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Complex Tauberian theorems have been strikingly useful tools
in diverse areas such as:

Analytic number theory.
Spectral theory for (pseudo-)differential operators.
Last three decades: operator theory and semigroups.

We will discuss some developments in complex Tauberians for
Laplace transforms. We will be concerned with two groups of
statements:

Wiener-Ikehara theorems.
Ingham-Karamata theorems.

Main questions:
1 Relax boundary requirements to a minimum.
2 Mild Tauberian hypotheses (one-sided conditions).
3 Optimal Tauberian constants: sharp versions.
4 Best possible error terms

This talk is based on collaborative works with G. Debruyne.
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The classical Wiener-Ikehara theorem

Theorem (Wiener-Ikehara, Laplace-Stieltjes transforms)
Let S be a non-decreasing function (Tauberian hypothesis)
such that L{dS; z} =

∫∞
0− e−ztdS(t) converges for <e z > 1. If

L{dS; z} − A
z − 1

has analytic continuation through <e z = 1, then S(x) ∼ Aex .

Theorem (Wiener-Ikehara, version for Dirichlet series)

Let an ≥ 0. Suppose
∑∞

n=1 ann−z converges for <e z > 1. If

∞∑
n=1

an

nz −
A

z − 1

has analytic continuation through <e z = 1, then
∑
n≤x

an ∼ Ax.
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From the Wiener-Ikehara theorem to the PNT:
The Prime Number Theorem (PNT) asserts that

π(x) =
∑
p≤x

1 ∼ x
log x

PNT is equivalent to ψ(x) =
∑

pα≤x

log p =
∑

n≤x Λ(n) ∼ x .

ζ(z) =
∑∞

n=1 n−z has analytic continuation to C except for a
simple pole with residue 1 at z = 1.

Logarithmic differentiation of ζ(z) =
∏

p(1− p−z)−1 leads to
∞∑

n=1

Λ(n)

nz = −ζ
′(z)

ζ(z)
, <e z > 1.

(z − 1)ζ(z) has no zeros on <e z = 1, so

− d
dz

(log((z − 1)ζ(z))) = −ζ
′(z)

ζ(z)
− 1

z − 1

is analytic in a region containing <e z ≥ 1. The rest follows from
the Wiener-Ikehara theorem.
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Remarks on the Wiener-Ikehara theorem

Historically, the Wiener-Ikehara theorem improved a
Tauberian theorem of Landau (1908) by eliminating the
unnecessary hypothesis G(z) = O(|z|N) on

G(z) = L{dS; z} − A
z − 1

The hypothesis G(z) has analytic continuation to <e z = 1
can be significantly relaxed to “good boundary behavior":

1 G(z) has continuous extension to <e z = 1.
2 L1

loc-boundary behavior: limx→1+ G(x + iy) ∈ L1(I) for every
finite interval I.

3 Local pseudofunction boundary behavior (Korevaar, 2005).
4 “if and only if version” (Debruyne and V., 2016).
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Pseudofunctions and pseudomeasures

Pseudofunctions and pseudomeasures are notions that
naturally arise in harmonic analysis.

Pseudomeasures: PM(R) = {g : ĝ ∈ L∞(R)}
Pseudofunctions: PF (R) = {g ∈ PM(R) : lim

|x |→∞
ĝ(x) = 0}

Given an open set U ⊆ R, we define the local spaces:
PMloc(U) = {g ∈ D′(U) : ϕg ∈ PM(R),∀ϕ ∈ D(U)}.
PFloc(U) = {g ∈ D′(U) : ϕg ∈ PF (R), ∀ϕ ∈ D(U)}.
L1

loc(U) ⊂ PFloc(U).

Every Radon measure on U is a local pseudomeasure.
Let G be analytic on <e z > α and U ⊂ R be open.
We say that G has local pseudofunction boundary behavior on
α + iU if it has distributional boundary values there, i.e.

lim
x→α+

G(x + iy) = g(y) in D′(U)

and g ∈ PFloc(U).
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ĝ(x) = 0}

Given an open set U ⊆ R, we define the local spaces:
PMloc(U) = {g ∈ D′(U) : ϕg ∈ PM(R),∀ϕ ∈ D(U)}.
PFloc(U) = {g ∈ D′(U) : ϕg ∈ PF (R), ∀ϕ ∈ D(U)}.
L1

loc(U) ⊂ PFloc(U).

Every Radon measure on U is a local pseudomeasure.
Let G be analytic on <e z > α and U ⊂ R be open.
We say that G has local pseudofunction boundary behavior on
α + iU if it has distributional boundary values there, i.e.

lim
x→α+

G(x + iy) = g(y) in D′(U)

and g ∈ PFloc(U).
Jasson Vindas Complex Tauberian theorems for Laplace transforms



Pseudofunctions and pseudomeasures

Pseudofunctions and pseudomeasures are notions that
naturally arise in harmonic analysis.

Pseudomeasures: PM(R) = {g : ĝ ∈ L∞(R)}
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Extension of the Korevaar-Wiener-Ikehara theorem

We call a function S log-linearly slowly decreasing if for each
ε > 0 there exists δ > 0

lim inf
x→∞

inf
0≤h≤δ

S(x + h)− S(x)

ex ≥ −ε.

