Generalized functions, analytic representations, and applications to generalized prime number theory

Jasson Vindas

jvindas@cage.Ugent.be

Department of Mathematics Ghent University

Clifford Analysis Seminar Ghent, May 27, 2013

イロト イポト イヨト イヨ

Sato's hyperfunctions

A useful idea in analysis is to study functions of a real variable via analytic functions. One looks for representations

$$f(x) = F(x+i0) - F(x-i0) := \lim_{y \to 0^+} F(x+iy) - F(x-iy),$$
(1)

with suitable interpretation of the limit.

Let $\mathcal{O}(\Omega)$ be the space of analytic functions on $\Omega \subseteq \mathbb{C}$. In 1959 Sato introduced the so-called space of hyperfunctions

$$\mathcal{B}=\mathcal{B}(\mathbb{R}):=\mathcal{O}(\mathbb{C}\setminus\mathbb{R})/\mathcal{O}(\mathbb{C})\;.$$

So \mathcal{B} contains all objects "of the form"

$$f(x) = F(x + i0) - F(x - i0).$$

Most spaces occurring in functional analysis are embedded into the space of Sato hyperfunctions.

Sato's hyperfunctions

A useful idea in analysis is to study functions of a real variable via analytic functions. One looks for representations

$$f(x) = F(x+i0) - F(x-i0) := \lim_{y \to 0^+} F(x+iy) - F(x-iy),$$
(1)

with suitable interpretation of the limit.

Let $\mathcal{O}(\Omega)$ be the space of analytic functions on $\Omega \subseteq \mathbb{C}$. In 1959 Sato introduced the so-called space of hyperfunctions

$$\mathcal{B}=\mathcal{B}(\mathbb{R}):=\mathcal{O}(\mathbb{C}\setminus\mathbb{R})/\mathcal{O}(\mathbb{C})\;.$$

So $\ensuremath{\mathcal{B}}$ contains all objects "of the form"

$$f(x) = F(x + i0) - F(x - i0).$$

Most spaces occurring in functional analysis are embedded into the space of Sato hyperfunctions.

Sato's hyperfunctions

A useful idea in analysis is to study functions of a real variable via analytic functions. One looks for representations

$$f(x) = F(x+i0) - F(x-i0) := \lim_{y \to 0^+} F(x+iy) - F(x-iy),$$
(1)

with suitable interpretation of the limit.

Let $\mathcal{O}(\Omega)$ be the space of analytic functions on $\Omega \subseteq \mathbb{C}$. In 1959 Sato introduced the so-called space of hyperfunctions

$$\mathcal{B}=\mathcal{B}(\mathbb{R}):=\mathcal{O}(\mathbb{C}\setminus\mathbb{R})/\mathcal{O}(\mathbb{C})\;.$$

So $\ensuremath{\mathcal{B}}$ contains all objects "of the form"

$$f(x) = F(x + i0) - F(x - i0).$$

Most spaces occurring in functional analysis are embedded into the space of Sato hyperfunctions.

Analytic representation of distributions

Starting with the work of Köthe, many authors investigated the problem of representing distributions via analytic functions (Tillmann, Silva, ...). One has:

Theorem

Every distribution admits the representation

$$f(x) = \lim_{y \to 0^+} F(x + iy) - F(x - iy) , \text{ in } \mathcal{D}',$$
 (2)

where *F* is analytic except on \mathbb{R} and satisfies: for every compact [*a*, *b*] there are constants *K*, *k* > 0 such that

$$|F(x+iy)| \leq \frac{K}{|y|^k}, \quad x \in [a,b], 0 < |y| < 1.$$
 (3)

Conversely, if $F \in \mathcal{O}(\mathbb{C} \setminus \mathbb{R})$ satisfies (3), then (2) exists.

Distributions Ultradistributions

Constructing analytic representations: Cauchy transform

Denoting as $\mathcal{O}_{\mathcal{D}'}(\mathbb{C})$ the space of analytic functions on $\mathbb{C}\setminus\mathbb{R}$ satisfying the bounds

$$|F(x+iy)|\leq rac{K}{|y|^k}\,,\ \ x\in [a,b], 0<|y|<1$$
 .

we obtain $\mathcal{D}' \cong \mathcal{O}_{\mathcal{D}'}(\mathbb{C} \setminus \mathbb{R}) / \mathcal{O}(\mathbb{C}).$

How to find F? The simplest way is via the Cauchy transform:

$$F(z) = \frac{1}{2\pi i} \left\langle f(t), \frac{1}{t-z} \right\rangle, \quad \Im m \, z \neq 0 \; .$$

The Cauchy transform is well-defined in various distribution spaces, e.g. if $f \in \mathcal{E}'$, namely a compactly supported distribution. Recall $f \in \mathcal{E}'$ is the dual of $\mathcal{E} = \mathcal{L}^{\infty}_{\mathcal{F}}, \mathcal{L}^{\infty}_{\mathcal{F}}$

Constructing analytic representations: Cauchy transform

Denoting as $\mathcal{O}_{\mathcal{D}'}(\mathbb{C})$ the space of analytic functions on $\mathbb{C}\setminus\mathbb{R}$ satisfying the bounds

$$|F(x+iy)|\leq rac{K}{|y|^k}\,,\quad x\in [a,b], 0<|y|<1\;.$$

we obtain $\mathcal{D}' \cong \mathcal{O}_{\mathcal{D}'}(\mathbb{C} \setminus \mathbb{R}) / \mathcal{O}(\mathbb{C}).$

How to find *F*? The simplest way is via the Cauchy transform:

$$F(z)=\frac{1}{2\pi i}\left\langle f(t),\frac{1}{t-z}\right\rangle ,\quad \Im m\,z\neq 0\;.$$

