Jasson Vindas

jasson.vindas@UGent.be

Department of Mathematics Ghent University

International Conference on Generalized Functions – GF2018 Novi Sad, Serbia, August 29, 2018

We will discuss topological properties of a general class of convolutor spaces.

Our results are quantified versions of classical results, mainly motivated by:

- **O** Schwartz' convolution description of \mathcal{D}'_{I^1} .
- 2 Grothendieck's results on the completeness of \mathcal{O}_C and the (ultra-)bornologicity of \mathcal{O}'_C .

The talk is based on collaborative work with Andreas Debrouwere.

A (10) × (10) × (10)

We will discuss topological properties of a general class of convolutor spaces.

Our results are quantified versions of classical results, mainly motivated by:

- **O** Schwartz' convolution description of \mathcal{D}'_{l_1} .
- **2** Grothendieck's results on the completeness of \mathcal{O}_C and the (ultra-)bornologicity of \mathcal{O}'_C .

The talk is based on collaborative work with Andreas Debrouwere.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

We will discuss topological properties of a general class of convolutor spaces.

Our results are quantified versions of classical results, mainly motivated by:

- **O** Schwartz' convolution description of \mathcal{D}'_{l_1} .
- **2** Grothendieck's results on the completeness of \mathcal{O}_C and the (ultra-)bornologicity of \mathcal{O}'_C .

The talk is based on collaborative work with Andreas Debrouwere.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

• The space \mathcal{B} consists of all $\varphi \in C^{\infty}(\mathbb{R}^d)$ such that

 $\|\partial^{\alpha}\varphi\|_{L^{\infty}}<\infty, \qquad \forall \alpha\in\mathbb{N}^{d}.$

- The space \mathcal{B} is a Fréchet space.
- The space $\dot{\mathcal{B}}$ is given by the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B} , i.e., all $\varphi \in C^{\infty}(\mathbb{R}^d)$ such that

$$\lim_{|x|\to\infty}\partial^{\alpha}\varphi(x)=0,\qquad\forall\alpha\in\mathbb{N}^{d}.$$

- The space $\dot{\mathcal{B}}$ is a Fréchet space.
- The space \mathcal{D}'_{L^1} of integrable distributions is given by the topological dual of $\dot{\mathcal{B}}$.

・ロト ・四ト ・ヨト・

• The space $\mathcal B$ consists of all $arphi \in \mathcal C^\infty(\mathbb R^d)$ such that

 $\|\partial^{\alpha}\varphi\|_{L^{\infty}} < \infty, \qquad \forall \alpha \in \mathbb{N}^{\mathbf{d}}.$

- The space \mathcal{B} is a Fréchet space.
- The space $\dot{\mathcal{B}}$ is given by the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B} , i.e., all $\varphi \in C^{\infty}(\mathbb{R}^d)$ such that

$$\lim_{|x|\to\infty}\partial^{\alpha}\varphi(x)=0,\qquad\forall\alpha\in\mathbb{N}^{d}.$$

- The space $\dot{\mathcal{B}}$ is a Fréchet space.
- The space \mathcal{D}'_{L^1} of integrable distributions is given by the topological dual of $\dot{\mathcal{B}}$.

・ロット 御マ メロマ

• The space \mathcal{B} consists of all $\varphi \in C^{\infty}(\mathbb{R}^d)$ such that

$$\|\partial^{\alpha}\varphi\|_{L^{\infty}} < \infty, \qquad \forall \alpha \in \mathbb{N}^{\mathbf{d}}.$$

- The space \mathcal{B} is a Fréchet space.
- The space B
 ^β is given by the closure of D(ℝ^d) in B, i.e., all φ ∈ C[∞](ℝ^d) such that

$$\lim_{|\mathbf{x}|\to\infty}\partial^{\alpha}\varphi(\mathbf{x})=\mathbf{0},\qquad\forall\alpha\in\mathbb{N}^{d}.$$

- The space $\dot{\mathcal{B}}$ is a Fréchet space.
- The space D'_{L1} of integrable distributions is given by the topological dual of B.

<<p>・

• The space \mathcal{B} consists of all $\varphi \in C^{\infty}(\mathbb{R}^d)$ such that

$$\|\partial^{\alpha}\varphi\|_{L^{\infty}} < \infty, \qquad \forall \alpha \in \mathbb{N}^{d}.$$

- The space \mathcal{B} is a Fréchet space.
- The space Ḃ is given by the closure of D(ℝ^d) in B, i.e., all φ ∈ C[∞](ℝ^d) such that

$$\lim_{|x|\to\infty}\partial^{\alpha}\varphi(x)=\mathbf{0},\qquad\forall\alpha\in\mathbb{N}^{d}.$$

• The space $\dot{\mathcal{B}}$ is a Fréchet space.

• The space \mathcal{D}'_{L^1} of integrable distributions is given by the topological dual of $\dot{\mathcal{B}}$.

<日</th>

• The space \mathcal{B} consists of all $\varphi \in C^{\infty}(\mathbb{R}^d)$ such that

$$\|\partial^{\alpha}\varphi\|_{L^{\infty}} < \infty, \qquad \forall \alpha \in \mathbb{N}^{d}.$$

- The space \mathcal{B} is a Fréchet space.
- The space Ḃ is given by the closure of D(ℝ^d) in B, i.e., all φ ∈ C[∞](ℝ^d) such that

$$\lim_{|\mathbf{x}|\to\infty}\partial^{\alpha}\varphi(\mathbf{x})=\mathbf{0},\qquad\forall\alpha\in\mathbb{N}^{d}.$$

- The space $\dot{\mathcal{B}}$ is a Fréchet space.
- The space \mathcal{D}'_{L^1} of integrable distributions is given by the topological dual of $\dot{\mathcal{B}}$.

▲ □ ▶ ▲ □ ▶

Let $f \in \mathcal{D}'(\mathbb{R}^d)$. Then, $f \in \mathcal{D}'_{L^1}$ if and only if $f * \varphi \in L^1$ for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$.

Two natural topologies on \mathcal{D}'_{L^1} :

• The strong topology $b(\mathcal{D}'_{L^1}, \dot{\mathcal{B}})$.

2 The initial topology *op* w.r.t. the mapping

 $\mathcal{D}'_{L^1} \to L_b(\mathcal{D}(\mathbb{R}^d), L^1) : f \to (\varphi \to f * \varphi).$

Theorem (Schwartz, 1950)

The spaces $\mathcal{D}'_{L^1,b}$ and $\mathcal{D}'_{L^1,op}$ have the same bounded sets and null sequences.

Question

Do the topologies *b* and *op* coincide on \mathcal{D}'_{I^1} ?

Is $\mathcal{D}_{L^1,op}'$ (ultra-)bornological? If yes, this answers positively the above question.

Let $f \in \mathcal{D}'(\mathbb{R}^d)$. Then, $f \in \mathcal{D}'_{L^1}$ if and only if $f * \varphi \in L^1$ for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$.

Two natural topologies on \mathcal{D}'_{L^1} :

- The strong topology $b(\mathcal{D}'_{L^1}, \dot{\mathcal{B}})$.
- 2 The initial topology op w.r.t. the mapping

$$\mathcal{D}'_{L^1} \to L_b(\mathcal{D}(\mathbb{R}^d), L^1) : f \to (\varphi \to f * \varphi).$$

Theorem (Schwartz, 1950)

The spaces $\mathcal{D}'_{L^1,b}$ and $\mathcal{D}'_{L^1,op}$ have the same bounded sets and null sequences.

Question

Do the topologies *b* and *op* coincide on \mathcal{D}'_{I^1} ?

Is $\mathcal{D}_{L^1,op}'$ (ultra-)bornological? If yes, this answers positively the above question.

Let $f \in \mathcal{D}'(\mathbb{R}^d)$. Then, $f \in \mathcal{D}'_{L^1}$ if and only if $f * \varphi \in L^1$ for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$.

Two natural topologies on \mathcal{D}'_{L^1} :

- The strong topology $b(\mathcal{D}'_{L^1}, \dot{\mathcal{B}})$.
- 2 The initial topology op w.r.t. the mapping

$$\mathcal{D}'_{L^1} \to L_b(\mathcal{D}(\mathbb{R}^d), L^1) : f \to (\varphi \to f * \varphi).$$

Theorem (Schwartz, 1950)

The spaces $\mathcal{D}'_{L^1,b}$ and $\mathcal{D}'_{L^1,op}$ have the same bounded sets and null sequences.

Question

Do the topologies *b* and *op* coincide on \mathcal{D}'_{I1} ?

Is $\mathcal{D}'_{L^1,op}$ (ultra-)bornological? If yes, this answers positively the above question.

Let $f \in \mathcal{D}'(\mathbb{R}^d)$. Then, $f \in \mathcal{D}'_{L^1}$ if and only if $f * \varphi \in L^1$ for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$.

Two natural topologies on \mathcal{D}'_{L^1} :

- The strong topology $b(\mathcal{D}'_{L^1}, \dot{\mathcal{B}})$.
- 2 The initial topology op w.r.t. the mapping

$$\mathcal{D}'_{L^1} \to L_b(\mathcal{D}(\mathbb{R}^d), L^1) : f \to (\varphi \to f * \varphi).$$

Theorem (Schwartz, 1950)

The spaces $\mathcal{D}'_{L^1,b}$ and $\mathcal{D}'_{L^1,op}$ have the same bounded sets and null sequences.

Question

Do the topologies *b* and *op* coincide on \mathcal{D}'_{l^1} ?

Is $\mathcal{D}_{L^1,op}'$ (ultra-)bornological? If yes, this answers positively the above question.

Let $f \in \mathcal{D}'(\mathbb{R}^d)$. Then, $f \in \mathcal{D}'_{L^1}$ if and only if $f * \varphi \in L^1$ for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$.

