supported functions and smooth rapidly de-
creasing functions, respectively, with their usual topologies. Their dual
spaces, the spaces of distributions and tempered distributions, are denoted
by D′(R) and S ′(R), respectively. The space D(0,∞) is the space of smooth
functions supported on the interval (0,∞), its dual is the space D′(0,∞).
The space DL2(R) is the space of smooth functions with all derivatives be-
longing to L2(R), its dual space is D′L2(R). The space DL2(R) is the inter-
section of all Sobolev spaces while D′L2(R) is the union of them. The space
D′L1(R) is the dual space of Ḃ(R), the space of smooth functions with all
derivatives tending to 0 at ±∞. We refer to [27] for the very well known
properties of all these spaces (see also [4, 10, 26, 36, 37]).

We use the following Fourier transform

(2.9) φ̂(t) =
∫ ∞
−∞

e−itxφ(x) dx , for φ ∈ S(R) ;

it is defined by duality on S ′(R), that is, if f ∈ S ′(R) its Fourier transform
is the tempered distribution given by

(2.10)
〈
f̂(t), φ(t)

〉
=
〈
f(x), φ̂(x)

〉
.

Let f ∈ S ′(R) be supported in [0,∞), its Laplace transform is the analytic
function

(2.11) L{f ; s} = L{f(x); s} =
〈
f(x), e−sx

〉
, <e s > 0 .

The relation between the Laplace and Fourier transforms [4, 36] is given
by f̂(t) = limσ→0+ L{f ;σ + it}, where the last limit is taken in the weak
topology of S ′(R).

We shall employ various standard tempered distributions, we will follow
the notation from [10]. The Heaviside function is denoted by H, it is simply
the characteristic function of (0,∞). The Dirac delta “function” δ is defined
by 〈δ(x), φ(x)〉 = φ(0), note that H ′(x) = δ(x) (the derivative is understood
in the distributional sense, of course). The Fourier transform of H is Ĥ(t) =
−i/(t− i0), where the latter is defined as the distributional boundary value,
on <e s = 0, of the analytic function 1/s, <e s > 0, i.e.,〈

−i
t− iσ

, φ(t)
〉

= lim
σ→0+

∫ ∞
−∞

φ(t)
σ + it

dt , φ ∈ S(R) .
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We now turn our attention to asymptotic analysis of distributions [10, 25,
26, 37], the so called generalized asymptotics.

Let f ∈ D′(R), a relation of the form

(2.12) lim
h→∞

f(x+ h) = β in D′(R) ,

means that the limit is taken in the weak topology of D′(R), that is, for each
test function φ ∈ D(R) the following limit holds,

(2.13) lim
h→∞

〈f(x+ h), φ(x)〉 = lim
h→∞

(f ∗ φ̌)(h) = β

∫ ∞
−∞

φ(x)dx ,

where φ̌(·) = φ(− ·) and ∗ denotes the convolution. Relation (2.12) is an
example of the so called S-asymptotics of generalized functions. We can also
study error terms by introducing S−asymptotic boundedness. Let ρ be a
positive function. Then, we write

(2.14) f(x+ h) = O(ρ(h)) as h→∞ in D′(R)

if for each φ ∈ D(R) we have 〈f(x+ h), φ(x)〉 = O(ρ(h)), for large values
of h. The little o symbol and S−asymptotics as h → −∞ are defined in a
similar way. With this notation we might write (2.12) as f(x+h) = β+o(1)
as h → ∞ in D′(R). We may also talk about S−asymptotics in other
spaces of distributions with a clear meaning. For example, if we write in
(2.12) the space S ′(R) instead of D′(R), it means that f ∈ S ′(R) and (2.13)
holds for φ ∈ S(R). We refer the reader to [24, 26] for further properties of
S−asymptotics of distributions.

On the other hand, we may attempt to study the asymptotic behavior of a
distribution by looking at the behavior at large scale of the dilates f(λx) as
λ→∞. In this case, we encounter the concept of quasiasymptotic behavior
of distributions [10, 26, 31, 32, 33, 35, 37]. We will study in connection to
the PNT two particular cases of this type of behavior, namely, a limit of the
form

(2.15) lim
λ→∞

f(λx) = β in D′(0,∞) ,

and quasiasymptotic estimates

(2.16) f(λx) = O

(
λν

logα λ

)
as λ→∞ in D′(R) .

Needless to say that (2.15) and (2.16) should be always interpreted in the
weak topology of the corresponding space, that is, after evaluation on test
functions.

2.3. Pseudo-functions. A tempered distribution f ∈ S ′(R) is called a
pseudo-function if f̂ ∈ C0(R), that is, f̂ is a continuous function which
vanishes at ±∞.

The distribution f ∈ D′(R) is said to be locally a pseudo-function if it
coincides with a pseudo-function on each finite open interval. The property
of being locally a pseudo-function admits a characterization [15] in terms of
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a generalized “Riemann-Lebesgue lemma”. Indeed, f is locally a pseudo-
function if and only if eihtf(t) = o(1) as |h| → ∞ in the weak topology of
D′(R), i.e., for each φ ∈ D(R)

(2.17) lim
|h|→∞

〈
f(t), eihtφ(t)

〉
= 0 .

We may call (2.17) the generalized Riemann-Lebesgue lemma for local pseu-
do-functions. It is then clear that if f ∈ L1

loc(R), then it is locally a pseudo-
function, due to the classical Riemann-Lebesgue lemma.

Two cases of local pseudo-functions will be of vital importance below.
Let f be the Fourier transform of an element from D′L1(R), then f is locally
a pseudo-function. It follows directly from the fact that Fourier transforms
of elements from D′L1(R) are continuous functions [27, p. 256]. Let now f

be the Fourier transform of a distribution from D′L2(R) and let g ∈ L2
loc(R);

because of the remark in [27, p. 256], the product g · f ∈ D′(R) is a well
defined distribution and it is locally a pseudo-function.

Let G(s) be analytic on <e s > α. We shall say that G has local pseudo-
function boundary behavior on the line <e s = α if it has distributional
boundary values [4] in such a line,

lim
σ→α+

∫ ∞
−∞

G(σ + it)φ(t)dt = 〈f(t), φ(t)〉 , φ ∈ D(R) ,

and the boundary distribution f ∈ D′(R) is locally a pseudo-function.