The Cauchy transform is well-defined in various distribution spaces, e.g. if $f \in \mathcal{E}'$, namely a compactly supported distribution. Recall $f \in \mathcal{E}'$ is the dual of $\mathcal{E} = C^{\infty}_{1}, C^{\infty}_{2}, C^{\infty}_{2}$

Analytic representations Distributions
The prime number theorem for Beurling's numbers Ultradistribut

Constructing analytic representations: Fourier-Laplace transform

If $f \in S'$, we can use the Fourier-Laplace transform representation. Decompose the Fourier transform $\hat{f} = \hat{f}_- + \hat{f}_+$, where \hat{f}_- and \hat{f}_- have supports in $(-\infty, 0]$ and $[0, \infty)$. Then

$$F(z) = \begin{cases} \frac{1}{2\pi} \langle \hat{f}_+(u), e^{izu} \rangle & \text{if } \Im m \, z > 0 \ , \\ -\frac{1}{2\pi} \langle \hat{f}_-(u), e^{izu} \rangle & \text{if } \Im m \, z < 0 \ . \end{cases}$$

In this case *F* satisfies the global bound

$$|F(x+iy)| \le \frac{K(1+|x|+|y|)^m}{|y|^k}, \ y \ne 0.$$
(4)

Defining $\mathcal{O}_{\mathcal{S}'}(\mathbb{C} \setminus \mathbb{R})$, one can show that

$$\mathcal{S}' \cong \mathcal{O}_{\mathcal{S}'}(\mathbb{C} \setminus \mathbb{R}) / \mathcal{P}(\mathbb{C}),$$

where $\mathcal{P}(\mathbb{C})$ is the space of polynomials

イロト イポト イヨト イヨト

Constructing analytic representations: Fourier-Laplace transform

If $f \in S'$, we can use the Fourier-Laplace transform representation. Decompose the Fourier transform $\hat{f} = \hat{f}_- + \hat{f}_+$, where \hat{f}_- and \hat{f}_- have supports in $(-\infty, 0]$ and $[0, \infty)$. Then

$$F(z) = \begin{cases} \frac{1}{2\pi} \langle \hat{f}_+(u), e^{izu} \rangle & \text{ if } \Im m \, z > 0 \ , \\ -\frac{1}{2\pi} \langle \hat{f}_-(u), e^{izu} \rangle & \text{ if } \Im m \, z < 0 \ . \end{cases}$$

In this case F satisfies the global bound

$$|F(x+iy)| \le \frac{K(1+|x|+|y|)^m}{|y|^k}, y \ne 0.$$
 (4)

Defining $\mathcal{O}_{\mathcal{S}'}(\mathbb{C}\setminus\mathbb{R})$, one can show that

$$\mathcal{S}' \cong \mathcal{O}_{\mathcal{S}'}(\mathbb{C} \setminus \mathbb{R}) / \mathcal{P}(\mathbb{C}),$$

where $\mathcal{P}(\mathbb{C})$ is the space of polynomials

ヘロア 人間 アメヨア 人口 ア

Constructing analytic representations: Fourier-Laplace transform

If $f \in S'$, we can use the Fourier-Laplace transform representation. Decompose the Fourier transform $\hat{f} = \hat{f}_- + \hat{f}_+$, where \hat{f}_- and \hat{f}_- have supports in $(-\infty, 0]$ and $[0, \infty)$. Then

$$F(z) = \begin{cases} \frac{1}{2\pi} \langle \hat{f}_+(u), e^{izu} \rangle & \text{ if } \Im m \, z > 0 \ , \\ -\frac{1}{2\pi} \langle \hat{f}_-(u), e^{izu} \rangle & \text{ if } \Im m \, z < 0 \ . \end{cases}$$

In this case F satisfies the global bound

$$|F(x+iy)| \le \frac{K(1+|x|+|y|)^m}{|y|^k}, y \ne 0.$$
 (4)

Defining $\mathcal{O}_{\mathcal{S}'}(\mathbb{C}\setminus\mathbb{R})$, one can show that

$$\mathcal{S}' \cong \mathcal{O}_{\mathcal{S}'}(\mathbb{C} \setminus \mathbb{R}) / \mathcal{P}(\mathbb{C}),$$

where $\mathcal{P}(\mathbb{C})$ is the space of polynomials

イロト イポト イヨト イヨト

Hardy spaces

The classical Hardy space H^p , $1 \le p \le \infty$, is defined as the space of analytic functions on $\Im m z > 0$ such that

$$\sup_{0 < y \le 1} ||F(\cdot + iy)||_p < \infty.$$
(5)

A classical result tells us that for every $F \in H^p$,

$$f(x) := \lim_{y \to 0^+} F(x + iy)$$

exists a.e. and the limit relation also holds in L^p -norm (in the weak* sense for $p = \infty$). For $p < \infty$, the norm $||f||_p$ coincides with (5).

イロト 人間ト イヨト イヨト

Hardy spaces

The classical Hardy space H^p , $1 \le p \le \infty$, is defined as the space of analytic functions on $\Im m z > 0$ such that

$$\sup_{0 < y \le 1} ||F(\cdot + iy)||_{\rho} < \infty.$$
(5)

A classical result tells us that for every $F \in H^p$,

$$f(x) := \lim_{y \to 0^+} F(x + iy)$$

exists a.e. and the limit relation also holds in L^{p} -norm (in the weak^{*} sense for $p = \infty$). For $p < \infty$, the norm $||f||_{p}$ coincides with (5).

ヘロト 人間 ト 人臣 ト 人臣 ト

•
$$\mathcal{D}_{L^p} = \{ \phi \in \mathcal{E} : \phi^{(n)} \in L^p, \forall n \}.$$

D[']_{L^p} is the dual of D^{Lq} where 1/p + 1/q = 1 (with a technical variant when p = 1).