Two natural topologies on \mathcal{D}'_{L^1} :

- The strong topology $b(\mathcal{D}'_{L^1}, \dot{\mathcal{B}})$.
- 2 The initial topology op w.r.t. the mapping

$$\mathcal{D}'_{L^1} \to L_b(\mathcal{D}(\mathbb{R}^d), L^1) : f \to (\varphi \to f * \varphi).$$

Theorem (Schwartz, 1950)

The spaces $\mathcal{D}'_{L^1,b}$ and $\mathcal{D}'_{L^1,op}$ have the same bounded sets and null sequences.

Question

Do the topologies *b* and *op* coincide on \mathcal{D}'_{l^1} ?

Is $\mathcal{D}'_{L^{1},op}$ (ultra-)bornological? If yes, this answers positively the above question.

Let $f \in \mathcal{D}'(\mathbb{R}^d)$. Then, $f \in \mathcal{D}'_{L^1}$ if and only if $f * \varphi \in L^1$ for all $\varphi \in \mathcal{D}(\mathbb{R}^d)$.

Two natural topologies on \mathcal{D}'_{L^1} :

- The strong topology $b(\mathcal{D}'_{L^1}, \dot{\mathcal{B}})$.
- 2 The initial topology op w.r.t. the mapping

$$\mathcal{D}'_{L^1} \to L_b(\mathcal{D}(\mathbb{R}^d), L^1) : f \to (\varphi \to f * \varphi).$$

Theorem (Schwartz, 1950)

The spaces $\mathcal{D}'_{L^1,b}$ and $\mathcal{D}'_{L^1,op}$ have the same bounded sets and null sequences.

Question

Do the topologies *b* and *op* coincide on \mathcal{D}'_{l^1} ?

Is $\mathcal{D}'_{L^1,op}$ (ultra-)bornological? If yes, this answers positively the above question.

Schwartz introduced the space of rapidly decreasing distributions as follows:

• \mathcal{B}' stands for the space of bounded distributions, dual of

$$\mathcal{D}_{L^1} = \{ \varphi : \ \partial^{\alpha} \varphi \in L^1, \ \forall \alpha \in \mathbb{N}^d \}.$$

• A distribution f belongs to \mathcal{O}'_C if $(1 + |x|^2)^k f \in \mathcal{B}'$, for all $k \in \mathbb{N}$.

Theorem (Schwartz: $\mathcal{O}'_{\mathcal{C}}$ is the space of convolutors of $\mathcal{S}(\mathbb{R}^d)$)

Let $f \in S'(\mathbb{R}^d)$. Then, $f \in \mathcal{O}'_C$ if and only if $f * \varphi \in S(\mathbb{R}^d)$ for all $\varphi \in S(\mathbb{R}^d)$.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Schwartz introduced the space of rapidly decreasing distributions as follows:

• \mathcal{B}' stands for the space of bounded distributions, dual of

$$\mathcal{D}_{L^1} = \{ \varphi : \ \partial^{\alpha} \varphi \in L^1, \ \forall \alpha \in \mathbb{N}^d \}.$$

• A distribution f belongs to $\mathcal{O}'_{\mathcal{C}}$ if $(1 + |x|^2)^k f \in \mathcal{B}'$, for all $k \in \mathbb{N}$.

Theorem (Schwartz: $\mathcal{O}'_{\mathcal{C}}$ is the space of convolutors of $\mathcal{S}(\mathbb{R}^d)$).

Let $f \in S'(\mathbb{R}^d)$. Then, $f \in \mathcal{O}'_C$ if and only if $f * \varphi \in S(\mathbb{R}^d)$ for all $\varphi \in S(\mathbb{R}^d)$.

Schwartz introduced the space of rapidly decreasing distributions as follows:

• \mathcal{B}' stands for the space of bounded distributions, dual of

$$\mathcal{D}_{L^1} = \{ \varphi : \ \partial^{\alpha} \varphi \in L^1, \ \forall \alpha \in \mathbb{N}^d \}.$$

• A distribution f belongs to $\mathcal{O}'_{\mathcal{C}}$ if $(1 + |x|^2)^k f \in \mathcal{B}'$, for all $k \in \mathbb{N}$.

Theorem (Schwartz: \mathcal{O}'_{C} is the space of convolutors of $\mathcal{S}(\mathbb{R}^{d})$)

Let $f \in S'(\mathbb{R}^d)$. Then, $f \in \mathcal{O}'_C$ if and only if $f * \varphi \in S(\mathbb{R}^d)$ for all $\varphi \in S(\mathbb{R}^d)$.

<ロ> <四> <四> <四> <三> <三> <三> <三> <三> <三> <三> <三> <三

The space O_C consists of all φ ∈ C[∞](ℝ^d) such that there is N ∈ ℕ for which

$$\sup_{x\in\mathbb{R}^d}\frac{|\partial^{\alpha}\varphi(x)|}{(1+|x|)^N}<\infty,\qquad\forall\alpha\in\mathbb{N}^d.$$

- O_C is an (*LF*)-space (countable inductive limit of Fréchet spaces).
- The space \mathcal{O}'_C of rapidly decreasing distributions is given by the topological dual of \mathcal{O}_C .
- Schwartz wrote in his book: "the space \mathcal{O}_C seems not to play any important role".
- Grothendieck however made a complete and non-trivial analysis of \mathcal{O}_C and \mathcal{O}'_C , showing that the topological properties of these spaces are very interesting.

▲御▶ ▲理▶ ▲理▶

The space O_C consists of all φ ∈ C[∞](ℝ^d) such that there is N ∈ ℕ for which

$$\sup_{x\in\mathbb{R}^d}\frac{|\partial^{\alpha}\varphi(x)|}{(1+|x|)^N}<\infty,\qquad\forall\alpha\in\mathbb{N}^d.$$

- O_C is an (*LF*)-space (countable inductive limit of Fréchet spaces).
- The space \mathcal{O}'_C of rapidly decreasing distributions is given by the topological dual of \mathcal{O}_C .
- Schwartz wrote in his book: "the space \mathcal{O}_C seems not to play any important role".
- Grothendieck however made a complete and non-trivial analysis of \mathcal{O}_C and \mathcal{O}'_C , showing that the topological properties of these spaces are very interesting.

The space O_C consists of all φ ∈ C[∞](ℝ^d) such that there is N ∈ ℕ for which

$$\sup_{x\in\mathbb{R}^d}\frac{|\partial^{\alpha}\varphi(x)|}{(1+|x|)^N}<\infty,\qquad\forall\alpha\in\mathbb{N}^d.$$

- O_C is an (*LF*)-space (countable inductive limit of Fréchet spaces).
- The space O'_C of rapidly decreasing distributions is given by the topological dual of O_C.
- Schwartz wrote in his book: "the space \mathcal{O}_C seems not to play any important role".
- Grothendieck however made a complete and non-trivial analysis of \mathcal{O}_C and \mathcal{O}'_C , showing that the topological properties of these spaces are very interesting.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ …

The space O_C consists of all φ ∈ C[∞](ℝ^d) such that there is N ∈ ℕ for which

$$\sup_{x\in\mathbb{R}^d}\frac{|\partial^{\alpha}\varphi(x)|}{(1+|x|)^N}<\infty,\qquad\forall\alpha\in\mathbb{N}^d.$$

- O_C is an (*LF*)-space (countable inductive limit of Fréchet spaces).
- The space $\mathcal{O}'_{\mathcal{C}}$ of rapidly decreasing distributions is given by the topological dual of $\mathcal{O}_{\mathcal{C}}$.
- Schwartz wrote in his book: "the space \mathcal{O}_C seems not to play any important role".
- Grothendieck however made a complete and non-trivial analysis of \mathcal{O}_C and \mathcal{O}'_C , showing that the topological properties of these spaces are very interesting.

The space of rapidly decreasing distributions

Define the topologies *b* and *op* on \mathcal{O}'_{C} as before.

Theorem (Grothendieck, 1955)

The space $\mathcal{O}'_{C,op}$ is complete, semi-reflexive, and (ultra-)bornological (hence reflexive).

Consequently, $\mathcal{O}'_{C,b} = \mathcal{O}'_{C,op}$ and the (LF)-space \mathcal{O}_C is complete.

Grothendieck method:

- He showed that $\mathcal{O}'_{C,op}$ is isomorphic to a complemented subspace of $s \widehat{\otimes} s'$.
- Then proved that that $s \widehat{\otimes} s'$ is bornological.
- Moreover, he showed that $(\mathcal{O}'_{C.op})'_b = \mathcal{O}_C$.

・ロト ・ 四 ト ・ 三 ト ・ 三 ト

The space of rapidly decreasing distributions

Define the topologies *b* and *op* on \mathcal{O}'_{C} as before.

Theorem (Grothendieck, 1955)

The space $\mathcal{O}'_{C,op}$ is complete, semi-reflexive, and (ultra-)bornological (hence reflexive). Consequently, $\mathcal{O}'_{C,b} = \mathcal{O}'_{C,op}$ and the (LF)-space \mathcal{O}_C is complete.

Grothendieck method:

- He showed that $\mathcal{O}'_{C,op}$ is isomorphic to a complemented subspace of $s \widehat{\otimes} s'$.
- Then proved that that $s \widehat{\otimes} s'$ is bornological.
- Moreover, he showed that $(\mathcal{O}'_{C.op})'_b = \mathcal{O}_C$.

・ロト ・ 四 ト ・ 三 ト ・ 三 ト

The space of rapidly decreasing distributions

Define the topologies *b* and *op* on \mathcal{O}'_{C} as before.

Theorem (Grothendieck, 1955)

The space $\mathcal{O}'_{C,op}$ is complete, semi-reflexive, and (ultra-)bornological (hence reflexive). Consequently, $\mathcal{O}'_{C,b} = \mathcal{O}'_{C,op}$ and the (LF)-space \mathcal{O}_C is complete.