Theorem (Debruyne and V., 2016)

Suppose that L{S; z} =
∫∞

0 S(t)e−ztdt converges for <e z > 1.
Then,

S(x) ∼ Aex

if and only if

1 L{S; z} − A
z − 1

has local pseudofunction boundary

behavior on <e z = 1, and
2 S is log-linearly slowly decreasing.
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The Fatou-Riesz theorem

In his very influential 1906 paper

Séries trigonométriques et séries de Taylor,

Fatou proved the following theorem on analytic continuation of
power series.

Theorem (Fatou-Riesz theorem)

Suppose that F (z) =
∑∞

n=0 cnzn converges for |z| < 1 and
cn = o(1) (this is the Tauberian condition). If F (z) has analytic
continuation to a neigborhood of z = 1, then

∑∞
n=0 cn

converges and
∞∑

n=0

cn = F (1).

Marcel Riesz gave three proofs of this theorem (1909, 1911,
1916), so his name is usually associated to this result.
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The Ingham-Karamata theorem for Laplace transforms
In 1935 Ingham and Karamata obtained a Fatou-Riesz type
Tauberian theorem for Laplace transforms. The result makes use of
slow decrease.
A function τ is called slowly decreasing if for each ε > 0 there is δ > 0
such that

lim inf
x→∞

inf
h∈[0,δ]

(τ(x + h)− τ(x)) > −ε.

that is, τ(x + h)− τ(x) > −ε for x > Xε and 0 ≤ h < δε.

Theorem (Ingham and Karamata, independently)

Let τ ∈ L1
loc(R) be slowly decreasing (Tauberian hypothesis).

Suppose its Laplace transform

L{τ ; z} =

∫ ∞
0

τ(t)e−ztdt

converges on <e z > 0 and has L1
loc-boundary behavior on

<e z = 0, then lim
x→∞

τ(x) = 0.
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Developments in the 1980s: Newman’s contour
integration method

In 1980 Newman gave a simple contour integration proof of the
next Tauberian theorem.
Theorem

Let an = O(1) (Tauberian hypothesis). If F (z) =
∞∑

n=1

an

nz has

analytic continuation beyond <e z = 1, then

∞∑
n=1

an

n
= F (1).

It is contained in the Ingham-Karamata theorem; however,
Newman’s proof method is simple and very attractive.
In the recent book Twelve landmarks in twentieth century
analysis, Choimet and Queffélet chose this theorem as
one of such landmarks.
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Newman’s short way to the PNT

Newman’s Tauberian theorem from above provides a relatively
simple way to prove the PNT.

One works here with the Möbius

µ(n) =


1 if n = 1,
(−1)r if n has r distinct prime factors,
0 otherwise.

Property: µ is the Dirichlet convolution inverse of 1. So,
∞∑

n=1

µ(n)

nz =
1

ζ(z)
(ζ is the Riemann zeta function)

Applying the previous theorem,
∞∑

n=1

µ(n)

n
=

1
ζ(1)

= 0.

The latter relation was shown to imply the PNT by Landau
in 1913 via elementary (real-variable) methods.
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Tauberians motivated by applications in semigroups

Newman’s contour integration method was adapted to a variety
of Tauberian problems in numerous articles.
Its importance was recognized by the semigroup community.
Here is a sample (extending a result of Korevaar and Zagier):

Theorem (Arendt and Batty, 1988)

Let ρ ∈ L∞(R) (Tauberian hypothesis) vanish on (−∞,0).
Suppose that L{ρ; z} has analytic continuation at every point of
the complement of iE where E ⊂ R is a closed null set. If
0 /∈ iE and

sup
t∈E

sup
x>0

∣∣∣∣∫ x

0
e−ituρ(u)du

∣∣∣∣ <∞,
then the (improper) integral of ρ converges to b = L{ρ; 0}, that
is, ∫ ∞

0
ρ(t)dt = b.
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If E = ∅, the result is due to Korevaar and Zagier
(independently), who also obtained it via Newman’s contour
integration technique.

In this case, the result is contained in the Ingham-Karamata
theorem:

Set τ(x) =
∫ x

0 ρ(u)du − b ⇒ L{τ ; z} =
L{ρ; z} − b

z
with b = L{ρ; 0}.
L{ρ; z} has analytic continuation beyond <e z = 0 if and
only if

L{τ ; z} =
L{ρ; z} − b

z
does.
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The Arendt-Batty Tauberian theorem readily extends to
functions with values on a Banach space. Here is a sample
application of the vector-valued version:

Theorem (Arendt and Batty)

Let (T (t))t≥0 be a bounded C0-semigroup on a reflexive
Banach space X. Denote the spectrum of its infinitesimal
generator A as σ(A). If σ(A) ∩ iR is countable and no
eigenvalue of A lies on the imaginary axis, then

lim
t→∞

T (t)x = 0, ∀x ∈ X .