The space \mathcal{D}'_{L^2} is easy to understand: $f\in\mathcal{D}'_{L^2}$ iff $\exists k$ such that

$$\int_{-\infty}^{\infty} |\hat{f}(u)|^2 (1+|u|)^k < \infty \ .$$

Theorem

A function F(z), analytic in $\Im m z > 0$, has boundary values

$$f(x) = \lim_{y \to 0^+} F(x + iy) \text{ in } \mathcal{D}'_{L^p}$$

$$||F(\cdot + iy)||_{p} \le \frac{K}{y^{k}}, \quad 0 < y \le 1$$
.

•
$$\mathcal{D}_{L^p} = \{ \phi \in \mathcal{E} : \phi^{(n)} \in L^p, \forall n \}.$$

• \mathcal{D}'_{L^p} is the dual of \mathcal{D}_{L^q} where 1/p + 1/q = 1 (with a technical variant when p = 1).

The space \mathcal{D}_{L^2}' is easy to understand: $f\in\mathcal{D}_{L^2}'$ iff $\exists k$ such that

$$\int_{-\infty}^{\infty} |\hat{f}(u)|^2 (1+|u|)^k < \infty \; .$$

Theorem

A function F(z), analytic in $\Im m z > 0$, has boundary values

$$f(x) = \lim_{y \to 0^+} F(x + iy) \text{ in } \mathcal{D}'_{L^p}$$

$$||F(\cdot + iy)||_{p} \le \frac{K}{y^{k}}, \quad 0 < y \le 1$$
.

•
$$\mathcal{D}_{L^p} = \{ \phi \in \mathcal{E} : \phi^{(n)} \in L^p, \forall n \}.$$

\$\mathcal{D}_{L^p}\$ is the dual of \$\mathcal{D}_{L^q}\$ where \$1/p + 1/q = 1\$ (with a technical variant when \$p = 1\$).

The space \mathcal{D}'_{L^2} is easy to understand: $f \in \mathcal{D}'_{L^2}$ iff $\exists k$ such that

$$\int_{-\infty}^{\infty} |\hat{f}(u)|^2 (1+|u|)^k < \infty \ .$$

Theorem

A function F(z), analytic in $\Im m z > 0$, has boundary values

$$f(x) = \lim_{y \to 0^+} F(x + iy) \text{ in } \mathcal{D}'_{L^p}$$

$$||F(\cdot + iy)||_{p} \le \frac{K}{y^{k}}, \quad 0 < y \le 1$$
.

•
$$\mathcal{D}_{L^p} = \{ \phi \in \mathcal{E} : \phi^{(n)} \in L^p, \forall n \}.$$

\$\mathcal{D}_{L^p}\$ is the dual of \$\mathcal{D}_{L^q}\$ where \$1/p + 1/q = 1\$ (with a technical variant when \$p = 1\$).

The space \mathcal{D}'_{l^2} is easy to understand: $f \in \mathcal{D}'_{l^2}$ iff $\exists k$ such that

$$\int_{-\infty}^{\infty} |\hat{f}(u)|^2 (1+|u|)^k < \infty \ .$$

Theorem

A function F(z), analytic in $\Im m z > 0$, has boundary values

$$f(x) = \lim_{y \to 0^+} F(x + iy)$$
 in \mathcal{D}'_{L^p}

$$||F(\cdot + iy)||_{\rho} \leq \frac{K}{y^k}, \quad 0 < y \leq 1.$$

Boundary values: Summary

Let F(z) be analytic on the half-plane $\Im m z > 0$. Then

$$\begin{aligned} |F(x+iy)| &\leq \frac{K}{y^k} \text{ (locally)} \implies F(x+i0) \in \mathcal{D}' \text{ .} \\ |F(x+iy)| &\leq \frac{K(1+|x|+y)^m}{y^k} \implies F(x+i0) \in \mathcal{S}' \text{ .} \\ ||F(\cdot+iy)||_p &\leq \frac{K}{y^k} \implies F(x+i0) \in \mathcal{D}'_{L^p} \text{ .} \end{aligned}$$

э

 Analytic representations
 Distributions

 The prime number theorem for Beurling's numbers
 Ultradistributions

The class of real analytic functions over \mathbb{R} is characterized by $\sup_{x \in [a,b]} |f^{(p)}(x)| \le h^p p!, \text{ for some } h = h_{a,b}.$

Replace p! by a sequence $\{M_p\}_{p=0}^{\infty}$ satisfying (convexity): $M_p^2 \leq M_{p-1}M_{p+1}$. Define $\mathcal{E}^{\{M_p\}} \subset \mathcal{E}(=C^{\infty})$ as those functions such that

 $\sup_{x\in [a,b]} |f^{(p)}(x)| \leq h^p M_p, \quad ext{for some } h = h_{a,b} \;.$

Example. $M_p = (p!)^s$ gives rise to the Gevrey classes.

Hadamard problem (1912): The class is called quasi-analytic if $\mathcal{E}^{\{M_p\}} \cap \mathcal{D} = \{0\}$. Find conditions over M_p for quasi-analyticity.

Theorem (Denjoy-Carleman, 1921, 1926)

$$\sum_{p=1}^{\infty} \frac{M_{p-1}}{M_p} = \infty.$$

 $\sup_{x\in [a,b]} |f^{(p)}(x)| \leq h^p p!, ext{ for some } h=h_{a,b} \ .$

Replace p! by a sequence $\{M_p\}_{p=0}^{\infty}$ satisfying (convexity):

 $M_p^2 \leq M_{p-1}M_{p+1}$. Define $\mathcal{E}^{\{M_p\}} \subset \mathcal{E}(=C^{\infty})$ as those functions such that

$$\sup_{x\in [a,b]} |f^{(
ho)}(x)| \leq h^
ho M_
ho, \hspace{0.2cm} ext{ for some } h=h_{a,b} \;.$$

Example. $M_p = (p!)^s$ gives rise to the Gevrey classes.