Grothendieck method:

- He showed that O'_{C,op} is isomorphic to a complemented subspace of s ⊗ s'.
- Then proved that that $s \widehat{\otimes} s'$ is bornological.
- Moreover, he showed that $(\mathcal{O}'_{\mathcal{C},op})'_b = \mathcal{O}_{\mathcal{C}}$.

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Convolutors in Gelfand-Shilov spaces

There have been attempts to generalize Grothendieck's result. Let $W = (w_N)_N$ be an increasing sequence of positive continuous functions such that

$$\forall N \exists M : \lim_{|x| \to \infty} \omega_N(x) / \omega_M(x) = 0.$$

- Define the Fréchet space $\mathcal{K}_{\mathcal{W}}(=\mathcal{K}\{w_N\}) = \{\varphi \in C^{\infty}(\mathbb{R}^d) : w_N \partial^{\alpha} \varphi \in L^{\infty}, \forall N, \alpha\}$
- E.g. $w_N(x) = (1 + |x|)^N$ leads to S, while if $w_N(x) = e^{N|x|}$ one obtains the space of exponentially decreasing smooth functions \mathcal{K}_1 .
- Associated convolutor space: $\mathcal{O}'_{\mathcal{C}}(\mathcal{K}_{\mathcal{W}}) = \{ f \in \mathcal{K}'_{\mathcal{W}} : f * \varphi \in \mathcal{K}_{\mathcal{W}} \text{ for all } \varphi \in \mathcal{K}_{\mathcal{W}} \}.$

<ロ> <四> <四> <四> <三> <三> <三> <三> <三> <三> <三> <三> <三

Convolutors in Gelfand-Shilov spaces

There have been attempts to generalize Grothendieck's result. Let $W = (w_N)_N$ be an increasing sequence of positive continuous functions such that

$$\forall N \exists M : \lim_{|x| \to \infty} \omega_N(x) / \omega_M(x) = 0.$$

- Define the Fréchet space $\mathcal{K}_{\mathcal{W}}(=\mathcal{K}\{w_{N}\}) = \{\varphi \in C^{\infty}(\mathbb{R}^{d}) : w_{N}\partial^{\alpha}\varphi \in L^{\infty}, \forall N, \alpha\}$
- E.g. $w_N(x) = (1 + |x|)^N$ leads to S, while if $w_N(x) = e^{N|x|}$ one obtains the space of exponentially decreasing smooth functions \mathcal{K}_1 .
- Associated convolutor space: $\mathcal{O}'_{\mathcal{C}}(\mathcal{K}_{\mathcal{W}}) = \{ f \in \mathcal{K}'_{\mathcal{W}} : f * \varphi \in \mathcal{K}_{\mathcal{W}} \text{ for all } \varphi \in \mathcal{K}_{\mathcal{W}} \}.$

Convolutors in Gelfand-Shilov spaces

There have been attempts to generalize Grothendieck's result. Let $W = (w_N)_N$ be an increasing sequence of positive continuous functions such that

$$\forall N \exists M : \lim_{|x|\to\infty} \omega_N(x)/\omega_M(x) = 0.$$

- Define the Fréchet space $\mathcal{K}_{\mathcal{W}}(=\mathcal{K}\{w_{N}\}) = \{\varphi \in C^{\infty}(\mathbb{R}^{d}) : w_{N}\partial^{\alpha}\varphi \in L^{\infty}, \forall N, \alpha\}$
- E.g. $w_N(x) = (1 + |x|)^N$ leads to S, while if $w_N(x) = e^{N|x|}$ one obtains the space of exponentially decreasing smooth functions \mathcal{K}_1 .
- Associated convolutor space: $\mathcal{O}'_{\mathcal{C}}(\mathcal{K}_{\mathcal{W}}) = \{ f \in \mathcal{K}'_{\mathcal{W}} : f * \varphi \in \mathcal{K}_{\mathcal{W}} \text{ for all } \varphi \in \mathcal{K}_{\mathcal{W}} \}.$

<ロ> <四> <四> <四> <三> <三> <三> <三> <三> <三> <三> <三> <三

Question

Is $\mathcal{O}'_{C,op}(\mathcal{K}_{\mathcal{W}})$ (ultra-)bornological?

- Zielezny claims to have shown this for $\mathcal{O}'_{C,op}(\mathcal{K}_1)$.
 - Studia Math. 31 (1968), 111–124.

His proofs seem to contain major gaps.

• Abdullah even claims in

Proc. Amer. Math. Soc. 110 (1990), 177–185. that $\mathcal{O}'_{C,op}(\mathcal{K}_{\mathcal{W}})$ is always ultrabornological when the family of weights is of the form

$$W_N(X) = e^{\omega(N|X|)}$$

- It follows from our recent results that Abdullah's claim is false. (E.g. when ω is not polynomially bounded.)
- On the other hand, we showed Zielezny's claim was true.

Question

Is $\mathcal{O}'_{\mathcal{C},op}(\mathcal{K}_{\mathcal{W}})$ (ultra-)bornological?

• Zielezny claims to have shown this for $\mathcal{O}'_{C,op}(\mathcal{K}_1)$.

Studia Math. 31 (1968), 111–124.

His proofs seem to contain major gaps.

• Abdullah even claims in

Proc. Amer. Math. Soc. 110 (1990), 177–185. that $\mathcal{O}'_{C,op}(\mathcal{K}_{\mathcal{W}})$ is always ultrabornological when the family of weights is of the form

$$W_N(x) = e^{\omega(N|x|)}$$

- It follows from our recent results that Abdullah's claim is false. (E.g. when ω is not polynomially bounded.)
- On the other hand, we showed Zielezny's claim was true.

Question

Is $\mathcal{O}'_{\mathcal{C},op}(\mathcal{K}_{\mathcal{W}})$ (ultra-)bornological?

• Zielezny claims to have shown this for $\mathcal{O}'_{C,op}(\mathcal{K}_1)$.

Studia Math. 31 (1968), 111–124. His proofs seem to contain major gaps.

• Abdullah even claims in

Proc. Amer. Math. Soc. 110 (1990), 177–185. that $\mathcal{O}'_{C,op}(\mathcal{K}_{\mathcal{W}})$ is always ultrabornological when the family of weights is of the form

$$W_N(x) = e^{\omega(N|x|)}$$

- It follows from our recent results that Abdullah's claim is false. (E.g. when ω is not polynomially bounded.)
- On the other hand, we showed Zielezny's claim was true.

Question

Is $\mathcal{O}'_{\mathcal{C},op}(\mathcal{K}_{\mathcal{W}})$ (ultra-)bornological?

• Zielezny claims to have shown this for $\mathcal{O}'_{C,op}(\mathcal{K}_1)$.

Studia Math. 31 (1968), 111–124.

His proofs seem to contain major gaps.

Abdullah even claims in

Proc. Amer. Math. Soc. 110 (1990), 177–185. that $\mathcal{O}'_{C,op}(\mathcal{K}_{\mathcal{W}})$ is always ultrabornological when the family of weights is of the form

$$w_N(x) = e^{\omega(N|x|)}$$

- It follows from our recent results that Abdullah's claim is false. (E.g. when ω is not polynomially bounded.)
- On the other hand, we showed Zielezny's claim was true.

Question

Is $\mathcal{O}'_{\mathcal{C},op}(\mathcal{K}_{\mathcal{W}})$ (ultra-)bornological?

• Zielezny claims to have shown this for $\mathcal{O}'_{C,op}(\mathcal{K}_1)$.

Studia Math. 31 (1968), 111–124.

His proofs seem to contain major gaps.

Abdullah even claims in

Proc. Amer. Math. Soc. 110 (1990), 177–185. that $\mathcal{O}'_{C,op}(\mathcal{K}_{\mathcal{W}})$ is always ultrabornological when the family of weights is of the form

$$W_N(x) = e^{\omega(N|x|)}$$

- It follows from our recent results that Abdullah's claim is false. (E.g. when ω is not polynomially bounded.)
- On the other hand, we showed Zielezny's claim was true.

Question

Is $\mathcal{O}'_{\mathcal{C},op}(\mathcal{K}_{\mathcal{W}})$ (ultra-)bornological?

• Zielezny claims to have shown this for $\mathcal{O}'_{C,op}(\mathcal{K}_1)$.

Studia Math. 31 (1968), 111–124.

His proofs seem to contain major gaps.

Abdullah even claims in

Proc. Amer. Math. Soc. 110 (1990), 177–185. that $\mathcal{O}'_{C,op}(\mathcal{K}_{\mathcal{W}})$ is always ultrabornological when the family of weights is of the form

$$w_N(x) = e^{\omega(N|x|)}$$

with ω a positive increasing convex function tending to ∞ .

- It follows from our recent results that Abdullah's claim is false. (E.g. when ω is not polynomially bounded.)
- On the other hand, we showed Zielezny's claim was true.

Sac

Goals

- Show the full topological identity D'_{L¹,b} = D'_{L¹,op} and extend it to weighted D'_{L¹} spaces.
- Unified approach for D'_{L1} and O'_C, or more generally, convolutor spaces for Gelfand-Shilov spaces K_W.
- Analyze completeness of weighted inductive limits of spaces of smooth functions (In particular first direct proof of completeness of \mathcal{O}_C).
- To this end, we study structural and topological properties of a general class of weighted *L*¹ convolutor spaces.
- Our arguments are based on the mapping properties of the short-time Fourier transform. Inspired by:

C. Bargetz, N. Ortner, Characterization of L. Schwartz' convolutor and multiplier spaces \mathcal{O}'_C and \mathcal{O}_M by the short-time Fourier transform, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 108 (2014), 833–847.