3. Properties of the Zeta Function

Our arguments for the proof of Theorem 1.1 rely on the properties of the
zeta function. We shall derive such properties from those of the following
special distribution. Define

(3.1) v(x) = vP (x) =
∞∑
k=1

1
nk

δ(x− log nk) .

Let us verify that v is a tempered distribution. We have that g(x) =
e−xN(ex) is a bounded function, hence g ∈ S ′(R); therefore, v = g′ + g ∈
S ′(R).

The distribution v is intimately related to the zeta function. In fact, its
Laplace transform is, <e s > 0,

(3.2) L{v, s} =
〈
v(x), e−sx

〉
=
∞∑
k=1

1
ns+1
k

= ζ(s+ 1) .

Taking the boundary values of (3.2) on <es = 0, in the distributional sense,
we obtain the Fourier transform of v,

(3.3) v̂(t) = ζ(1 + it) .
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Observe that we are interpreting (3.3) in the distributional sense and not as
equality of functions, i.e., for each φ ∈ S(R),

(3.4) 〈v̂(t), φ(t)〉 = lim
σ→1+

∫ ∞
−∞

ζ(σ + it)φ(t)dt .

Next, we provide a lemma which establishes the main connection between
(1.5) and the S−asymptotic properties of v.

Lemma 3.1. The following assertions are equivalent:

(i) In the sense of (1.6)

(3.5) N(x) = ax+O

(
x

logγ x

)
(C) , x→∞ ,

(ii) There exists j ∈ N such that

(3.6)
∑
nk<x

(
1− nk

x

)j
=

ax

j + 1
+O

(
x

logγ x

)
, x→∞ ,

(iii) In the sense of the quasiasymptotic behavior

(3.7) N ′(λx) =
∞∑
k=1

δ(λx− nk) = aH(x) +O

(
1

logγ λ

)
,

as λ→∞ in the space D′(R).
(iv) In the sense of the S−asymptotic behavior

(3.8) v(x+ h) =
∞∑
k=1

1
nk

δ(x+ h− log nk) = a+O

(
1
hγ

)
,

as h→∞ in the space S ′(R).

Proof. (ii)⇔(iii). The equivalence between (3.6) and (3.7) is a direct con-
sequence of the structural theorem for quasiasymptotic boundedness [33,
Thrm. 5.8] (see also [32, p. 311]).

(ii)⇔(iii). By the structural theorem for quasiasymptotic boundedness
[33, Thrm 5.8], we have that (3.5) holds if and only if

N(λx)− aλxH(x)
λx

= O

(
1

logγ λ

)
as λ→∞ in D′(R) .

The analog to [31, Thrm. 4.1] for the big O symbol ([33, Thrm. 10.71, p.
322]) implies that the above relation is equivalent to

N(λx) = aλxH(x) +O

(
λ

logγ λ

)
as λ→∞ in D′(R) ,

which turns out to be equivalent to (3.7) ([33, Thrm 5.8] again).
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(iii)⇔(iv). By [24, Thrm. 3] (see also [25, Prop. 10.2]), we have that the
S−asymptotics (3.8) is equivalent to the same S−asymptotics just in the
space D′(R). Multiplication by ex+h shows that it holds if and only if

∞∑
k=1

δ(x+ h− log nk) = aex+h +O

(
eh

hγ

)
,

or in terms of test functions,

e−h
∞∑
k=1

ϕ(log nk − h) = a

∫ ∞
−∞

etϕ(et)dt+O

(
1
hγ

)
, h→∞ ,

for each ϕ ∈ D(R). By writing, λ = eh, and φ(x) = ϕ(log x), we obtain that
(iv) is equivalent to

1
λ

∞∑
k=1

φ
(nk
λ

)
= a

∫ ∞
0

φ(x)dx+O

(
1

logγ λ

)
, λ→∞ ,

for each φ ∈ D(0,∞), i.e., the quasiasymptotic behavior (3.7) but in the
space D′(0,∞). Now, using the big O analog to [31, Thrm. 4.1] once again,
we obtain the equivalence between (iv) and (iii). �

Define the remainder distribution E1 = v − aH. Because of Lemma 3.1,
E1 has the following S−asymptotic bound

(3.9) E1(x+ h) = O

(
1
|h|γ

)
as |h| → ∞ in S ′(R) .

For it, it is enough to argue E1(x + h) = v(x + h) − aH(x + h) = a(1 −
H(x + h)) + v(x + h) − a = O(1/hγ), h → ∞, in the space S ′(R). On the
other hand, the estimate as h → −∞ follows easily from the fact that E1

has support in [0,∞).
We now obtain the first properties of the zeta function. From the prop-

erties of E1, we can show the continuity of ζ(s) on <e s = 1, s 6= 1.

Proposition 3.2. Let N satisfy (3.5) with γ > 1. Then ζ(s) − a/(s − 1)
extends to a continuous function on <e s ≥ 1, that is,

(3.10) ζ(1 + it) +
ia

t− i0
∈ C(R) .

Consequently, tζ(1+it) is continuous over the whole real line and so ζ(1+it)
is continuous in R \ {0}.

Proof. Observe that Ê1(t) = ζ(1+ it)+ ia/(t− i0). Due to (3.9), E1 ∗φ(h) =
O(|h|−γ), h → ∞, and so E1 ∗ φ ∈ L1(R), for each φ ∈ S(R). This is
precisely Schwartz characterization [27, p. 201] of the space D′L1(R), and so
E1 ∈ D′L1(R). Therefore [27, p. 256], Ê1 is continuous. �

The ensuing lemma is the first step toward the non-vanishing property of
ζ on <e s = 1, in the case γ > 3/2.
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Lemma 3.3. Let N satisfy (3.5) with 1 < γ < 2. For each t0 6= 0 there
exists C = Ct0 > 0 such that for 1 < σ < 2

(3.11) |ζ(σ + it0)− ζ(1 + it0)| < C(σ − 1)γ−1 .

Proof. Find ϕ ∈ D(R) such that 0 /∈ supp ϕ̂ and ϕ̂(t) = 1 for t in a small
neighborhood of t0. Set f = v ∗ ϕ, then f̂(t) = ϕ̂(t)v̂(t) = ϕ̂(t)ζ(1 + it).
We have that f is a smooth function and it satisfies the estimate f(x) =
O(|x|−γ). Indeed, ̂(H ∗ ϕ)(t) = −it−1ϕ̂(t) ∈ D(R), thus H ∗ ϕ ∈ S(R), then
the estimate for f follows from (3.9). In particular f ∈ L1(R) and so f̂ is
continuous.