Hadamard problem (1912): The class is called quasi-analytic if $\mathcal{E}^{\{M_p\}} \cap \mathcal{D} = \{0\}$. Find conditions over M_p for quasi-analyticity.

Theorem (Denjoy-Carleman, 1921, 1926)

$$\sum_{p=1}^{\infty} \frac{M_{p-1}}{M_p} = \infty.$$

 $\sup_{x\in [a,b]} |f^{(p)}(x)| \leq h^p p!, ext{ for some } h=h_{a,b} \ .$

Replace p! by a sequence $\{M_p\}_{p=0}^{\infty}$ satisfying (convexity):

 $M_p^2 \leq M_{p-1}M_{p+1}$. Define $\mathcal{E}^{\{M_p\}} \subset \mathcal{E}(=C^{\infty})$ as those functions such that

$$\sup_{x\in [a,b]} |f^{(p)}(x)| \leq h^p M_p, \hspace{1em} ext{for some } h=h_{a,b} \;.$$

Example. $M_{\rho} = (\rho!)^s$ gives rise to the Gevrey classes.

Hadamard problem (1912): The class is called quasi-analytic if $\mathcal{E}^{\{M_p\}} \cap \mathcal{D} = \{0\}$. Find conditions over M_p for quasi-analyticity.

Theorem (Denjoy-Carleman, 1921, 1926)

$$\sum_{p=1}^{\infty} \frac{M_{p-1}}{M_p} = \infty.$$

 $\sup_{x\in [a,b]} |f^{(p)}(x)| \leq h^p p!, ext{ for some } h=h_{a,b} \ .$

Replace p! by a sequence $\{M_p\}_{p=0}^{\infty}$ satisfying (convexity):

 $M_p^2 \leq M_{p-1}M_{p+1}$. Define $\mathcal{E}^{\{M_p\}} \subset \mathcal{E}(=C^{\infty})$ as those functions such that

$$\sup_{x\in [a,b]} |f^{(p)}(x)| \leq h^p M_p, \hspace{1em} ext{for some } h=h_{a,b} \;.$$

Example. $M_{\rho} = (\rho!)^s$ gives rise to the Gevrey classes.

Hadamard problem (1912): The class is called quasi-analytic if $\mathcal{E}^{\{M_p\}} \cap \mathcal{D} = \{0\}$. Find conditions over M_p for quasi-analyticity.

Theorem (Denjoy-Carleman, 1921, 1926)

$$\sum_{p=1}^{\infty} \frac{M_{p-1}}{M_p} = \infty.$$

 $\sup_{x\in [a,b]} |f^{(p)}(x)| \leq h^p p!, \hspace{0.2cm} ext{for some } h=h_{a,b} \;.$

Replace p! by a sequence $\{M_p\}_{p=0}^{\infty}$ satisfying (convexity):

 $M_p^2 \leq M_{p-1}M_{p+1}$. Define $\mathcal{E}^{\{M_p\}} \subset \mathcal{E}(=C^{\infty})$ as those functions such that

$$\sup_{x\in [a,b]} |f^{(p)}(x)| \leq h^p M_p, \hspace{1em} ext{for some} \hspace{1em} h = h_{a,b} \;.$$

Example. $M_{\rho} = (\rho!)^s$ gives rise to the Gevrey classes.

Hadamard problem (1912): The class is called quasi-analytic if $\mathcal{E}^{\{M_p\}} \cap \mathcal{D} = \{0\}$. Find conditions over M_p for quasi-analyticity.

Theorem (Denjoy-Carleman, 1921, 1926)

$$\sum_{p=1}^{\infty} \frac{M_{p-1}}{M_p} = \infty.$$

The sequence

We will work with the following conditions on $\{M_{\rho}\}_{\rho=0}^{\infty}$:

- (M.1) $M_p^2 \leq M_{p-1}M_{p+1}$ (logarithmic convexity) (M.2) $M_p \leq AH^pM_qM_{p-q}$ for $0 \leq q \leq p$ (stability under ultradifferential operators)
- (M.3') $\sum_{p=1}^{\infty} \frac{M_{p-1}}{M_p} < \infty$ (non-quasianalyticity)

The following two functions are useful:

$$\mathcal{M}(
ho) = \sup_{
ho \in \mathbb{N}} \log \left(rac{
ho^{
ho} M_0}{M_{
ho}}
ight) \quad ext{(the}$$

(the associated function).

イロト イポト イヨト イヨト

$$M^*(\rho) = \sup_{p \in \mathbb{N}} \log\left(\frac{
ho^p M_0 p!}{M_p}
ight).$$

The nonquasi-analyticity condition (M.3') is equivalent to:

$$\int_1^\infty \frac{M(x)}{x^2} \mathrm{d}x < \infty \; .$$

The sequence

We will work with the following conditions on $\{M_p\}_{p=0}^{\infty}$:

(M.1) $M_p^2 \leq M_{p-1}M_{p+1}$ (logarithmic convexity) (M.2) $M_p \leq AH^pM_qM_{p-q}$ for $0 \leq q \leq p$ (stability under ultradifferential operators)

(M.3') $\sum_{p=1}^{\infty} \frac{M_{p-1}}{M_p} < \infty$ (non-quasianalyticity)

The following two functions are useful:

$$\begin{split} M(\rho) &= \sup_{p \in \mathbb{N}} \log \left(\frac{\rho^p M_0}{M_p} \right) \quad \text{(the associated function).} \\ M^*(\rho) &= \sup_{p \in \mathbb{N}} \log \left(\frac{\rho^p M_0 p!}{M_p} \right). \end{split}$$

The nonquasi-analyticity condition (M.3') is equivalent to:

$$\int_{1}^{\infty} \frac{M(x)}{x^2} \mathrm{d}x < \infty \; .$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The sequence

We will work with the following conditions on $\{M_p\}_{p=0}^{\infty}$:

(M.1) $M_p^2 \leq M_{p-1}M_{p+1}$ (logarithmic convexity) (M.2) $M_p \leq AH^pM_qM_{p-q}$ for $0 \leq q \leq p$ (stability under ultradifferential operators)

(M.3') $\sum_{p=1}^{\infty} \frac{M_{p-1}}{M_p} < \infty$ (non-quasianalyticity)

The following two functions are useful:

$$\begin{split} M(\rho) &= \sup_{\rho \in \mathbb{N}} \log \left(\frac{\rho^{\rho} M_0}{M_{\rho}} \right) \quad \text{(the associated function).} \\ M^*(\rho) &= \sup_{\rho \in \mathbb{N}} \log \left(\frac{\rho^{\rho} M_0 \rho!}{M_{\rho}} \right). \end{split}$$

The nonquasi-analyticity condition (M.3') is equivalent to:

$$\int_1^\infty \frac{M(x)}{x^2} \mathrm{d}x < \infty \; .$$

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Distributions Ultradistributions

Ultradistribution spaces

$$\begin{split} \mathcal{S}_{h}^{M_{p}} &= \left\{ \phi \in \mathcal{S} : \sup_{x,\alpha,\beta} \frac{(1+|x|)^{\alpha} |\phi^{(\beta)}(x)|}{h^{\alpha+\beta} M_{\alpha} M_{\beta}} < \infty \right\} \;, \\ \mathcal{D}_{h,L^{q}}^{M_{p}} &= \left\{ \phi \in \mathcal{D}_{L^{q}} : \sup_{\alpha} \frac{||\phi^{(\alpha)}||_{q}}{h^{\alpha} M_{\alpha}} < \infty \right\} \;, \\ \mathcal{D}_{h,A}^{M_{p}} &= \left\{ \phi \in \mathcal{D} : \sup_{x \in [-A,A],\alpha} \frac{|\phi^{(\alpha)}(x)|}{h^{\alpha} M_{\alpha}} < \infty \right\} \;. \end{split}$$

Beurling-type spaces:

$$\mathcal{S}^{(M_p)} = \bigcap_{h>0} \mathcal{S}^{(M_p)}_h, \quad \mathcal{D}^{(M_p)}_{L^q} = \bigcap_{h>0} \mathcal{D}^{(M_p)}_h$$

$$\mathcal{D}^{(M_p)} = \operatorname{ind} \lim_{A \to \infty} \mathcal{D}^{(M_p)}_A \quad \mathcal{D}^{(M_p)}_A = \bigcap_{h > 0} \mathcal{D}^{(M_p)}_{h, A}$$

Roumieu-type spaces: Replace intersections by unions, resulting spaces: $S^{\{M_p\}}, \mathcal{D}^{\{M_p\}}, \mathcal{D}^{\{M_p\}}$.

э

Distributions Ultradistributions

Ultradistribution spaces

$$\begin{split} \mathcal{S}_{h}^{M_{p}} &= \left\{ \phi \in \mathcal{S} : \sup_{x,\alpha,\beta} \frac{(1+|x|)^{\alpha} |\phi^{(\beta)}(x)|}{h^{\alpha+\beta} M_{\alpha} M_{\beta}} < \infty \right\} \;, \\ \mathcal{D}_{h,L^{q}}^{M_{p}} &= \left\{ \phi \in \mathcal{D}_{L^{q}} : \sup_{\alpha} \frac{||\phi^{(\alpha)}||_{q}}{h^{\alpha} M_{\alpha}} < \infty \right\} \;, \\ \mathcal{D}_{h,\mathcal{A}}^{M_{p}} &= \left\{ \phi \in \mathcal{D} : \sup_{x \in [-\mathcal{A},\mathcal{A}],\alpha} \frac{|\phi^{(\alpha)}(x)|}{h^{\alpha} M_{\alpha}} < \infty \right\} \;. \end{split}$$

Beurling-type spaces:

$$\mathcal{S}^{(M_{\rho})} = igcap_{h>0} \mathcal{S}^{(M_{
ho})}_{h}, \ \ \mathcal{D}^{(M_{
ho})}_{L^{q}} = igcap_{h>0} \mathcal{D}^{(M_{
ho})}_{h}$$

$$\mathcal{D}^{(M_p)} = \operatorname{ind} \lim_{A \to \infty} \mathcal{D}^{(M_p)}_A \quad \mathcal{D}^{(M_p)}_A = \bigcap_{h > 0} \mathcal{D}^{(M_p)}_{h, A}$$

Roumieu-type spaces: Replace intersections by unions, resulting spaces: $S^{\{M_p\}}, \mathcal{D}_{L^q}^{\{M_p\}}, \mathcal{D}^{\{M_p\}}.$

э

Distributions Ultradistributions

Ultradistribution spaces

$$egin{aligned} \mathcal{S}_h^{M_p} &= \left\{ \phi \in \mathcal{S} : \ \sup_{x,lpha,eta} rac{(1+|x|)^lpha |\phi^{(eta)}(x)|}{h^{lpha+eta} M_lpha M_eta} < \infty
ight\} \ , \ \mathcal{D}_{h,L^q}^{M_p} &= \left\{ \phi \in \mathcal{D}_{L^q} : \ \sup_lpha rac{||\phi^{(lpha)}||_q}{h^lpha M_lpha} < \infty
ight\} \ , \ \mathcal{D}_{h,\mathcal{A}}^{M_p} &= \left\{ \phi \in \mathcal{D} : \ \sup_{x \in [-\mathcal{A},\mathcal{A}],lpha} rac{|\phi^{(lpha)}(x)|}{h^lpha M_lpha} < \infty
ight\} \ . \end{aligned}$$

Beurling-type spaces:

$$\mathcal{S}^{(M_p)} = \bigcap_{h>0} \mathcal{S}^{(M_p)}_h, \quad \mathcal{D}^{(M_p)}_{L^q} = \bigcap_{h>0} \mathcal{D}^{(M_p)}_h$$
$$\mathcal{D}^{(M_p)} = \mathsf{ind} \lim_{A \to \infty} \mathcal{D}^{(M_p)}_A \quad \mathcal{D}^{(M_p)}_A = \bigcap_{h>0} \mathcal{D}^{(M_p)}_{h,A}$$

Roumieu-type spaces: Replace intersections by unions, resulting spaces: $S^{\{M_p\}}, D^{\{M_p\}}_{L^q}, D^{\{M_p\}}$.