S. Kostadinova, S. Pilipović, K. Saneva, J. Vindas, The short-time Fourier transform of distributions of exponential type and Tauberian theorems for S-asymptotics, FILOMAT 30 (2016), 3047–3061.

• We also use ideas from abstract theory of (*LF*)-spaces.

Goals

- Show the full topological identity D'_{L¹,b} = D'_{L¹,op} and extend it to weighted D'_{L¹} spaces.
- Unified approach for D'_{L1} and O'_C, or more generally, convolutor spaces for Gelfand-Shilov spaces K_W.
- Analyze completeness of weighted inductive limits of spaces of smooth functions (In particular first direct proof of completeness of \mathcal{O}_C).
- To this end, we study structural and topological properties of a general class of weighted *L*¹ convolutor spaces.
- Our arguments are based on the mapping properties of the short-time Fourier transform. Inspired by:

C. Bargetz, N. Ortner, Characterization of L. Schwartz' convolutor and multiplier spaces \mathcal{O}'_C and \mathcal{O}_M by the short-time Fourier transform, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 108 (2014), 833–847.

S. Kostadinova, S. Pilipović, K. Saneva, J. Vindas, The short-time Fourier transform of distributions of exponential type and Tauberian theorems for S-asymptotics, FILOMAT 30 (2016), 3047–3061.

• We also use ideas from abstract theory of (*LF*)-spaces.

Goals

- Show the full topological identity D'_{L¹,b} = D'_{L¹,op} and extend it to weighted D'_{L¹} spaces.
- Unified approach for \mathcal{D}'_{L^1} and \mathcal{O}'_C , or more generally, convolutor spaces for Gelfand-Shilov spaces \mathcal{K}_W .
- Analyze completeness of weighted inductive limits of spaces of smooth functions (In particular first direct proof of completeness of \mathcal{O}_C).
- To this end, we study structural and topological properties of a general class of weighted *L*¹ convolutor spaces.
- Our arguments are based on the mapping properties of the short-time Fourier transform. Inspired by:
 - C. Barget

C. Bargetz, N. Ortner, Characterization of L. Schwartz' convolutor and multiplier spaces \mathcal{O}'_C and \mathcal{O}_M by the short-time Fourier transform, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 108 (2014), 833–847.

S. Kostadinova, S. Pilipović, K. Saneva, J. Vindas, The short-time Fourier transform of distributions of exponential type and Tauberian theorems for S-asymptotics, FILOMAT 30 (2016), 3047–3061.

• We also use ideas from abstract theory of (*LF*)-spaces.

•
$$T_x f := f(\cdot - x)$$
 and $M_{\xi} f := e^{2\pi i \xi t} f(t)$ for $x, \xi \in \mathbb{R}^d$.

• The STFT of $f \in L^2(\mathbb{R}^d)$ w.r.t. a window function $\psi \in L^2(\mathbb{R}^d) \setminus \{0\}$ is defined as

$$V_{\psi}f(x,\xi) := (f, M_{\xi}T_{x}\psi)_{L^{2}} = \int_{\mathbb{R}^{d}} f(t)\overline{\psi(t-x)}e^{-2\pi i\xi t}\mathrm{d}t.$$

- The mapping $V_{\psi}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^{2d})$ is continuous.
- The adjoint of V_{ψ} is given by the weak integral

$$V_{\psi}^*F = \int \int_{\mathbb{R}^{2d}} F(x,\xi) M_{\xi} T_x \psi \mathrm{d}x \mathrm{d}\xi, \quad F \in L^2(\mathbb{R}^{2d}).$$

$$\frac{1}{\|\psi\|_{L^2}^2}V_{\psi}^*\circ V_{\psi}=\operatorname{id}_{L^2(\mathbb{R}^d)}.$$

- $T_x f := f(\cdot x)$ and $M_{\xi} f := e^{2\pi i \xi t} f(t)$ for $x, \xi \in \mathbb{R}^d$.
- The STFT of *f* ∈ *L*²(ℝ^d) w.r.t. a window function ψ ∈ *L*²(ℝ^d)\{0} is defined as

$$V_{\psi}f(x,\xi) := (f, M_{\xi}T_{x}\psi)_{L^{2}} = \int_{\mathbb{R}^{d}} f(t)\overline{\psi(t-x)}e^{-2\pi i\xi t}\mathrm{d}t.$$

The mapping V_ψ : L²(ℝ^d) → L²(ℝ^{2d}) is continuous.
 The adjoint of V_ψ is given by the weak integral

$$V_{\psi}^*F = \int \int_{\mathbb{R}^{2d}} F(x,\xi) M_{\xi} T_x \psi \mathrm{d}x \mathrm{d}\xi, \quad F \in L^2(\mathbb{R}^{2d}).$$

$$\frac{1}{\|\psi\|_{L^2}^2}V_{\psi}^*\circ V_{\psi}=\operatorname{id}_{L^2(\mathbb{R}^d)}.$$

- $T_x f := f(\cdot x)$ and $M_{\xi} f := e^{2\pi i \xi t} f(t)$ for $x, \xi \in \mathbb{R}^d$.
- The STFT of f ∈ L²(ℝ^d) w.r.t. a window function ψ ∈ L²(ℝ^d)\{0} is defined as

$$V_{\psi}f(x,\xi) := (f, M_{\xi}T_{x}\psi)_{L^{2}} = \int_{\mathbb{R}^{d}} f(t)\overline{\psi(t-x)}e^{-2\pi i\xi t}\mathrm{d}t.$$

The mapping V_ψ : L²(ℝ^d) → L²(ℝ^{2d}) is continuous.
The adjoint of V_ψ is given by the weak integral

$$V_{\psi}^*F = \int \int_{\mathbb{R}^{2d}} F(x,\xi) M_{\xi} T_x \psi \mathrm{d}x \mathrm{d}\xi, \quad F \in L^2(\mathbb{R}^{2d}).$$

$$\frac{1}{\|\psi\|_{L^2}^2}V_{\psi}^*\circ V_{\psi}=\operatorname{id}_{L^2(\mathbb{R}^d)}.$$

- $T_x f := f(\cdot x)$ and $M_{\xi} f := e^{2\pi i \xi t} f(t)$ for $x, \xi \in \mathbb{R}^d$.
- The STFT of f ∈ L²(ℝ^d) w.r.t. a window function ψ ∈ L²(ℝ^d)\{0} is defined as

$$V_{\psi}f(x,\xi) := (f, M_{\xi}T_{x}\psi)_{L^{2}} = \int_{\mathbb{R}^{d}} f(t)\overline{\psi(t-x)}e^{-2\pi i\xi t}\mathrm{d}t.$$

- The mapping $V_{\psi}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^{2d})$ is continuous.
- The adjoint of V_{ψ} is given by the weak integral

$$V_{\psi}^*F = \int \int_{\mathbb{R}^{2d}} F(x,\xi) M_{\xi} T_x \psi \mathrm{d}x \mathrm{d}\xi, \quad F \in L^2(\mathbb{R}^{2d}).$$

$$\frac{1}{\|\psi\|_{L^2}^2}V_{\psi}^*\circ V_{\psi}=\operatorname{id}_{L^2(\mathbb{R}^d)}.$$

- $T_x f := f(\cdot x)$ and $M_{\xi} f := e^{2\pi i \xi t} f(t)$ for $x, \xi \in \mathbb{R}^d$.
- The STFT of *f* ∈ *L*²(ℝ^d) w.r.t. a window function ψ ∈ *L*²(ℝ^d)\{0} is defined as

$$V_{\psi}f(x,\xi) := (f, M_{\xi}T_{x}\psi)_{L^{2}} = \int_{\mathbb{R}^{d}} f(t)\overline{\psi(t-x)}e^{-2\pi i\xi t}\mathrm{d}t.$$

- The mapping $V_{\psi}: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^{2d})$ is continuous.
- The adjoint of V_{ψ} is given by the weak integral

$$V_{\psi}^*F = \int \int_{\mathbb{R}^{2d}} F(x,\xi) M_{\xi} T_x \psi \mathrm{d}x \mathrm{d}\xi, \quad F \in L^2(\mathbb{R}^{2d}).$$

$$\frac{1}{\|\psi\|_{L^2}^2}V_\psi^*\circ V_\psi=\mathsf{id}_{L^2(\mathbb{R}^d)}\,.$$

The STFT on $\mathcal{D}'(\mathbb{R}^d)$

Let ψ ∈ D(ℝ^d)\{0}. V_ψ and V^{*}_ψ can be extended to continuous mappings on D'(ℝ^d):

$$V_{\psi}: \mathcal{D}'(\mathbb{R}^d) \to \mathcal{D}'(\mathbb{R}^d_x) \widehat{\otimes} \mathcal{S}'(\mathbb{R}^d_{\xi}), \qquad V_{\psi}f(x,\xi) := \langle f, \overline{M_{\xi}T_x\psi} \rangle.$$

and

$$V_{\psi}^*: \mathcal{D}'(\mathbb{R}^d_{\mathcal{X}})\widehat{\otimes}\mathcal{S}'(\mathbb{R}^d_{\xi}) \to \mathcal{D}'(\mathbb{R}^d), \qquad \langle V_{\psi}^* \mathcal{F}, \varphi \rangle := \langle \mathcal{F}, \overline{V_{\psi}\overline{\varphi}} \rangle.$$

Inversion formula

$$\frac{1}{\|\psi\|_{L^2}^2}V_{\psi}^*\circ V_{\psi}=\mathrm{id}_{\mathcal{D}'(\mathbb{R}^d)}.$$

・ロト ・四ト ・ヨト ・ヨト

Э

The STFT on $\mathcal{D}'(\mathbb{R}^d)$

Let ψ ∈ D(ℝ^d)\{0}. V_ψ and V^{*}_ψ can be extended to continuous mappings on D'(ℝ^d):

$$V_{\psi}: \mathcal{D}'(\mathbb{R}^d) \to \mathcal{D}'(\mathbb{R}^d_x) \widehat{\otimes} \mathcal{S}'(\mathbb{R}^d_{\xi}), \qquad V_{\psi}f(x,\xi) := \langle f, \overline{M_{\xi}T_x\psi} \rangle.$$

and

$$V_{\psi}^*: \mathcal{D}'(\mathbb{R}^d_{\mathcal{X}})\widehat{\otimes}\mathcal{S}'(\mathbb{R}^d_{\xi}) \to \mathcal{D}'(\mathbb{R}^d), \qquad \langle V_{\psi}^* \mathcal{F}, \varphi \rangle := \langle \mathcal{F}, \overline{V_{\psi}\overline{\varphi}} \rangle.$$

Inversion formula

$$\frac{1}{\|\psi\|_{L^2}^2}V_{\psi}^*\circ V_{\psi}=\mathsf{id}_{\mathcal{D}'(\mathbb{R}^d)}.$$

<ロ> < 回 > < 回 > < 回 > <

크

• Suppose that $E_1, E_2 \subset \mathcal{D}'(\mathbb{R}^d)$ (with continuous inclusion) and one wants to show that $E_1 = E_2$.