Define the harmonic function

U(σ + it) =
〈
f(x)H(x), e−itxe−σx

〉
+
〈
f(x)H(−x), e−itxeσx

〉
;

then U is a harmonic representation of f̂ on <e s > 0, in the sense that
limσ→0+ U(σ + it) = f̂(t), uniformly over R [4]. We claim that ζ(σ + it0) =
U(σ−1+it0)+O(σ−1), σ → 1+. Consider V (s) = ζ(s+1)−U(s), harmonic
on <e s > 0. Because ζ(1 + it) − f̂(t) = 0 on a neighborhood of the point
t0, it follows that V (s) converges uniformly to 0 in a neighborhood of t0 as
<e s→ 0+. Then, by applying the reflection principle [30, Sect. 3.4] to the
real and imaginary parts of V , we have that V admits a harmonic extension
to a (complex) neighborhood of t0. Therefore, U(s) − ζ(s + 1) = V (s) =
O(|s− t0|), for <e s > 0 being sufficiently close to t0. This shows the claim.

We now show |U(σ − 1 + it0)− ζ(1 + t0)| = O((σ − 1)γ−1), σ → 1+; the
estimate (3.11) follows immediately from this claim. The estimate f(x) =
O(|x|−γ) and [10, Lem. 3.9.4, p. 153] imply the following quasiasymptotics

e−iλt0xf(λx)H(x) = µ+
δ(x)
λ

+O

(
1
λγ

)
as λ→∞ in S ′(R) ,

and

e−iλt0xf(λx)H(−x) = µ−
δ(x)
λ

+O

(
1
λγ

)
as λ→∞ in S ′(R) ,

where µ± =
∫∞
0 f(±x)e∓it0xdx, and so µ− + µ+ =

∫∞
−∞ f(x)e−it0xdx =

f̂(t0) = ζ(1 + t0). Then, the two quasiasymptotics imply

U

(
1
λ

+ it0

)
=
〈
e−it0xf(x)H(x), e−x/λ

〉
+
〈
e−it0xf(x)H(−x), ex/λ

〉
= λ

〈
e−λit0xf(λx)H(x), e−x

〉
+ λ

〈
e−λit0xf(λx)H(−x), ex

〉
= µ+

〈
δ(x), e−x

〉
+ µ− 〈δ(x), ex〉+O

(
1

λγ−1

)
= µ+ + µ− +O

(
1

λγ−1

)
= ζ(1 + t0) +O

(
1

λγ−1

)
, λ→∞ .

Writing σ − 1 = 1/λ, the claim has been shown. This completes the proof
of the lemma. �
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We are now in the position to show the non-vanishing of ζ(s) on <es = 1,
s 6= 1, for the case γ > 3/2. Actually, the proof is identically the same as
the one of [1, Thrm. 8E], but we sketch it for the sake of completeness.

Theorem 3.4. Let N satisfy (3.5) with γ > 3/2. Then, tζ(1 + it) 6= 0, for
all t ∈ R. Consequently, 1/((s − 1)ζ(s)) converges locally and uniformly to
a continuous function as <e s→ 1+.

Proof. The proof is in essence the classical argument of Hadamard [14, p.
63]. Without lost of generality we assume that 3/2 < γ < 2. One uses the
representation [1, Lem. 2C], which is also valid under our hypothesis,

ζ(s) = exp

 ∞∑
k=1

∞∑
j=1

1
j
p−jsk

 ,

to conclude [1, Lem. 8B] that for any m ∈ N and t0 ∈ R

|ζ(σ)|m+1 |ζ(σ + it0)|2m
m∏
j=1

|ζ(σ + i(j + 1)t0)|2m−2j ≥ 1 .

If we now fix t0 6= 0 and m, Proposition 3.2 and the above inequality imply
the existence of A = Am,t0 > 0 such that for 1 < σ < 2

1 ≤ A |ζ(σ + it0)|2m

(σ − 1)m+1
,

or which is the same

D(σ − 1)1/2+1/(2m) ≤ |ζ(σ + it0)| ,

with D = A1/2m.
Suppose we had ζ(1+it0) = 0. Choose m such that 1/2+1/(2m) < γ−1.

By the inequality (3.11) in Lemma 3.3, we would have

D(σ − 1)1/2+1/(2m) ≤ |ζ(σ + it0)| < C(σ − 1)γ−1 ,

which is certainly absurd. Therefore, we must necessarily have ζ(1+ it) 6= 0,
for all t ∈ R \ {0}. �

We now obtain the boundary behavior of −ζ ′(s)/ζ(s)− 1/(s− 1).

Lemma 3.5. Let N satisfy (3.5) with γ > 3/2. Then

−ζ
′(s)
ζ(s)

− 1
s− 1

has local pseudo-function boundary behavior on the line <e s = 1.

Proof. We work with s+ 1 instead of s and analyze the boundary behavior
on <e s = 0. Recall E1 was defined before (3.9). As observed in the proof of
Proposition 3.2, we have that ζ(s+1)−a/s = L{E1; s} converges uniformly
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over compacts to the continuous function Ê1, as <es→ 1+, so, by Theorem
3.4,

G1(s) =
1

sζ(s+ 1)

(
ζ(s+ 1)− a

s

)
, <e s > 0 ,

converges uniformly over finite intervals to a continuous function, and thus,
its boundary value is a pseudo-function. Define E2(x) = (xE1(x))′. A quick
computation shows that

L{E2; s} = −sζ ′(s+ 1)− a

s
, <e s > 0 .