Boundary values in ultradistribution spaces

Let F(z) be analytic on $\Im m z > 0$. Assume (M.1), (M.2), (M.3).

Beurling case:

 $(\forall A > 0)(\exists \lambda)(\exists K) \left(|F(x + iy)| \le K e^{M^* \left(\frac{\lambda}{y}\right)}, y < 1, |x| \le A \right) \implies F(x + i0) \in \mathcal{D}'^{(M_p)}.$ $(\exists \lambda)(\exists K) \left(|F(x + iy)| \le K e^{M^* \left(\frac{\lambda}{y}\right)} e^{M(\lambda(|x|+y))} \right) \implies F(x + i0) \in \mathcal{S}'(M_p).$ $(\exists \lambda)(\exists K) \left(||F(\cdot + iy)||_q \le K e^{M^* \left(\frac{\lambda}{y}\right)}, \ 0 < y < 1 \right) \implies F(x + i0) \in \mathcal{D}'_{L^q}^{(M_p)}.$

• Roumieu case: If one replaces $(\exists \lambda)$ by $(\forall \lambda)$, one obtains boundary values in the ultradistribution spaces $\mathcal{D}'^{\{M_p\}}$, $\mathcal{S}'^{\{M_p\}}$, and $\mathcal{D}'^{\{M_p\}}_{L^q}$.

・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Boundary values in ultradistribution spaces

Let F(z) be analytic on $\Im m z > 0$. Assume (M.1), (M.2), (M.3).

Beurling case:

$$(\forall A > 0)(\exists \lambda)(\exists K) \left(|F(x + iy)| \le K e^{M^* \left(\frac{\lambda}{y}\right)}, y < 1, |x| \le A \right) \implies F(x + i0) \in \mathcal{D}^{\prime(M_p)}$$
$$(\exists \lambda)(\exists K) \left(|F(x + iy)| \le K e^{M^* \left(\frac{\lambda}{y}\right)} e^{M(\lambda(|x|+y))} \right) \implies F(x + i0) \in \mathcal{S}^{\prime}(M_p) .$$
$$(\exists \lambda)(\exists K) \left(||F(\cdot + iy)||_q \le K e^{M^* \left(\frac{\lambda}{y}\right)}, \ 0 < y < 1 \right) \implies F(x + i0) \in \mathcal{D}^{\prime}_{L^q}^{(M_p)} .$$

• Roumieu case: If one replaces $(\exists \lambda)$ by $(\forall \lambda)$, one obtains boundary values in the ultradistribution spaces $\mathcal{D}'^{\{M_p\}}$, $\mathcal{S}'^{\{M_p\}}$, and $\mathcal{D}'^{\{M_p\}}_{L^q}$.

イロト イポト イヨト イヨト

Distributions Ultradistributions

Boundary values in ultradistribution spaces

Let F(z) be analytic on $\Im m z > 0$. Assume (M.1), (M.2), (M.3).

Beurling case:

$$(\forall A > 0)(\exists \lambda)(\exists K) \left(|F(x + iy)| \le K e^{M^* \left(\frac{\lambda}{y}\right)}, y < 1, |x| \le A \right) \implies F(x + i0) \in \mathcal{D}'^{(M_p)}$$
$$(\exists \lambda)(\exists K) \left(|F(x + iy)| \le K e^{M^* \left(\frac{\lambda}{y}\right)} e^{M(\lambda(|x|+y))} \right) \implies F(x + i0) \in \mathcal{S}'(M_p) .$$
$$(\exists \lambda)(\exists K) \left(||F(\cdot + iy)||_q \le K e^{M^* \left(\frac{\lambda}{y}\right)}, \ 0 < y < 1 \right) \implies F(x + i0) \in \mathcal{D}'_{L^q}^{(M_p)} .$$

Roumieu case: If one replaces (∃λ) by (∀λ), one obtains boundary values in the ultradistribution spaces D'^{M_p}, S'^{{M_p}}, and D'^{M_p}_{Lq}.

イロト 不得 トイヨト 不良 トー

The prime number theorem

The prime number theorem (PNT) states that

$$\pi(x) \sim \frac{x}{\log x} , \quad x \to \infty ,$$

where

$$\pi(x) = \sum_{\substack{p \leq x \ p ext{ prime}}} 1 \; .$$

We will consider generalizations of the PNT for Beurling's generalized numbers

イロト イポト イヨト イヨト

Beurling's problem

In 1937, Beurling raised and studied the following question.

- Let 1 < p₁ ≤ p₂,... be a non-decreasing sequence tending to infinity (generalized primes).
- Arrange all possible products of the *p_j* in a non-decreasing sequence 1 < *n*₁ ≤ *n*₂,..., where every *n_k* is repeated as many times as represented by *p*^{α₁}_{ν₁}*p*^{α₂}_{ν₂}...*p*^{α_m}_{ν_m} with ν_j < ν_{j+1} (generalized numbers).

• Denote $N(x) = \sum_{n_k \le x} 1$ and $\pi(x) = \sum_{p_k \le x} 1$.

Beurling's problem: Find conditions over *N* which ensure the validity of the PNT, i.e.,

$$\pi(x) \sim \frac{x}{\log x} \; .$$

イロト 人間ト イヨト イヨト

Beurling's problem

In 1937, Beurling raised and studied the following question.