• Find $F \subset \mathcal{D}'(\mathbb{R}^d_x) \widehat{\otimes} \mathcal{S}'(\mathbb{R}^d_{\xi})$ such that

 $V_{\psi}: E_i \to F$ and $V_{\psi}^*: F \to E_i$

are well-defined mappings for i = 1, 2.

• The inversion formula immediately yields that $E_1 = E_2$!

・ロト ・四ト ・ヨト ・ヨト

General strategy

- Suppose that $E_1, E_2 \subset \mathcal{D}'(\mathbb{R}^d)$ (with continuous inclusion) and one wants to show that $E_1 = E_2$.
- Find $F \subset \mathcal{D}'(\mathbb{R}^d_x) \widehat{\otimes} \mathcal{S}'(\mathbb{R}^d_{\xi})$ such that

$$V_{\psi}: E_i \to F$$
 and $V_{\psi}^*: F \to E_i$

are well-defined mappings for i = 1, 2.

• The inversion formula immediately yields that $E_1 = E_2$!

A (1) > A (2) > A

General strategy

- Suppose that $E_1, E_2 \subset \mathcal{D}'(\mathbb{R}^d)$ (with continuous inclusion) and one wants to show that $E_1 = E_2$.
- Find $F \subset \mathcal{D}'(\mathbb{R}^d_x) \widehat{\otimes} \mathcal{S}'(\mathbb{R}^d_{\xi})$ such that

$$V_{\psi}: E_i \to F$$
 and $V_{\psi}^*: F \to E_i$

are well-defined mappings for i = 1, 2.

• The inversion formula immediately yields that $E_1 = E_2$!

・ 同 ト ・ ヨ ト ・ ヨ ト

General strategy

- Suppose that *E*₁, *E*₂ ⊂ D'(ℝ^d) (with continuous inclusion) and one wants to show that *E*₁ = *E*₂ topologically.
- Find $F \subset \mathcal{D}'(\mathbb{R}^d_x) \widehat{\otimes} \mathcal{S}'(\mathbb{R}^d_{\xi})$ such that

$$V_{\psi}: E_i \to F$$
 and $V_{\psi}^*: F \to E_i$

are well-defined continuous mappings for i = 1, 2.

• The inversion formula immediately yields that $E_1 = E_2$ topologically!

Example: The equality $\mathcal{D}'_{L^1,b} = \mathcal{D}'_{L^1,op}$

Define C_{pol}(ℝ^d) as the space consisting of all φ ∈ C(ℝ^d) such that there is N ∈ ℕ for which

$$\sup_{x\in\mathbb{R}^d}\frac{|\varphi(x)|}{(1+|x|)^N}<\infty.$$

•
$$C_{\text{pol}}(\mathbb{R}^d)$$
 is an (*LB*)-space.

Theorem

Let $\psi \in \mathcal{D}(\mathbb{R}^d) \setminus \{0\}$ and let $\tau = b$ or op. Then,

$$V_{\psi}: \mathcal{D}'_{L^{1},\tau} \to L^{1}(\mathbb{R}^{d}_{x})\widehat{\otimes}_{\varepsilon}C_{\mathsf{pol}}(\mathbb{R}^{d}_{\xi})$$

and

$$V_{\psi}^*: L^1(\mathbb{R}^d_x)\widehat{\otimes}_{\varepsilon} C_{\mathsf{pol}}(\mathbb{R}^d_{\xi}) \to \mathcal{D}'_{L^1,\tau}$$

are well-defined continuous mappings. Hence, $\mathcal{D}'_{l^1 b} = \mathcal{D}'_{l^1 op}$.

Example: The equality $\mathcal{D}'_{L^1,b} = \overline{\mathcal{D}'_{L^1,op}}$

Define C_{pol}(ℝ^d) as the space consisting of all φ ∈ C(ℝ^d) such that there is N ∈ ℕ for which

$$\sup_{x\in\mathbb{R}^d}\frac{|\varphi(x)|}{(1+|x|)^N}<\infty.$$

•
$$C_{\text{pol}}(\mathbb{R}^d)$$
 is an (*LB*)-space.

Theorem

Let $\psi \in \mathcal{D}(\mathbb{R}^d) \setminus \{0\}$ and let $\tau = b$ or op. Then,

$$V_{\psi}: \mathcal{D}'_{L^{1},\tau} \to L^{1}(\mathbb{R}^{d}_{x})\widehat{\otimes}_{\varepsilon}C_{\mathsf{pol}}(\mathbb{R}^{d}_{\xi})$$

and

$$V_{\psi}^*: L^1(\mathbb{R}^d_x)\widehat{\otimes}_{\varepsilon} C_{\mathsf{pol}}(\mathbb{R}^d_{\xi}) \to \mathcal{D}'_{L^1,\tau}$$

are well-defined continuous mappings. Hence, $\mathcal{D}'_{l^1 b} = \mathcal{D}'_{l^1 op}$.

Example: The equality $\overline{\mathcal{D}'_{L^1,b}} = \overline{\mathcal{D}'_{L^1,op}}$

Define C_{pol}(ℝ^d) as the space consisting of all φ ∈ C(ℝ^d) such that there is N ∈ ℕ for which

$$\sup_{x\in\mathbb{R}^d}\frac{|\varphi(x)|}{(1+|x|)^N}<\infty.$$

•
$$C_{\text{pol}}(\mathbb{R}^d)$$
 is an (*LB*)-space.

Theorem

Let $\psi \in \mathcal{D}(\mathbb{R}^d) \setminus \{0\}$ and let $\tau = b$ or op. Then,

$$V_{\psi}: \mathcal{D}'_{L^{1}, \tau}
ightarrow L^{1}(\mathbb{R}^{d}_{x})\widehat{\otimes}_{\varepsilon}C_{\mathsf{pol}}(\mathbb{R}^{d}_{\xi})$$

and

$$V^*_\psi: L^1(\mathbb{R}^d_X)\widehat{\otimes}_arepsilon \mathcal{C}_{\mathsf{pol}}(\mathbb{R}^d_\xi) o \mathcal{D}'_{L^1, au}$$

are well-defined continuous mappings. Hence, $\mathcal{D}'_{L^1,b} = \mathcal{D}'_{L^1,op}$.

Example: The equality $\overline{\mathcal{D}'_{L^1,b}} = \overline{\mathcal{D}'_{L^1,op}}$

Define C_{pol}(ℝ^d) as the space consisting of all φ ∈ C(ℝ^d) such that there is N ∈ ℕ for which

$$\sup_{x\in\mathbb{R}^d}\frac{|\varphi(x)|}{(1+|x|)^N}<\infty.$$

•
$$C_{\text{pol}}(\mathbb{R}^d)$$
 is an (*LB*)-space.

Theorem

Let $\psi \in \mathcal{D}(\mathbb{R}^d) \setminus \{0\}$ and let $\tau = b$ or op. Then,

$$V_{\psi}: \mathcal{D}'_{L^{1}, \tau}
ightarrow L^{1}(\mathbb{R}^{d}_{x})\widehat{\otimes}_{\varepsilon}C_{\mathsf{pol}}(\mathbb{R}^{d}_{\xi})$$

and

$$V^*_\psi: L^1(\mathbb{R}^d_X)\widehat{\otimes}_arepsilon \mathcal{C}_{\mathsf{pol}}(\mathbb{R}^d_\xi) o \mathcal{D}'_{L^1, au}$$

are well-defined continuous mappings. Hence, $\mathcal{D}'_{L^1,b} = \mathcal{D}'_{L^1,op}$.

- Let $W = (w_N)_N$ be an increasing sequence of continuous functions.
- Define B_{WN} as the space consisting of all φ ∈ C[∞](ℝ^d) such that

$$\sup_{x \in \mathbb{R}^d} \frac{|\partial^{\alpha} \varphi(x)|}{w_N(x)} < \infty, \qquad \forall \alpha \in \mathbb{N}^d.$$

- \mathcal{B}_{W_N} is a Fréchet space.
- The space $\dot{\mathcal{B}}_{W_N}$ is defined as the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B}_{W_N} .
- $\dot{\mathcal{B}}_{w_N}$ is a Fréchet space.

• Define

$$\mathcal{B}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \mathcal{B}_{w_N}$$
 and $\dot{\mathcal{B}}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \dot{\mathcal{B}}_{w_N}.$

- \mathcal{B}_W and $\dot{\mathcal{B}}_W$ are (*LF*)-spaces.
- Example: If $w_N(x) = (1 + |x|)^N$, then $\dot{\mathcal{B}}_{\mathcal{W}} = \mathcal{B}_{\mathcal{W}} = \mathcal{O}_{\mathcal{C}}$.