Since −ζ ′(s+ 1)/ζ(s+ 1)− 1/s = G2(s)−G1(s), where

G2(s) =
1

sζ(s+ 1)
· L {E2; s} ,

it is enough to see that G2(s) has local pseudo-function boundary behavior.
Now, the S−asymptotic bound (3.9) implies that E2(x + h) = O(|h|−γ+1),
and, because of the hypothesis γ > 3/2, we have that E2 ∗ φ ∈ L2(R),
for all φ ∈ S(R). But this is precisely Schwartz’s characterization [27, p.
201] of the distribution space D′L2(R); thus E2 ∈ D′L2(R). As remarked in
Section 2.3, the multiplication of the Fourier transform of elements from
D′L2(R) with elements of L2

loc(R) always gives rise to a distribution which is
locally a pseudo-function. It remains to observe that G2(s) tends in D′(R) to
Ê2(t)/(tζ(1+it)), which in view of the previous argument and the continuity
of 1/(tζ(1 + it)) is locally a pseudo-function. �

For future applications, we need a Chebyshev type upper estimate, it is
the content of the next lemma.

Lemma 3.6. Let N satisfy (3.5) with γ > 3/2. Then ψ(x) = O(x), x→∞.

Proof. Set τ(x) = e−xψ(ex). The the crude estimate τ(x) ≤ xe−xN(ex) =
O(x) shows that τ ∈ S ′(R). Integration by parts in (2.7) shows

L{τ ; s} − 1
s

=
1

s+ 1

(
−ζ
′(s+ 1)
ζ(s+ 1)

− 1
s
− 1
)
, <e s > 0 ,

which, by Lemma 3.5, has local pseudo-function boundary behavior on
<e s = 0. Thus, we can write τ = H + g, where ĝ is locally a pseudo-
function. Pick φ ∈ S(R) such that it is non-negative and φ̂ ∈ D(R). Write,
ϕ for the inverse Fourier transform of φ. Then,∫ ∞
−h

τ(x+h)φ(x)dx =
∫ ∞
−h

φ(x)dx+
〈
ĝ(t), eihtϕ(t)

〉
= O(1) +o(1) = O(1) .

Notice that for x and h positive e−xτ(h) ≤ τ(x+h), which follows from the
non-decreasing property of ψ. Finally, setting C =

∫∞
0 e−xφ(x)dx > 0,

τ(h) = C−1

∫ ∞
0

e−xτ(h)φ(x)dx ≤ C−1

∫ ∞
0

τ(x+ h)φ(x)dx = O(1) .

�
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4. Tauberian Theorems

In this section we show Tauberian theorems from which we shall derive
later the PNT and prove in Section 5 that the Möbius function has mean
value equal to 0.

The ensuing theorem is from the second author’s dissertation [32, Chap.
II]; for the method used in the proof, see also [34].

Theorem 4.1. Let S be a non-decreasing function supported on [0,∞) and
satisfying the growth condition S(x) = O(ex). Hence, the function

(4.1) L{dS; s} =
∫ ∞

0
e−sxdS(x)

is analytic on <e s > 1. If there exists a constant β such that the function

(4.2) G(s) = L{dS; s} − β

s− 1

has local pseudo-function boundary behavior on the line <e s = 1, then

(4.3) S(x) ∼ βex , x→∞ .

Proof. By subtracting S(0)H(x), we may assume that S(0) = 0, so the de-
rivative of S is given by the Stieltjes integral 〈S′(x), φ(x)〉 =

∫∞
0 φ(x)dS(x).

Let M > 0 such that S(x) < Mex. Define V (x) = e−xS′(x).
We have that e−xS(x) is a bounded function, hence it is a tempered dis-

tribution and its set of translates is, in particular, weakly bounded; because
differentiation is a continuous operator, the set of translates of (e−xS(x))′ is
weakly bounded, as well. Since (e−xS(x))′ = −e−xS(x)+V (x), we conclude
that V ∈ S ′(R) and V (x+ h) = O(1) as h→∞ in S ′(R).

The Laplace transform of V on <e s > 0 is given by

L{V ; s} =
〈
V (x), e−sx

〉
=
∫ ∞

0
e−(s+1)xdS(x) = L{dS; s+ 1} .

Observe then that,

V̂ (t) +
βi

(t− i0)
= lim

σ→0+
L{V (x)− βH(x);σ + it}

= lim
σ→0+

G(1 + σ + it) , in D′(R) .

Hence, by hypothesis, V̂ (t)+iβ/(t−i0) is locally a pseudo-function, therefore
eiht(V̂ (t)+iβ/(t−i0)) = o(1) as h→∞ in D′(R) (Riemann-Lebesgue lemma
(2.17)). Taking Fourier inverse transform, we conclude that V (x + h) =
βH(x+ h) + o(1) = β + o(1) as h→∞ in F(D′(R)), the Fourier transform
image of D′(R). Using the density of F(D(R)) in S(R) and the boundedness
of V (x + h), we conclude, by applying the Banach-Steinhaus theorem [29],
that V (x+ h) = β + o(1) actually in S ′(R). Multiplying by ex+h, we obtain
S′(x+ h) ∼ ex+h in D′(R).
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Let g(u) = S(log u), then limλ→∞ g
′(λu) = β in D′(0,∞); indeed, let

φ ∈ D(0,∞), then〈
g′(λu), φ(u)

〉
= − 1

λ2

∫ ∞
0

S(log u)φ′
(u
λ

)
du

= − 1
λ

∫ ∞
−∞

S(x+ log λ)exφ′(ex)dx

=
1
λ

〈
S′(x+ log λ), φ(ex)

〉
=
∫ ∞
−∞

exφ(ex)dx+ o(1)

=
∫ ∞

0
φ(u)du+ o(1) , λ→∞ .

At this stage of the proof, we could apply first [31, Thrm. 4.1] and then [9,
Lem. 3] (see also [37]) to g′ and automatically conclude that S(log u) ∼ βu,
which is equivalent to (4.3). Alternatively, we can proceed rather directly as
follows. Let ε > 0 be an arbitrary small number; find φ1 and φ2 ∈ D(0,∞)
with the following properties: 0 ≤ φi ≤ 1, suppφ1 ⊆ (0, 1], φ1(u) = 1 on
[ε, 1 − ε], suppφ2 ⊆ (0, 1 + ε], and finally, φ2(u) = 1 on [ε, 1]. Evaluating
the quasiasymptotic limit of g′ at φ2, we obtain that

lim sup
λ→∞

g(λ)
λ

= lim sup
λ→∞

1
λ

∫ λ

0
dg(u) ≤ lim sup

λ→∞

g(ελ)
λ

+
1
λ

∫ ∞
0

φ2

(u
λ

)
dg(u)

≤Mε+ lim
λ→∞

〈
g′(λu), φ2(u)

〉
= Mε+ β

∫ ∞
0

φ2(u)du ≤ β + ε(M + β) .