- Let 1 < p₁ ≤ p₂,... be a non-decreasing sequence tending to infinity (generalized primes).
- Arrange all possible products of the *p_j* in a non-decreasing sequence 1 < *n*₁ ≤ *n*₂,..., where every *n_k* is repeated as many times as represented by *p^{α₁}_{ν₁} p^{α₂}_{ν₂}... p^{α_m}_{ν_m}* with *ν_j* < *ν_{j+1}* (generalized numbers).

• Denote
$$N(x) = \sum_{n_k \leq x} 1$$
 and $\pi(x) = \sum_{p_k \leq x} 1$.

Beurling's problem: Find conditions over *N* which ensure the validity of the PNT, i.e.,

$$\pi(x)\sim \frac{x}{\log x}\;.$$

イロト 不得 とくほ とくほとう

Beurling's problem

In 1937, Beurling raised and studied the following question.

- Let 1 < p₁ ≤ p₂,... be a non-decreasing sequence tending to infinity (generalized primes).
- Arrange all possible products of the *p_j* in a non-decreasing sequence 1 < *n*₁ ≤ *n*₂,..., where every *n_k* is repeated as many times as represented by *p*^{α₁}_{ν₁}*p*^{α₂}_{ν₂}...*p*^{α_m}_{ν_m} with ν_j < ν_{j+1} (generalized numbers).

• Denote
$$N(x) = \sum_{n_k \leq x} 1$$
 and $\pi(x) = \sum_{p_k \leq x} 1$.

Beurling's problem: Find conditions over *N* which ensure the validity of the PNT, i.e.,

$$\pi(x) \sim \frac{x}{\log x}$$
.

イロト (過) (ほ) (ほ)

Beurling studied the problem in connection with the asymptotics

 $N(x) \sim ax$.

Conditions on the reminder in N(x) = ax + R(x) are needed.

Theorem (Beurling, 1937)

if

$$N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right),$$

where a > 0 and $\gamma > 3/2$, then the PNT holds.

Theorem (Diamond, 1970)

Beurling's condition is sharp, namely, the PNT does not necessarily hold if $\gamma = 3/2$.

Beurling studied the problem in connection with the asymptotics

 $N(x) \sim ax$.

Conditions on the reminder in N(x) = ax + R(x) are *needed*.

 $N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right),$

where a > 0 and $\gamma > 3/2$, then the PNT holds.

Theorem (Diamond, 1970)

Beurling's condition is sharp, namely, the PNT does not necessarily hold if $\gamma = 3/2$.

Beurling studied the problem in connection with the asymptotics

 $N(x) \sim ax$.

Conditions on the reminder in N(x) = ax + R(x) are *needed*.

Theorem (Beurling, 1937)

if

$$N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right),$$

where a > 0 and $\gamma > 3/2$, then the PNT holds.

Theorem (Diamond, 1970)

Beurling's condition is sharp, namely, the PNT does not necessarily hold if $\gamma=3/2$.

Beurling studied the problem in connection with the asymptotics

 $N(x) \sim ax$.

Conditions on the reminder in N(x) = ax + R(x) are *needed*.

Theorem (Beurling, 1937)

if

$$N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right),$$

where a > 0 and $\gamma > 3/2$, then the PNT holds.

Theorem (Diamond, 1970)

Beurling's condition is sharp, namely, the PNT does not necessarily hold if $\gamma = 3/2$.

The L²-conjecture: Kahane's PNT

In 1969, Bateman and Diamond conjectured that

$$\int_{1}^{\infty} \left| \frac{(N(x) - ax) \log x}{x} \right|^{2} \frac{\mathrm{d}x}{x} < \infty$$

would suffice for the PNT. The above L^2 -condition extends that of Beurling.

Theorem (Kahane's 1997, extending Beurling)

The L²-hypothesis ensures the validity of the PNT.

ヘロト 人間 とくほとくほとう

The L²-conjecture: Kahane's PNT

In 1969, Bateman and Diamond conjectured that

$$\int_{1}^{\infty} \left| \frac{(N(x) - ax) \log x}{x} \right|^{2} \frac{\mathrm{d}x}{x} < \infty$$

would suffice for the PNT. The above L^2 -condition extends that of Beurling.

Theorem (Kahane's 1997, extending Beurling)

The L²-hypothesis ensures the validity of the PNT.

ヘロアメ 雪 アメ 回 ア・

An average condition for the PNT

Schlage-Puchta and I recently showed.

Theorem (2012, extending Beurling)

Suppose there exist constants a > 0 and $\gamma > 3/2$ such that

$$N(x) = ax + O\left(rac{x}{\log^{\gamma} x}
ight) \quad ext{(C)} \ , \ \ x o \infty \ ,$$

Then the prime number theorem still holds.

The hypothesis means that there exists some $m \in \mathbb{N}$ such that:

$$\int_0^x \frac{N(t) - at}{t} \left(1 - \frac{t}{x}\right)^m \mathrm{d}t = O\left(\frac{x}{\log^\gamma x}\right)$$

Technique: Distributional methods in the analysis of boundary behavior of zeta functions.

An average condition for the PNT

Schlage-Puchta and I recently showed.

Theorem (2012, extending Beurling)

Suppose there exist constants a > 0 and $\gamma > 3/2$ such that

$$N(x) = ax + O\left(rac{x}{\log^{\gamma} x}
ight) \quad ext{(C)} \ , \ \ x o \infty \ ,$$

Then the prime number theorem still holds.

The hypothesis means that there exists some $m \in \mathbb{N}$ such that:

$$\int_0^x \frac{N(t) - at}{t} \left(1 - \frac{t}{x}\right)^m \mathrm{d}t = O\left(\frac{x}{\log^\gamma x}\right)$$

Technique: Distributional methods in the analysis of boundary behavior of zeta functions.

An average condition for the PNT

Schlage-Puchta and I recently showed.