- Let $W = (w_N)_N$ be an increasing sequence of continuous functions.
- Define B_{WN} as the space consisting of all φ ∈ C[∞](ℝ^d) such that

$$\sup_{x\in\mathbb{R}^d}\frac{|\partial^{\alpha}\varphi(x)|}{w_N(x)}<\infty,\qquad\forall\alpha\in\mathbb{N}^d.$$

- \mathcal{B}_{w_N} is a Fréchet space.
- The space $\dot{\mathcal{B}}_{W_N}$ is defined as the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B}_{W_N} .
- $\dot{\mathcal{B}}_{w_N}$ is a Fréchet space.

• Define

$$\mathcal{B}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \mathcal{B}_{w_N}$$
 and $\dot{\mathcal{B}}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \dot{\mathcal{B}}_{w_N}.$

- \mathcal{B}_W and $\dot{\mathcal{B}}_W$ are (*LF*)-spaces.
- Example: If $w_N(x) = (1 + |x|)^N$, then $\dot{\mathcal{B}}_W = \mathcal{B}_W = \mathcal{O}_C$.

Sac

- Let $W = (w_N)_N$ be an increasing sequence of continuous functions.
- Define B_{WN} as the space consisting of all φ ∈ C[∞](ℝ^d) such that

$$\sup_{x\in\mathbb{R}^d}\frac{|\partial^{\alpha}\varphi(x)|}{w_{\mathcal{N}}(x)}<\infty,\qquad\forall\alpha\in\mathbb{N}^d.$$

• \mathcal{B}_{W_N} is a Fréchet space.

- The space $\dot{\mathcal{B}}_{w_N}$ is defined as the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B}_{w_N} .
- $\dot{\mathcal{B}}_{W_N}$ is a Fréchet space.

• Define

$$\mathcal{B}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \mathcal{B}_{w_N}$$
 and $\dot{\mathcal{B}}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \dot{\mathcal{B}}_{w_N}.$

- \mathcal{B}_W and $\dot{\mathcal{B}}_W$ are (*LF*)-spaces.
- Example: If $w_N(x) = (1 + |x|)^N$, then $\dot{\mathcal{B}}_W = \mathcal{B}_W = \mathcal{O}_C$.

- Let $W = (w_N)_N$ be an increasing sequence of continuous functions.
- Define B_{WN} as the space consisting of all φ ∈ C[∞](ℝ^d) such that

$$\sup_{x\in\mathbb{R}^d}\frac{|\partial^{\alpha}\varphi(x)|}{w_{\mathsf{N}}(x)}<\infty,\qquad\forall\alpha\in\mathbb{N}^d.$$

- \mathcal{B}_{w_N} is a Fréchet space.
- The space $\dot{\mathcal{B}}_{w_N}$ is defined as the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B}_{w_N} .
- $\dot{\mathcal{B}}_{w_N}$ is a Fréchet space.

Define

$$\mathcal{B}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \mathcal{B}_{w_N}$$
 and $\dot{\mathcal{B}}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \dot{\mathcal{B}}_{w_N}.$

- \mathcal{B}_W and $\dot{\mathcal{B}}_W$ are (*LF*)-spaces.
- Example: If $w_N(x) = (1 + |x|)^N$, then $\dot{\mathcal{B}}_W = \mathcal{B}_W = \mathcal{O}_C$.

- Let $W = (w_N)_N$ be an increasing sequence of continuous functions.
- Define B_{WN} as the space consisting of all φ ∈ C[∞](ℝ^d) such that

$$\sup_{\boldsymbol{x}\in\mathbb{R}^d}\frac{|\partial^{\alpha}\varphi(\boldsymbol{x})|}{w_{N}(\boldsymbol{x})}<\infty,\qquad\forall\alpha\in\mathbb{N}^d.$$

- \mathcal{B}_{W_N} is a Fréchet space.
- The space $\dot{\mathcal{B}}_{w_N}$ is defined as the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B}_{w_N} .
- $\dot{\mathcal{B}}_{w_N}$ is a Fréchet space.

Define

$$\mathcal{B}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \mathcal{B}_{w_N}$$
 and $\dot{\mathcal{B}}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \dot{\mathcal{B}}_{w_N}.$

- \mathcal{B}_W and $\dot{\mathcal{B}}_W$ are (*LF*)-spaces.
- Example: If $w_N(x) = (1 + |x|)^N$, then $\dot{\mathcal{B}}_{\mathcal{W}} = \mathcal{B}_{\mathcal{W}} = \mathcal{O}_{\mathcal{C}}$.

- Let $W = (w_N)_N$ be an increasing sequence of continuous functions.
- Define B_{WN} as the space consisting of all φ ∈ C[∞](ℝ^d) such that

$$\sup_{x\in\mathbb{R}^d}\frac{|\partial^{\alpha}\varphi(x)|}{w_{\mathsf{N}}(x)}<\infty,\qquad\forall\alpha\in\mathbb{N}^d.$$

- \mathcal{B}_{W_N} is a Fréchet space.
- The space $\dot{\mathcal{B}}_{w_N}$ is defined as the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B}_{w_N} .
- $\dot{\mathcal{B}}_{w_N}$ is a Fréchet space.

Define

$$\mathcal{B}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \mathcal{B}_{w_N}$$
 and $\dot{\mathcal{B}}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \dot{\mathcal{B}}_{w_N}.$

- \mathcal{B}_W and $\dot{\mathcal{B}}_W$ are (*LF*)-spaces.
- Example: If $w_N(x) = (1 + |x|)^N$, then $\dot{\mathcal{B}}_W = \mathcal{B}_W = \mathcal{O}_C$.

- Let $W = (w_N)_N$ be an increasing sequence of continuous functions.
- Define B_{WN} as the space consisting of all φ ∈ C[∞](ℝ^d) such that

$$\sup_{x\in\mathbb{R}^d}\frac{|\partial^{\alpha}\varphi(x)|}{w_{\mathsf{N}}(x)}<\infty,\qquad\forall\alpha\in\mathbb{N}^d.$$

- \mathcal{B}_{W_N} is a Fréchet space.
- The space $\dot{\mathcal{B}}_{w_N}$ is defined as the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B}_{w_N} .
- $\dot{\mathcal{B}}_{w_N}$ is a Fréchet space.

Define

$$\mathcal{B}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \mathcal{B}_{w_N}$$
 and $\dot{\mathcal{B}}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \dot{\mathcal{B}}_{w_N}.$

- $\mathcal{B}_{\mathcal{W}}$ and $\dot{\mathcal{B}}_{\mathcal{W}}$ are (*LF*)-spaces.
- Example: If $w_N(x) = (1 + |x|)^N$, then $\dot{\mathcal{B}}_W = \mathcal{B}_W = \mathcal{O}_G$.

- Let $W = (w_N)_N$ be an increasing sequence of continuous functions.
- Define B_{WN} as the space consisting of all φ ∈ C[∞](ℝ^d) such that

$$\sup_{\boldsymbol{x}\in\mathbb{R}^d}\frac{|\partial^{\alpha}\varphi(\boldsymbol{x})|}{w_{N}(\boldsymbol{x})}<\infty,\qquad\forall\alpha\in\mathbb{N}^d.$$

- \mathcal{B}_{W_N} is a Fréchet space.
- The space $\dot{\mathcal{B}}_{w_N}$ is defined as the closure of $\mathcal{D}(\mathbb{R}^d)$ in \mathcal{B}_{w_N} .
- $\dot{\mathcal{B}}_{w_N}$ is a Fréchet space.

Define

$$\mathcal{B}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \mathcal{B}_{w_N}$$
 and $\dot{\mathcal{B}}_{\mathcal{W}} := \bigcup_{N \in \mathbb{N}} \dot{\mathcal{B}}_{w_N}.$

• $\mathcal{B}_{\mathcal{W}}$ and $\dot{\mathcal{B}}_{\mathcal{W}}$ are (*LF*)-spaces.

• Example: If $w_N(x) = (1 + |x|)^N$, then $\dot{\mathcal{B}}_{\mathcal{W}} = \mathcal{B}_{\mathcal{W}} = \mathcal{O}_C$.

• Assume that $W = (w_N)_N$ satisfies

$$orall N \exists M \geq N \exists C > 0 \ orall x \in \mathbb{R}^d : \sup_{y \in [-1,1]^d} w_N(x+y) \leq C w_M(x).$$

Theorem (Debrouwere and V., 2018)

TFAE:

- $\dot{\mathcal{B}}_{\mathcal{W}}$ is complete.
- B_W is complete.
- \mathcal{W} satisfies the condition (Ω) , i.e.

 $orall N \exists M \ge N \, orall K \ge M \, \exists heta \in (0, 1) \, \exists C > 0 \, orall x \in \mathbb{R}^d :$ $w_N(x)^{1- heta} w_K(x)^{ heta} \le C w_M(x).$

<ロト < 回 > < 回 > < 回 > < 回 >

• Assume that $W = (w_N)_N$ satisfies

$$\forall N \exists M \geq N \exists C > 0 \ \forall x \in \mathbb{R}^d : \sup_{y \in [-1,1]^d} w_N(x+y) \leq C w_M(x).$$

Theorem (Debrouwere and V., 2018)

TFAE:

- $\dot{\mathcal{B}}_{\mathcal{W}}$ is complete.
- $\mathcal{B}_{\mathcal{W}}$ is complete.
- \mathcal{W} satisfies the condition (Ω) , i.e.

 $orall N \exists M \ge N \, orall K \ge M \, \exists heta \in (0, 1) \, \exists C > 0 \, orall x \in \mathbb{R}^d :$ $w_N(x)^{1- heta} w_K(x)^{ heta} \le C w_M(x).$

<ロト < 回 > < 回 > .