Likewise, using now φ1, we easily obtain that

β − 2εβ ≤ lim inf
λ→∞

g(λ)
λ

.

Since ε was arbitrary, we conclude (4.3). �

The hypothesis S(x) = O(ex) can be dropped from Theorem 4.1, as fol-
lows from Korevaar’s distributional version of the Wiener-Ikehara theorem
[15]; however, Theorem 4.2 will be enough for our future purposes.

Theorem 4.1 implies the following Tauberian result for Dirichlet series.

Theorem 4.2. Let {λk}∞k=1 be a non-decreasing sequence of positive real
numbers such that

∑
λk<x

1 ∼ ax, for some a ≥ 0. Let {ck}∞k=1 be a sequence
bounded from below, i.e., there exist k0,M > 0 such that ck > −M for all
k ≥ k0. Suppose that

∑
λk<x

ck = O(x). If there exists a constant β such
that

(4.4) G(s) =
∞∑
k=1

ck
λsk
− β

s− 1
, <e s > 1 ,
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has local pseudo-function boundary behavior on <e s = 1, then

(4.5)
∑
λk<x

ck ∼ βx , x→∞ .

Proof. Observe first that
∞∑
k=1

1
λsk
− a

s− 1

has local pseudo-function boundary behavior on <e s = 1. For it, it tends
to ĝ, where

g(x) =
∞∑
k=1

1
λk
δ(x− log λk)− aH(x) =

(
1 +

d

dx

)e−x ∑
λk<ex

1

− aH(x) ,

and in view of the assumption over {λk}∞k=1 we have g(x + h) = o(1). So
ĝ satisfies the Riemann-Lebesgue lemma (2.17), and hence, it is locally a
pseudo-function. Set now S(x) =

∑
λk<ex

(ck + M). Then S(x) = O(ex),
and ∫ ∞

0
e−stdS(t) = M

∞∑
k=1

1
λsk

+
∞∑
k=1

ck
λsk

;

Thus, S satisfies the hypotheses of Theorem 4.1, and so

S(x) ∼ (β + aM)ex,

from where (4.5) follows. �

Remark 4.3. In Theorem 4.2, if 0 ≤ ck, then it is not necessary to impose
any condition over the non-decreasing sequence {λk}∞k=1, namely, we can
remove the assumption over the asymptotics of

∑
λk<x

1. For this assertion,
considering M = 0, the second part of previous proof works as well.

Remark 4.4. We emphasize that for λk = nk in Theorem 4.2 , general-
ized integers with N satisfying (3.5) with γ > 0, the hypothesis N(x) =∑

nk<x
1 ∼ ax, x→∞, is always satisfied (see (2.3) in Section 2.1).

Theorem 4.2 generalizes Korevaar’s (apparently) weaker version of the
classical Wiener-Ikehara theorem (see [16, Thrm. 1.1]). It is then interesting
to mention that, as shown in [16], the Wiener-Ikehara theorem is itself a
consequence of such a result (and thus of Theorem 4.2). We also remark that
the results from [16] were obtained via purely complex variable methods;
here we use purely distributional methods!

We need a variant of Theorem 4.2 with Tauberian hypothesis of slow
oscillation. Recall a complex-valued function τ is called slowly oscillating
[14] if

(4.6) lim
h→0+

lim sup
x→∞

|τ(x+ h)− τ(x)| = 0 .
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If (4.6) holds, then [14, p. 33] there exist x0, C > 0 such that for x ≥ x0

and h ≥ 0

(4.7) |τ(x+ h)− τ(x)| ≤ C(h+ 1) .

Consequently, it is easy to see that τ(x) = O(x), x→∞.

Theorem 4.5. Let T ∈ L1
loc(R) be such that suppT ⊆ [0,∞) and τ(x) =

e−xT (x) is slowly oscillating. Suppose there exists β ∈ R such that

(4.8) G(s) = L{T ; s} − β

s− 1

has local pseudo-function boundary behavior on the line <e s = 1, then

(4.9) T (x) ∼ βex , x→∞ .

Proof. We can assume that T is real-valued, otherwise consider its real and
imaginary parts separately. Observe that since τ(x) = O(x), it is a tempered
distribution and the Laplace transform of T is automatically well defined for
<es > 1. Since the Fourier transform of a compactly supported distributions
is an entire function, we can assume that (4.7) holds in fact for all x ≥ 0
and h ≥ 0.

We first need to show that e−xT (x) = τ(x) is bounded. For this, pick a
test function η ∈ D(R) such that η(0) = 1/(2π) and set ϕ = η̂. Next, for h
large enough

〈τ(x+ h), ϕ(x)〉 = O(1) + 〈τ(x)−H(x), η̂(x− h)〉

= O(1) +
〈
G(1 + it), η(t)eiht

〉
= O(1) + o(1) = O(1) ,

because G(1 + it) is locally a pseudo-function. Observe
∫∞
−∞ ϕ(x)dx =

2πη(0) = 1. Now, in view of (4.7),

|τ(h)| ≤ O(1) +
∣∣∣∣∫ ∞
−h

(τ(x+ h)− τ(h))ϕ(x)dx
∣∣∣∣+ |τ(h)|

∫ −h
−∞
|ϕ(x)|dx

≤ O(1) +O(1)
∫ ∞
−∞

(|x|+ 1) |ϕ(x)|dx+O(h)
∫ −h
−∞
|ϕ(x)|dx = O(1) .

By adding a term of the form KexH(x), we may now assume T ≥ 0.
Define S(x) =

∫ x
0 T (t)dt. The function S is increasing and, by T (x) = O(ex),

has growth S(x) = O(ex). Furthermore,

L
{
S′; s

}
− β

s− 1
= L{T ; s} − β

s− 1
;

hence, by Theorem 4.1,

(4.10)
∫ x

0
T (t)dt ∼ βex .
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In particular, the ordinary asymptotic behavior (4.10) implies the S−asymp-
totic behavior

∫ x+h
0 T (t)dt ∼ βex+h as h → ∞ in the space D′(R). Differ-

entiating the latter and then dividing by ex+h, we obtain

(4.11) τ(x+ h) = β + o(1) as h→∞ in D′(R) .