Theorem (2012, extending Beurling)

Suppose there exist constants a > 0 and $\gamma > 3/2$ such that

$$N(x) = ax + O\left(rac{x}{\log^{\gamma} x}
ight) \quad ext{(C)} \ , \ \ x o \infty \ ,$$

Then the prime number theorem still holds.

The hypothesis means that there exists some $m \in \mathbb{N}$ such that:

$$\int_0^x \frac{N(t) - at}{t} \left(1 - \frac{t}{x}\right)^m \mathrm{d}t = O\left(\frac{x}{\log^\gamma x}\right)$$

Technique: Distributional methods in the analysis of boundary behavior of zeta functions.

The three conditions

$$N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right)$$
$$\int_{1}^{\infty} \left|\frac{(N(x) - ax)\log x}{x}\right|^{2} \frac{dx}{x} < \infty$$
$$N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right) \quad (C)$$

can be better understood if one looks at

$$E(u) = \frac{(N(e^u) - ae^u)u}{e^u} \; .$$

イロト 人間ト イヨト イヨト

The three conditions

$$N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right)$$
$$\int_{1}^{\infty} \left|\frac{(N(x) - ax)\log x}{x}\right|^{2} \frac{dx}{x} < \infty$$
$$N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right) \quad (C)$$

can be better understood if one looks at

$$E(u)=rac{(N(e^u)-ae^u)u}{e^u}$$
 .

イロト 人間ト イヨト イヨト

The three conditions

$$N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right) \Longrightarrow E(u) = O(u^{-(\gamma-1)})$$
$$\int_{1}^{\infty} \left|\frac{(N(x) - ax)\log x}{x}\right|^{2} \frac{\mathrm{d}x}{x} < \infty \Longrightarrow E \in L^{2}$$
$$(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right) \quad (C) \Longrightarrow (E * \phi)(u) = O(u^{-(\gamma-1)}), \quad \forall \phi \in S$$

where

$$E(u)=\frac{(N(e^u)-ae^u)u}{e^u}\;.$$

In all three cases, this error function satisfies the membership condition:

$$E \in \mathcal{D}'_{L^2}.$$

・ロト ・ 雪 ト ・ ヨ ト ・

The three conditions

$$N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right) \Longrightarrow E(u) = O(u^{-(\gamma-1)})$$
$$\int_{1}^{\infty} \left|\frac{(N(x) - ax)\log x}{x}\right|^{2} \frac{\mathrm{d}x}{x} < \infty \Longrightarrow E \in L^{2}$$
$$N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right) \quad (C) \Longrightarrow (E * \phi)(u) = O(u^{-(\gamma-1)}), \quad \forall \phi \in \mathcal{S}$$

where

$$E(u)=rac{(N(e^u)-ae^u)u}{e^u}\;.$$

In all three cases, this error function satisfies the membership condition:

$$E \in \mathcal{D}'_{L^2}.$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The three conditions

$$N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right) \Longrightarrow E(u) = O(u^{-(\gamma-1)})$$
$$\int_{1}^{\infty} \left|\frac{(N(x) - ax)\log x}{x}\right|^{2} \frac{\mathrm{d}x}{x} < \infty \Longrightarrow E \in L^{2}$$
$$N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right) \quad (C) \Longrightarrow (E * \phi)(u) = O(u^{-(\gamma-1)}), \quad \forall \phi \in S$$

where

$$\mathsf{E}(u) = rac{(\mathsf{N}(e^u) - ae^u)u}{e^u} \; .$$

In all three cases, this error function satisfies the membership condition:

$$E \in \mathcal{D}'_{L^2}.$$

・ロト ・ 雪 ト ・ ヨ ト ・

The newest general PNT

Theorem (2013, extending all earlier results)

Suppose that $E \in \mathcal{D}_{L^2}^{\prime (M_p)}$, where the sequence satisfies (M.1) and (M.2) and the associated function M satisfies:

$$\int_{1}^{\infty} \frac{M(x)}{x^3} \, \mathrm{d}x < \infty \;. \tag{6}$$

Then the prime number theorem holds.

Example. If $M_p = (p!)^s$ with 1/2 < s, then (6) holds because

 $Ax^{1/s} \le M(x) \le Bx^{1/s}.$

Remark. The condition (6) implies the bound

 $M(x) = o(x^2/\log x).$

Is this growth condition sharp for the PNT? I conjecture, so and the start of the s

The newest general PNT

Theorem (2013, extending all earlier results)

Suppose that $E \in \mathcal{D}_{L^2}^{\prime (M_p)}$, where the sequence satisfies (M.1) and (M.2) and the associated function M satisfies:

$$\int_{1}^{\infty} \frac{M(x)}{x^3} \, \mathrm{d}x < \infty \;. \tag{6}$$

Then the prime number theorem holds.

Example. If $M_p = (p!)^s$ with 1/2 < s, then (6) holds because

$$Ax^{1/s} \leq M(x) \leq Bx^{1/s}$$
.

Remark. The condition (6) implies the bound

 $M(x) = o(x^2/\log x).$

Is this growth condition sharp for the PNT? I conjecture, so and the start of the s

The newest general PNT

Theorem (2013, extending all earlier results)

Suppose that $E \in \mathcal{D}_{L^2}^{\prime (M_p)}$, where the sequence satisfies (M.1) and (M.2) and the associated function M satisfies:

$$\int_{1}^{\infty} \frac{M(x)}{x^3} \,\mathrm{d}x < \infty \;. \tag{6}$$

Then the prime number theorem holds.

Example. If $M_p = (p!)^s$ with 1/2 < s, then (6) holds because

$$Ax^{1/s} \leq M(x) \leq Bx^{1/s}$$
.

Remark. The condition (6) implies the bound

$$M(x) = o(x^2/\log x).$$

Is this growth condition sharp for the PNT? I conjecture so ...,