• Assume that $W = (w_N)_N$ satisfies

$$\forall N \exists M \geq N \exists C > 0 \ \forall x \in \mathbb{R}^d : \sup_{y \in [-1,1]^d} w_N(x+y) \leq C w_M(x).$$

Theorem (Debrouwere and V., 2018)

TFAE:

- $\dot{\mathcal{B}}_{\mathcal{W}}$ is complete.
- $\mathcal{B}_{\mathcal{W}}$ is complete.
- W satisfies the condition (Ω) , i.e.

$$orall N \exists M \geq N \, orall K \geq M \, \exists heta \in (0, 1) \, \exists C > 0 \, orall x \in \mathbb{R}^d : w_N(x)^{1- heta} w_K(x)^{ heta} \leq C w_M(x).$$

< □ > < 三 >

- Our condition (Ω) for weight functions is closely related to Vogt's (Ω) that is essential in splitting theory of Fréchet spaces.
- Our method is completely different from that of Grothendieck (indirect method).
- Our approach relies in concrete analysis of abstract results for regularity properties of (*LF*)-spaces, with roots in Palamadov's homological theory.
- In particular, we use: An (*LF*)-space is complete if and only if it is boundedly stable and satisfies (*wQ*) (Vogt and Wengenroth).

Let $E = \lim_{N \to \infty} E_N$ be an (*LF*)-space.

- *E* is said to be boundedly stable if for every $N \in \mathbb{N}$ and every bounded set *B* in E_N there is $M \ge N$ such that for every $K \ge M$ the spaces E_M and E_K induce the same topology on *B*.
- If (|| · ||_{N,n})_{n∈ℕ} is a fundamental sequence of seminorms for E_N, then E satisfies (wQ) if

 $\forall N \in \mathbb{N} \exists M \ge N \exists n \in \mathbb{N} \forall K \ge M \forall m \in \mathbb{N} \exists k \in \mathbb{N} \exists C > 0 \forall e \in E_N :$

 $\|e\|_{M,m} \leq C(\|e\|_{N,n} + \|e\|_{M,p}) * \langle B \rangle * \exists \rangle * \exists \rangle = \Im @$

- Our condition (Ω) for weight functions is closely related to Vogt's (Ω) that is essential in splitting theory of Fréchet spaces.
- Our method is completely different from that of Grothendieck (indirect method).
- Our approach relies in concrete analysis of abstract results for regularity properties of (*LF*)-spaces, with roots in Palamadov's homological theory.
- In particular, we use: An (*LF*)-space is complete if and only if it is boundedly stable and satisfies (*wQ*) (Vogt and Wengenroth).

Let $E = \lim_{N \to \infty} E_N$ be an (*LF*)-space.

- *E* is said to be boundedly stable if for every $N \in \mathbb{N}$ and every bounded set *B* in E_N there is $M \ge N$ such that for every $K \ge M$ the spaces E_M and E_K induce the same topology on *B*.
- If (|| · ||_{N,n})_{n∈ℕ} is a fundamental sequence of seminorms for E_N, then E satisfies (wQ) if

 $\forall N \in \mathbb{N} \exists M \geq N \exists n \in \mathbb{N} \forall K \geq M \forall m \in \mathbb{N} \exists k \in \mathbb{N} \exists C > 0 \forall e \in E_N :$

 $\|e\|_{M,m} \leq C(\|e\|_{N,n} + \|e\|_{M,p}) * \langle B \rangle * \exists \rangle * \exists \rangle = \Im @$

- Our condition (Ω) for weight functions is closely related to Vogt's (Ω) that is essential in splitting theory of Fréchet spaces.
- Our method is completely different from that of Grothendieck (indirect method).
- Our approach relies in concrete analysis of abstract results for regularity properties of (*LF*)-spaces, with roots in Palamadov's homological theory.
- In particular, we use: An (*LF*)-space is complete if and only if it is boundedly stable and satisfies (*wQ*) (Vogt and Wengenroth).

Let $E = \lim_{N \to \infty} E_N$ be an (*LF*)-space.

- *E* is said to be boundedly stable if for every $N \in \mathbb{N}$ and every bounded set *B* in E_N there is $M \ge N$ such that for every $K \ge M$ the spaces E_M and E_K induce the same topology on *B*.
- If (|| · ||_{N,n})_{n∈ℕ} is a fundamental sequence of seminorms for E_N, then E satisfies (wQ) if

 $\forall N \in \mathbb{N} \exists M \ge N \exists n \in \mathbb{N} \forall K \ge M \forall m \in \mathbb{N} \exists k \in \mathbb{N} \exists C > 0 \forall e \in E_N :$

 $\|e\|_{M,m} \leq C(\|e\|_{N,n} + \|e\|_{M,p}) * \langle B \rangle * \exists \rangle * \exists \rangle = \Im @$

- Our condition (Ω) for weight functions is closely related to Vogt's (Ω) that is essential in splitting theory of Fréchet spaces.
- Our method is completely different from that of Grothendieck (indirect method).
- Our approach relies in concrete analysis of abstract results for regularity properties of (*LF*)-spaces, with roots in Palamadov's homological theory.
- In particular, we use: An (*LF*)-space is complete if and only if it is boundedly stable and satisfies (*wQ*) (Vogt and Wengenroth).

Let $E = \lim_{N \to \infty} E_N$ be an (*LF*)-space.

- *E* is said to be boundedly stable if for every $N \in \mathbb{N}$ and every bounded set *B* in E_N there is $M \ge N$ such that for every $K \ge M$ the spaces E_M and E_K induce the same topology on *B*.
- If (|| · ||_{N,n})_{n∈ℕ} is a fundamental sequence of seminorms for E_N, then E satisfies (wQ) if

 $\forall N \in \mathbb{N} \exists M \ge N \exists n \in \mathbb{N} \forall K \ge M \forall m \in \mathbb{N} \exists k \in \mathbb{N} \exists C > 0 \forall e \in E_N :$

 $\|e\|_{M,m} \leq C(\|e\|_{N,n} + \|e\|_{M,\mathbb{P}}) \rightarrow \langle \mathbb{P} \rightarrow \langle \mathbb{P} \rightarrow \langle \mathbb{P} \rightarrow \langle \mathbb{P} \rangle = \mathcal{O}(\mathbb{P})$

- Our condition (Ω) for weight functions is closely related to Vogt's (Ω) that is essential in splitting theory of Fréchet spaces.
- Our method is completely different from that of Grothendieck (indirect method).
- Our approach relies in concrete analysis of abstract results for regularity properties of (*LF*)-spaces, with roots in Palamadov's homological theory.
- In particular, we use: An (*LF*)-space is complete if and only if it is boundedly stable and satisfies (*wQ*) (Vogt and Wengenroth).

Let $E = \lim_{N \to N} E_N$ be an (*LF*)-space.

• *E* is said to be boundedly stable if for every $N \in \mathbb{N}$ and every bounded set *B* in E_N there is $M \ge N$ such that for every $K \ge M$ the spaces E_M and E_K induce the same topology on *B*.

If (|| · ||_{N,n})_{n∈ℕ} is a fundamental sequence of seminorms for E_N, then E satisfies (wQ) if

 $\forall N \in \mathbb{N} \exists M \geq N \exists n \in \mathbb{N} \forall K \geq M \forall m \in \mathbb{N} \exists k \in \mathbb{N} \exists C > 0 \forall e \in E_N :$

 $\|e\|_{M,m} \leq C(\|e\|_{N,n} + \|e\|_{M,m}) * < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > < m > <$

- Our condition (Ω) for weight functions is closely related to Vogt's (Ω) that is essential in splitting theory of Fréchet spaces.
- Our method is completely different from that of Grothendieck (indirect method).
- Our approach relies in concrete analysis of abstract results for regularity properties of (*LF*)-spaces, with roots in Palamadov's homological theory.
- In particular, we use: An (*LF*)-space is complete if and only if it is boundedly stable and satisfies (*wQ*) (Vogt and Wengenroth).

Let $E = \lim_{N \to N} E_N$ be an (*LF*)-space.

- *E* is said to be boundedly stable if for every $N \in \mathbb{N}$ and every bounded set *B* in E_N there is $M \ge N$ such that for every $K \ge M$ the spaces E_M and E_K induce the same topology on *B*.
- If (|| · ||_{N,n})_{n∈N} is a fundamental sequence of seminorms for E_N, then E satisfies (wQ) if

 $\forall N \in \mathbb{N} \exists M \ge N \exists n \in \mathbb{N} \forall K \ge M \forall m \in \mathbb{N} \exists k \in \mathbb{N} \exists C > 0 \forall e \in E_N :$

 $\|e\|_{M,m} \leq C(\|e\|_{N,n} + \|e\|_{\mathcal{K},k}) + \mathbb{C} +$

Weighted L^1 convolutor spaces

Define L¹_W as the space consisting of all measurable functions f on R^d such that

$$\int_{\mathbb{R}^d} f(x) w_{N}(x) \mathrm{d} x < \infty, \qquad \forall N \in \mathbb{N}.$$

• L_{W}^{1} is a Fréchet space.

Define

 $\mathcal{O}_{\mathcal{C}}'(\mathcal{D}, L^{1}_{\mathcal{W}}) := \{ f \in \mathcal{D}'(\mathbb{R}^{d}) \, | \, f \ast \varphi \in L^{1}_{\mathcal{W}} \text{ for all } \varphi \in \mathcal{D}(\mathbb{R}^{d}) \}$

and endow it with the initial topology w.r.t. the mapping

 $\mathcal{O}'_{\mathcal{C}}(\mathcal{D}, L^{1}_{\mathcal{W}}) \to L_{\mathcal{b}}(\mathcal{D}(\mathbb{R}^{d}), L^{1}_{\mathcal{W}}) : f \to (\varphi \to f * \varphi).$

Define L¹_W as the space consisting of all measurable functions f on R^d such that

$$\int_{\mathbb{R}^d} f(x) w_{\mathcal{N}}(x) \mathrm{d} x < \infty, \qquad \forall \mathcal{N} \in \mathbb{N}.$$

• $L^1_{\mathcal{W}}$ is a Fréchet space.