The final step is to evaluate the S−asymptotic (4.11) at a suitable test
function. Let ε > 0 be an arbitrary number. Choose φ ∈ D(R) non-negative
and supported in [0, ε] such that

∫ ε
0 φ(x)dx = 1. Then,

lim sup
h→∞

|τ(h)− β| ≤ lim sup
h→∞

∣∣∣∣β − ∫ ∞
0

τ(t)φ(t− h)dt
∣∣∣∣

+ lim sup
h→∞

∣∣∣∣∫ ∞
0

(τ(t)− τ(h))φ(t− h)dt
∣∣∣∣

= lim sup
h→∞

∣∣∣∣∫ h+ε

h
(τ(t)− τ(h))φ(t− h)dt

∣∣∣∣
≤ lim sup

h→∞
sup

t∈[h,h+ε]
|τ(t)− τ(h)| .

Since ε was arbitrary, the slow oscillation (4.6) implies limh→∞ τ(h) = β,
which in turn is the same as (4.9). �

5. The Prime Number Theorem and Related Results

The prime number theorem, Theorem 1.1, follows now directly from our
previous work. Indeed, it is enough to combine Lemma 3.5 and Lemma 3.6
with Theorem 4.2.

We give a second application of the Tauberian theorems from Section
4. We now turn our attention to the Möbius function. We show its mean
value is zero and

∑
µ(nk)/nk = 0, whenever γ > 3/2. Remarkably, it is

well known [8, 19] that for ordinary prime numbers either of these condi-
tions is itself equivalent to the PNT; however, that is no longer the case for
generalized number systems [38].

Theorem 5.1. Let N satisfy (3.5) with γ > 3/2. Then,

(5.1) lim
x→∞

1
x

∑
nk<x

µ(nk) = 0 .

Proof. By using formula (2.8), Proposition 3.2, and Theorem 3.4, we have
that

∞∑
k=1

µ(nk)
nsk

= (s− 1) · 1
(s− 1)ζ(s)

,

extends continuously to <e s ≥ 1, and so this Dirichlet series has local
pseudo-function boundary behavior on <es = 1. Applying Theorem 4.2, we
obtain (5.1) at once. �
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Corollary 5.2. Let N satisfy (3.5) with γ > 3/2. Then,

(5.2)
∞∑
k=1

µ(nk)
nk

= 0 .

Proof. Exactly as in [8, p. 565], the relation (5.2) may be deduced from
(5.1) by completely elementary manipulations. �

It is worth pointing out a possible connection between Theorem 5.1 and
the results from [38]. Zhang has shown [38, Cor. 2.5] that if N satisfies
Beurling’s classical condition (1.4) for γ > 1, then the Möbius function has
zero mean value. Observe that this result of Zhang, in combination with
Diamond’s example of a generalized number system satisfying (1.4) with
γ = 3/2 but violating the PNT, yields a curious fact that we have already
mentioned: The PNT is not equivalent to (5.1) in the context of Beurling’s
generalized primes. Comparision between Zhang’s result and Theorem 5.1
strongly suggests the following conjecture:

Conjecture 5.3. If N satisfies the Cesàro condition (3.5) for some γ > 1,
then (5.1) still holds true.

We end this section by proving an analog of Newman’s Tauberian theo-
rem [14, 21] for generalized integers. Newman used his Tauberian theorem
to derive the prime number theorem for ordinary prime numbers. Indeed,
Newman’s way [21] to the prime number theorem was to show first Corol-
lary 5.2 (for ordinary integers) from his Tauberian theorem, from where the
prime number theorem follows, as shown first by Landau [19]. For appli-
cations of Newman’s method in the theory of generalized numbers (subject
to (1.4) with γ > 2) we refer to Bekehermes’s dissertation [2]. We give a
version of Newman Tauberian theorem for local pseudo-function boundary
behavior rather than the much stronger assumption of analytic continua-
tion. Remarkably, the result holds even for γ > 0. Observe that Theorem
5.1 and Corollary 5.2 are implied by Theorem 5.4.

Theorem 5.4. Let N satisfy (3.5) with γ > 0. Suppose that {ck}∞k=1 is a
bounded sequence of complex numbers. Let

(5.3) F (s) =
∞∑
k=1

ck
nsk

, <e s > 1 .

If there exists β such that

(5.4) G(s) =
F (s)− β
s− 1

, <e s > 1 ,

has local pseudo-function boundary behavior on <e s = 1, then

(5.5)
∞∑
k=1

ck
nk

= β
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and

(5.6) lim
x→∞

1
x

∑
nk<x

ck = 0 .

Proof. Observe that F (s) = (s−1)G(s)+β has local pseudo-function bound-
ary behavior on <e s = 1. Thus, Theorem 4.2 and Remark 4.4 imply
M(u) :=

∑
nk<u

ck = o(u), so (5.6) has been established. Set T (x) =
ex
∫∞
0 e−tM(et)dt, so that e−xT (x) is slowly oscillating. Notice that T is

the convolution of M(ex) and exH(x), then

L{T ; s} = L{M(ex); s}L {exH(x); s}

=
1
s
L

{ ∞∑
k=1

ckδ(x− log nk); s

}∫ ∞
0

e−(s−1)xdx

=
1

s(s− 1)

∞∑
k=1

ck
nsk

=
F (s)

s(s− 1)
.

We then have

L{T ; s} − β

s− 1
=

1
s

(G(s)− β) ,

which has local pseudo-function boundary behavior on <e s = 1. Theorem
4.5 yields limx→∞

∫ x
0 e
−tM(et)dt = β; thus, a change of variables shows

(5.7) lim
x→∞

∫ x

0

M(u)
u2

du = β .

We now derive (5.5) from (5.6) and (5.7),∑
nk<x

ck
nk

=
∫ x

0
u−1dM(u) =

M(x)
x

+
∫ x

0

M(u)
u2

du = β + o(1) .

�

Remark 5.5. The analytic function (5.4) has local pseudo-function bound-
ary behavior on <e s = 1 if and only if it has pseudo-function boundary
behavior on a neighborhood of s = 1 in such a line and F , given by (5.3),
has local pseudo-function boundary behavior in {s : <e s = 1, s 6= 1}. So
Theorem 5.4 might be reformulated in these terms.

6. Necessity of the Cesàro Means

In this section we construct a number system proving that Theorem 1.1
is a proper generalization of Beurling’s result. We shall do so by removing
and doubling suitable blocks of ordinary primes.