In recent times, Tauberian methods have been revisited to
study rates of converge that can be a applied to PDE, e.g.
decay estimates for damped wave equations.
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Input from operator theory

In the same spirit, Katznelson and Tzafriri established earlier
the following important result in asymptotic operator theory:

Theorem (Katznelson and Tzafriri, 1986)
Let T be a power-bounded operator on a Banach space
(supn∈N ‖T n‖ <∞). Then,

lim
n→∞

‖T n+1 − T n‖ = 0

if and only if σ(T ) ∩ ∂D ⊆ {1}.

This can be deduced from a power series Tauberian
theorem that preceded the Arendt-Batty theorem.
In their work Katznelson and Tzafriri employed local
pseudofunctions on the torus, initiating so the distributional
approach in complex Tauberian theory.
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Extension of the Ingham-Karamata theorem

Theorem (Debruyne and V.)

Let τ ∈ L1
loc(R) be slowly decreasing, vanish on (−∞,0), and

have convergent Laplace transform on <e z > 0. Suppose
there is a closed null set E ⊂ R such that:

(I) L{τ ; z} has local pseudofunction boundary behavior on
i(R \ E),

(II) for each t ∈ E there is Mt > 0 such that

sup
x>0

∣∣∣∣∫ x

0
τ(u)e−itudu

∣∣∣∣ < Mt ,

(III) 0 /∈ E.
Then

τ(x) = o(1). (1)

Conversely, (??) implies that L{τ ; z} has local pseudofunction
boundary behavior on the whole imaginary axis.
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Some tools involved in the proof

Our proof is based on:

Boundedness theorems for Laplace transforms with local
pseudo-measure behavior.
Characterizations of local pseudofunctions through
behavior outside exceptional sets.

Other results
General version of the Katznelson-Tzafriri theorem (for
power series), improving the Allan-O’Farell-Ransford
theorem (1987).
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Quantified finite forms: Ingham’s theorem

Lip(I; M) denotes the class of Lipschitz continuous functions on
I with Lipschitz constant M.

Known result: Suppose that
1 τ ∈ Lip([0,∞); M).
2 L{τ ; z} has “good” boundary behavior on (−iλ, iλ).

There is an absolute contant C > 0 such that

lim sup
x→∞

|τ(x)| ≤ CM
λ
.

Some values of C:

C = 6, Ingham (1935)
C = 2, Korevaar, Zagier, and other people ...

Problem: Find the optimal value of C.
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Sharp finite forms

Theorem (Debruyne and V., 2018)
Suppose that

1 τ ∈ Lip([0,∞); M)

2 L{τ ; z} has local pseudofunction boundary behavior on
(−iλ, iλ)

Then
lim sup

x→∞
|τ(x)| ≤ πM

2λ

and the value of π/2 in this inequality cannot be improved.

Combining this with the Graham-Vaaler sharp Wiener-Ikehara
theorem, one can consider ‘Lipschitz continuous functions only
from below’. We obtained the sharp inequality

lim sup
x→∞

|τ(x)| ≤ πM
λ
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Inequalities for functions with regular Fourier transform
Define the ‘oscillation’ and ‘decrease’ moduli at∞ as:

Ψ(δ) = lim sup
x→∞

sup
h∈[0,δ]

|τ(x + h)− τ(x)|.

and
Ψ−(δ) = − lim inf

x→∞
inf

h∈[0,δ]
τ(x + h)− τ(x).

Theorem (Debruyne and V., 2018)

Let τ ∈ L1
loc(R) have at most polynomial growth. Suppose that

τ̂ ∈ PFloc(−λ, λ) (in particular if continuous there). Then,

lim sup
x→∞

|τ(x)| ≤ inf
δ>0

(
1 +

π

2δλ

)
Ψ(δ)

and
lim sup

x→∞
|τ(x)| ≤ inf

δ>0

(
1 +

π

δλ

)
Ψ−(δ).

The contants π/2 and π being sharp in these inequalities.
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Some references
The talk is based on recent collaborative works with G. Debruyne:

Generalization of the Wiener-Ikehara theorem, Illinois J. Math. 60
(2016), 613–624.
Optimal Tauberian constant in Ingham’s theorem for Laplace
transforms, Israel J. Math. 228 (2018), 557–586.
Note on the absence of remainders in the Wiener-Ikehara theorem,
Proc. Amer. Math. Soc. 146 (2018), 5097–5103.
Complex Tauberian theorems for Laplace transforms with local
pseudofunction boundary behavior, J. Anal. Math., to appear.

For some applications of these results in analytic number theory, see:
On PNT equivalences for Beurling numbers, Monatsh. Math. 184
(2017), 401–424.
On Diamond’s L1 criterion for asymptotic density of Beurling
generalized integers, Michigan Math. J. 68 (2019), 211–223.

Important book references on complex Tauberians
W. Arendt, C. J. K. Batty, M. Hieber, F. Neubrander, Vector-valued
Laplace transforms and Cauchy problems, Birkhäuser/Springer, 2011.
J. Korevaar, Tauberian theory. A century of developments,
Springer-Verlag, 2004.
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