Define

 $\mathcal{O}_{\mathcal{C}}'(\mathcal{D}, L^{1}_{\mathcal{W}}) := \{ f \in \mathcal{D}'(\mathbb{R}^{d}) \, | \, f \ast \varphi \in L^{1}_{\mathcal{W}} \text{ for all } \varphi \in \mathcal{D}(\mathbb{R}^{d}) \}$

and endow it with the initial topology w.r.t. the mapping

 $\mathcal{O}'_{\mathcal{C}}(\mathcal{D}, L^{1}_{\mathcal{W}}) \to L_{\mathcal{b}}(\mathcal{D}(\mathbb{R}^{d}), L^{1}_{\mathcal{W}}) : f \to (\varphi \to f * \varphi).$

Define L¹_W as the space consisting of all measurable functions f on R^d such that

$$\int_{\mathbb{R}^d} f(x) w_{\mathcal{N}}(x) \mathrm{d} x < \infty, \qquad \forall \mathcal{N} \in \mathbb{N}.$$

• L_{W}^{1} is a Fréchet space.

Define

$$\mathcal{O}_{\mathcal{C}}'(\mathcal{D}, L^{1}_{\mathcal{W}}) := \{ f \in \mathcal{D}'(\mathbb{R}^{d}) \, | \, f \ast \varphi \in L^{1}_{\mathcal{W}} \text{ for all } \varphi \in \mathcal{D}(\mathbb{R}^{d}) \}$$

and endow it with the initial topology w.r.t. the mapping

$$\mathcal{O}'_{\mathcal{C}}(\mathcal{D}, L^{1}_{\mathcal{W}}) \to L_{\mathcal{b}}(\mathcal{D}(\mathbb{R}^{d}), L^{1}_{\mathcal{W}}) : f \to (\varphi \to f * \varphi).$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

The equality $(\dot{\mathcal{B}}_{\mathcal{W}})' = \mathcal{O}_{C}'(\mathcal{D}, L_{\mathcal{W}}^{1})$ always holds algebraically. *TFAE*:

- \mathcal{W} satisfies the condition (Ω).
- $\dot{\mathcal{B}}_{\mathcal{W}}$ and $\mathcal{B}_{\mathcal{W}}$ are complete.
- $\mathcal{O}'_{\mathcal{C}}(\mathcal{D}, L^{1}_{\mathcal{W}})$ is bornological.
- $(\dot{\mathcal{B}}_{\mathcal{W}})'_b = \mathcal{O}'_C(\mathcal{D}, L^1_{\mathcal{W}}).$

- Suppose ∀N ∃M : lim_{|x|→∞} ω_N(x)/ω_M(x) = 0. Then
 O'_{C,op}(K_W) = O'_C(D, L¹_W) and we have then settled when the spaces of convolutors of Gelfand-Shilov spaces are bornological.
- For weight sequences of the form $w_N(x) = \exp(N\omega(x))$ or $w_N(x) = \exp(\omega(Nx))$ we have translated the condition (Ω) into precise properties of ω .

The equality $(\dot{\mathcal{B}}_{\mathcal{W}})' = \mathcal{O}_{C}'(\mathcal{D}, L_{\mathcal{W}}^{1})$ always holds algebraically. TFAE:

- \mathcal{W} satisfies the condition (Ω) .
- $\dot{\mathcal{B}}_{\mathcal{W}}$ and $\mathcal{B}_{\mathcal{W}}$ are complete.
- $\mathcal{O}'_{\mathcal{C}}(\mathcal{D}, L^{1}_{\mathcal{W}})$ is bornological.
- $(\dot{\mathcal{B}}_{\mathcal{W}})'_{b} = \mathcal{O}'_{C}(\mathcal{D}, L^{1}_{\mathcal{W}}).$

- Suppose ∀N∃M : lim_{|x|→∞} ω_N(x)/ω_M(x) = 0. Then
 O'_{C,op}(K_W) = O'_C(D, L¹_W) and we have then settled when the spaces of convolutors of Gelfand-Shilov spaces are bornological.
- For weight sequences of the form $w_N(x) = \exp(N\omega(x))$ or $w_N(x) = \exp(\omega(Nx))$ we have translated the condition (Ω) into precise properties of ω .

The equality $(\dot{\mathcal{B}}_{\mathcal{W}})' = \mathcal{O}_{C}'(\mathcal{D}, L_{\mathcal{W}}^{1})$ always holds algebraically. TFAE:

- \mathcal{W} satisfies the condition (Ω).
- $\dot{\mathcal{B}}_{\mathcal{W}}$ and $\mathcal{B}_{\mathcal{W}}$ are complete.
- $\mathcal{O}'_{\mathcal{C}}(\mathcal{D}, L^{1}_{\mathcal{W}})$ is bornological.
- $(\dot{\mathcal{B}}_{\mathcal{W}})'_{b} = \mathcal{O}'_{C}(\mathcal{D}, L^{1}_{\mathcal{W}}).$

- Suppose ∀N ∃M : lim_{|x|→∞} ω_N(x)/ω_M(x) = 0. Then
 O'_{C,op}(K_W) = O'_C(D, L¹_W) and we have then settled when the spaces of convolutors of Gelfand-Shilov spaces are bornological.
- For weight sequences of the form $w_N(x) = \exp(N\omega(x))$ or $w_N(x) = \exp(\omega(Nx))$ we have translated the condition (Ω) into precise properties of ω .

The equality $(\dot{\mathcal{B}}_{\mathcal{W}})' = \mathcal{O}_C'(\mathcal{D}, L^1_{\mathcal{W}})$ always holds algebraically. TFAE:

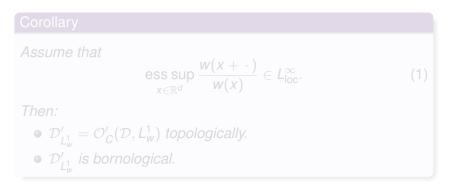
- \mathcal{W} satisfies the condition (Ω).
- $\dot{\mathcal{B}}_{\mathcal{W}}$ and $\mathcal{B}_{\mathcal{W}}$ are complete.
- $\mathcal{O}'_{\mathcal{C}}(\mathcal{D}, L^{1}_{\mathcal{W}})$ is bornological.
- $(\dot{\mathcal{B}}_{\mathcal{W}})'_{b} = \mathcal{O}'_{C}(\mathcal{D}, L^{1}_{\mathcal{W}}).$

- Suppose ∀N ∃M : lim_{|x|→∞} ω_N(x)/ω_M(x) = 0. Then
 O'_{C,op}(K_W) = O'_C(D, L¹_W) and we have then settled when the spaces of convolutors of Gelfand-Shilov spaces are bornological.
- For weight sequences of the form $w_N(x) = \exp(N\omega(x))$ or $w_N(x) = \exp(\omega(Nx))$ we have translated the condition (Ω) into precise properties of ω .

Particular case: \mathcal{D}'_{l^1} weighted spaces

Let w be a positive measurable function and set

$$\mathcal{D}_{L^1_w}' = (\dot{\mathcal{B}}_w)_b'.$$



Remark

It is worth noticing: the hypothesis (1) is equivalent to L_w^1 being translation-invariant.

Particular case: \mathcal{D}'_{l^1} weighted spaces

Let w be a positive measurable function and set

$$\mathcal{D}'_{L^1_w} = (\dot{\mathcal{B}}_w)'_b.$$

Corollary

Assume that

$$\mathop{\mathrm{ess\,sup}}_{x\in\mathbb{R}^d} rac{w(x+\,\cdot\,)}{w(x)}\in L^\infty_{\mathsf{loc}}$$

(1)

Then:

Remark

It is worth noticing: the hypothesis (1) is equivalent to L_w^1 being translation-invariant.

Particular case: \mathcal{D}'_{l^1} weighted spaces

Let w be a positive measurable function and set

$$\mathcal{D}_{L^1_w}' = (\dot{\mathcal{B}}_w)_b'.$$

Corollary

Assume that

$$\mathop{\mathrm{ess\,sup}}\limits_{x\in\mathbb{R}^d} rac{w(x+\,\cdot\,)}{w(x)}\in L^\infty_{\mathsf{loc}}$$

(1)

Then:

•
$$\mathcal{D}'_{L^1_w} = \mathcal{O}'_C(\mathcal{D}, L^1_w)$$
 topologically.
• $\mathcal{D}'_{L^1_w}$ is bornological.

Remark

It is worth noticing: the hypothesis (1) is equivalent to L_w^1 being translation-invariant.

The talk is based on the following collaborative work with Andreas Debrouwere:

A. Debrouwere, J. V., Topological properties of convolutor spaces via the short time Fourier transform, preprint: arXiv:1801.09246

For ultradistributional counterparts of these results, see:

A. Debrouwere, J. V., On weighted inductive limits of spaces of ultradifferentiable functions and their duals, Math. Nachr., to appear. Preprint: arXiv:1710.03731

▲ 同 ト ▲ 国 ト

The talk is based on the following collaborative work with Andreas Debrouwere:

A. Debrouwere, J. V., Topological properties of convolutor spaces via the short time Fourier transform, preprint: arXiv:1801.09246

For ultradistributional counterparts of these results, see:

A. Debrouwere, J. V., On weighted inductive limits of spaces of ultradifferentiable functions and their duals, Math. Nachr., to appear. Preprint: arXiv:1710.03731

▲ 同 ▶ ▲ 国 ▶