20 J.-C. SCHLAGE-PUCHTA AND J. VINDAS

Let xi be a sequence of integers, where x1 is chosen so large that for
all x > x1 the interval [x, x + x

log1/3 x
] contains more than x

2 log4/3 x
prime

numbers, and xi+1 = b2 4
√
xic. Clearly, i = O(log log xi), and we may assume

that i ≤ log1/6 xi.
Close to each xi, we define four disjoint intervals Ii,1, . . . , Ii,4, where Ii,2 =

[xi, xi + xi
log1/3 xi

] and Ii,3 is the contiguous interval starting at xi + xi
log1/3 xi

which contains as many prime numbers as Ii,2. Observe then that each of
the intervals Ii,2 and Ii,3 has at least xi

2 log4/3 xi
prime numbers. Consequently,

the length of Ii,3 is at most O( xi
log1/3 xi

), as follows from the classical prime
number theorem. We further choose Ii,1 and Ii,4 in such a way that Ii,1 has
upper bound xi, Ii,4 has lower bound equal to the upper bound of Ii,3, and
they fulfill the properties of the following claim:

Claim 6.1. There are such intervals Ii,1 and Ii,4 such that Ii,1 and Ii,4
contain the same number of primes, and we have

i∏
ν=1

∏
p∈Iν,1∪Iν,3

(
1− 1

p

)(−1)ν+1 ∏
p∈Iν,2∪Iν,4

(
1− 1

p

)(−1)ν

= 1 +O

(
1
xi

)
.

In addition, the lenghts of Ii,1 and Ii,4 are O( ixi
log1/3 xi

) and each of them

contains O( ixi
log4/3 xi

) primes.

Let us show that such a choice is possible.

Proof of Claim 6.1. We proceed recursively. Assume that we have defined
Ii,1 and Ii,4 for i ≤ k − 1 such that they satisfy the claim and additionally

A
(−1)i

i > 1, where

Ai =
i∏

ν=1

∏
p∈Iν,1∪Iν,3

(
1− 1

p

)(−1)ν+1 ∏
p∈Iν,2∪Iν,4

(
1− 1

p

)(−1)ν

.

Assume first that k is even. Observe then that Ak−1 < 1. We examine the
product

Ak = Ak−1 ·
∏

p∈Ik,1∪Ik,3

(
1− 1

p

)−1 ∏
p∈Ik,2∪Ik,4

(
1− 1

p

)
,

where Ik,1 and Ik,4 are to be defined. We pair primes p1 ∈ Ik,2 and p2 ∈ Ik,3.
The contribution of a pair to this product is

1 >
(

1− 1
p1

)(
1− 1

p2

)−1

= 1− p2 − p1

p1p2
+O

(
1

p2p1

)
.

Hence, the product over Ik,2 and Ik,3 is

exp
(
O

(
xk

log4/3 xk
·
|Ik,2 ∪ Ik,3|

x2
k

))
= exp

(
O

(
1

log5/3 xk

))
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and thus,

1 > Ak−1 ·
∏
p∈Ik,3

(
1− 1

p

)−1 ∏
p∈Ik,2

(
1− 1

p

)
= exp

(
O

(
1

log4 xk
+

1
log5/3 xk

))

= 1 +O

(
k

log5/3 xk

)
.

We now increase Ik,1 and Ik,4 in such a way that at each stage both intervals
contain the same number of primes. Whenever we add one prime to both
intervals, we add a factor > 1 to the product, and we stop doing so as soon
as the product becomes greater than 1. Since the initial product is in fact
1+O( k

log5/3 xk
), we need O( kxk

log4/3 xk
) primes to do so. It follows from the clas-

sical prime number theorem that Ik,1 and Ik,4 have both length O( kxk
log1/3 xk

).
Thus, whenever we add one more prime, the value of the product changes
by exp(O(2k(xk log1/3 xk)−1)) = exp(o(x−1

k )). The first time the product
supersedes 1, it does so by O(x−1

k ), and it follows that Ak = 1 + O(x−1
k )

and Ak > 1. When k is odd, we proceed in a similar fashion. We now keep
adding primes to Ik,1 and Ik,4 until the product becomes less than one; at
such a stage, we obtain that Ak < 1 and again Ak = 1 +O(x−1

k ).
Therefore, the so constructed intervals Ik,1 and Ik,4 fulfill the requirements

of the claim and in addition A
(−1)k

k > 1. �

We define x−k to be the least integer in Ik,1, and x+
k the largest integer in

Ik,4. Note that xk
log1/3 xk

≤ x+
k − x

−
k = O( kxk

log1/3 xk
). Since k < log1/6 xk, we

therefore have that x+
k < 2xk and x−k > 2−1xk, for all sufficiently large k.

Now define a sequence of generalized primes P = {pν}∞ν=1 as follows. We
one prime element p for each prime number p which is not in any of the
intervals Ii,j ; if i is even, no prime elements in Ii,2 ∪ Ii,4 and two prime
elements p for all prime numbers p which are in one of the intervals Ii,1, Ii,3;
if i is odd, no prime elements in Ii,1 ∪ Ii,3 and two prime elements for all
prime numbers p which belong to one of the intervals Ii,2, Ii,4. We denote by
G the generalized number system associated to P . Let Pk be the generalized
prime set which is constructed in the same way, but taking only the intervals
Ii,j with i ≤ k into account; Gk denotes then its associated set of generalized
integers. Let π(x) = πP (x) and N(x) = NP (x) be respectively the counting
functions of P and G. Furthermore, we denote by Nk(x) = NPk(x) the one
corresponding to Gk.

We claim that N and π have the properties stated in Proposition 1.2;
more precisely:

Proposition 6.2. We have |N(x)− x| > c(x/ log4/3 x) infinitely often, for
some constant c > 0; however,

N(x) = x+O

(
x

log5/3 x

)
(C, 1) ,
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i.e., its first order Cesàro-mean N has asymptotics

(6.1) N(x) :=
∫ x

1

N(t)
t

dt = x+O

(
x

log5/3 x

)
.

For this system,

π(x) =
x

log x
+O

(
x log log x
log4/3 x

)
.

Since we defined G via its prime elements, we control π(x) completely. In
fact, the bound for the number of prime elements follows immediately from
the definition of P and the classical prime number theorem. Our task is
then to compute the behavior of N(x). We first estimate Nk(x) for x much
larger than xk.

Lemma 6.3. If exp(8 log2 xk) ≤ x < exp(x3/5
k ), then we have

(6.2) Nk(x) = x+O

(
x

log5/3 x

)
and

(6.3) Nk(x) :=
∫ x

1

Nk(t)
t

dt = x+O

(
x

log5/3 x

)
.

Proof. Denote by f(n) the number of elements of norm n in Gk. Then f(n)
is multiplicative and satisfies

f(pα) =



α+ 1 , if ∃2i ≤ k : p ∈ I2i,1 ∪ I2i,3 ,
0 , if ∃2i ≤ k : p ∈ I2i,2 ∪ I2i,4 ,
0 , if ∃2i+ 1 ≤ k : p ∈ I2i+1,1 ∪ I2i+1,3 ,

α+ 1 , if ∃2i+ 1 ≤ k : p ∈ I2i+1,2 ∪ I2i+1,4 ,

1 , otherwise.

Define the function g(n) by the relation f(n) =
∑

d|n g(d). Then g is multi-
plicative, and we have

g(pα) =


1 , if f(p) = 2 ,
−1 , if f(p) = 0 and α = 1 ,
0 , otherwise.

Denote by Hk the set of all integers which have only prime divisors in⋃
i≤k Ii,j , and for each integer n, let nHk be the largest divisor of n belonging
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to Hk. Then we have

Nk(x) =
∑
m∈Hk

∑
n≤x

nHk=m

f(m)

=
∑
m∈Hk

∑
n≤x
m|n

g(m)

=
∑
m∈Hk

g(m)
[ x
m

]
=x

∑
m∈Hk

g(m)
m

+O (|Hk ∩ [1, x]|)

=x
k∏
i=1

∏
p∈Ii,1∪Ii,3

(
1− 1

p

)(−1)i+1 ∏
p∈Ii,2∪Ii,4

(
1− 1

p

)(−1)i

+O (|Hk ∩ [1, x])

=x+O

(
x

xk

)
+O (|Hk ∩ [1, x]) .

The first error term is negligible because x < exp(x3/5
k ). Any element of Hk

has only prime divisors below 2xk. The number of integers without large
prime factors is well studied (confer, e.g., [11, 28] ). Indeed, by using only
the simplest estimate [11, Eqn. (1.4)], we find that

|Hk ∩ [1, x]| ≤ Cx1− 1
2 log(2xk) log xk

≤ C x

log5/3 x

(
(xk log xk)2 log(2xk)

x

) 1
2 log(2xk)

≤ C x

log5/3 x
, for exp(8 log2 xk) ≤ x < exp(x3/5

k ) ,

and (6.2) follows. For (6.3), we use again the elementary estimate [11, Eqn.
(1.4)], so, for x in the given range,

Nk(x)− x = O

(
x

log5/3 x

)
+O

(∫ x

1

|Hk ∩ [1, t]|
t

dt
)

= O

(
x

log5/3 x

)
+O

(
log xk

∫ x

1
t
− 1

2 log(2xk) dt
)

= O

(
x

log5/3 x

)
+O

(
x

1− 1
2 log(2xk) log xk

)
= O

(
x

log5/3 x

)
.

�

Now the fact that N(x) deviates far from x follows immediately. For x <
x+
k+1, we have N(x) = Nk(x) with the exception of the missing and doubled
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primes from [x−k+1, x
+
k+1]. Observe that, because xk+1 = bexp(x1/4

k log 2)c,

[x−k+1, x
+
k+1] ⊂ [exp

(
8 log2 xk

)
, exp(x3/5

k )) .

Since we changed more than x
4 log4/3 x

primes when x is the upper bound of
either the interval Ik+1,1 or Ik+1,2, we obtain from Lemma 6.3 that |N(x)−x|
becomes as large as cx

log4/3 x
, for a fixed constant c > 0.

To show (6.1), we bound the Cesàro means of N in the range x−k ≤ x <

x−k+1. We start by observing that N(x) = Nk(x) within this range, so (6.3)
gives (6.1) for exp(8 log2 xk) ≤ x < x−k+1. Assume now that

x−k ≤ x < exp(8 log2 xk) .

Lemma 6.3 implies that

Nk−1(x) =
∫ x

1

Nk−1(t)
t

dt = x+O

(
x

log5/3 x

)
,

because, by construction of the sequence, the interval [x−k , exp(8 log2 xk)]
is contained in [exp(8 log2 xk−1), exp(x3/5

k−1)). Therefore, it suffices to prove
that

(6.4) Nk(x)−Nk−1(x) =
∫ x

x−k

Nk(t)−Nk−1(t)
t

dt

has growth order O( x
log5/3 x

). Note that only the intervals ν · (Ik,1∪ . . .∪Ik,4)

contribute to the integral (6.4). If x > mx+
k , then, by the classical prime

number theorem, the contribution of each of the intervals ν · (Ik,1∪ . . .∪Ik,4)
is

O

(
kxk

log4/3 xk

)
·
∫ νx+

k

νx−k

dt
t

= O

(
k

log4/3 xk

)
= O

(
kx

mxk log4/3 xk

)
= O

(
x

m log5/3 x

)
,

because obviously x < exp(x3/5
k ) and k < log xk. Since there are m such

intervals, the contribution of intervals which are completely below x is of
the right order.

It remains to bound the contribution of intervals ν · (Ik,1 ∪ . . .∪ Ik,4) such
that νx−k < x < νx+

k . Since the logarithmic length of the four intervals is
O( k

log1/3 xk
), the number of such indices ν is O( kx

xk log1/3 xk
). As above, the

contribution of each of these intervals to (6.4) is at most O( k
log4/3 xk

); thus,
the total contribution of all of them together has order of growth below
O( k2x

xk log5/3 xk
) = O( x

log5/3 x
). That N has asymptotics (6.1) follows now at

once; consequently, Proposition 6.2 has been fully established.
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[27] L. Schwartz, Théorie des Distributions, Hermann, Paris, 1966.
[28] G. Tenenbaum, Introduction to analytic and probabilistic number theory, Cambridge

Studies in Advanced Mathematics, 46, Cambridge University Press, Cambridge, 1995.
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