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We will discuss topological properties of a general class of
convolutor spaces.

Our results are quantified versions of classical results, mainly
motivated by:

1 Schwartz’ convolution description of D′L1 .
2 Grothendieck’s results on the completeness of OC and the

(ultra-)bornologicity of O′C .

The talk is based on collaborative work with Andreas
Debrouwere.
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The space of integrable distributions D′L1

The space B consists of all ϕ ∈ C∞(Rd ) such that

‖∂αϕ‖L∞ <∞, ∀α ∈ Nd .

The space B is a Fréchet space.
The space Ḃ is given by the closure of D(Rd ) in B, i.e., all
ϕ ∈ C∞(Rd ) such that

lim
|x |→∞

∂αϕ(x) = 0, ∀α ∈ Nd .

The space Ḃ is a Fréchet space.
The space D′L1 of integrable distributions is given by the
topological dual of Ḃ.
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The space Ḃ is a Fréchet space.
The space D′L1 of integrable distributions is given by the
topological dual of Ḃ.
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The space Ḃ is a Fréchet space.
The space D′L1 of integrable distributions is given by the
topological dual of Ḃ.
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Theorem (Schwartz, 1950)

Let f ∈ D′(Rd ). Then, f ∈ D′L1 if and only if f ∗ϕ ∈ L1 for all ϕ ∈ D(Rd ).

Two natural topologies on D′L1 :

1 The strong topology b(D′L1 , Ḃ).
2 The initial topology op w.r.t. the mapping

D′L1 → Lb(D(Rd ),L1) : f → (ϕ→ f ∗ ϕ).

Theorem (Schwartz, 1950)

The spaces D′L1,b and D′L1,op have the same bounded sets and null
sequences.

Question

Do the topologies b and op coincide on D′L1?

Is D′L1,op (ultra-)bornological? If yes, this answers positively the
above question.
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The space of rapidly decreasing distributions O′C

Schwartz introduced the space of rapidly decreasing
distributions as follows:

B′ stands for the space of bounded distributions, dual of

DL1 = {ϕ : ∂αϕ ∈ L1, ∀α ∈ Nd}.

A distribution f belongs to O′C if (1 + |x |2)k f ∈ B′, for all
k ∈ N.

Theorem (Schwartz: O′C is the space of convolutors of S(Rd ))

Let f ∈ S ′(Rd ). Then, f ∈ O′C if and only if f ∗ ϕ ∈ S(Rd ) for all
ϕ ∈ S(Rd ).
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The space of very slowly increasing smooth functions
A predual of O′

C

The space OC consists of all ϕ ∈ C∞(Rd ) such that there
is N ∈ N for which

sup
x∈Rd

|∂αϕ(x)|
(1 + |x |)N <∞, ∀α ∈ Nd .

OC is an (LF )-space (countable inductive limit of Fréchet
spaces).
The space O′C of rapidly decreasing distributions is given
by the topological dual of OC .
Schwartz wrote in his book: “the space OC seems not to
play any important role”.
Grothendieck however made a complete and non-trivial
analysis of OC and O′C , showing that the topological
properties of these spaces are very interesting.
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The space of rapidly decreasing distributions

Define the topologies b and op on O′C as before.

Theorem (Grothendieck, 1955)

The space O′C,op is complete, semi-reflexive, and
(ultra-)bornological (hence reflexive).

Consequently, O′C,b = O′C,op and the (LF )-space OC is
complete.

Grothendieck method:
He showed that O′C,op is isomorphic to a complemented
subspace of s⊗̂s′.
Then proved that that s⊗̂s′ is bornological.
Moreover, he showed that (O′C,op)′b = OC .
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Convolutors in Gelfand-Shilov spaces
of smooth functions

There have been attempts to generalize Grothendieck’s result.
LetW = (wN)N be an increasing sequence of positive
continuous functions such that

∀N ∃M : lim
|x |→∞

ωN(x)/ωM(x) = 0.

Define the Fréchet space
KW(= K{wN}) = {ϕ ∈ C∞(Rd ) : wN∂

αϕ ∈ L∞, ∀N, α}
E.g. wN(x) = (1 + |x |)N leads to S, while if wN(x) = eN|x |

one obtains the space of exponentially decreasing smooth
functions K1.
Associated convolutor space:
O′C(KW) = {f ∈ K′W : f ∗ ϕ ∈ KW for all ϕ ∈ KW}.
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Topological property of convolutor spaces

Question
Is O′C,op(KW) (ultra-)bornological?

Zielezny claims to have shown this for O′C,op(K1).

Studia Math. 31 (1968), 111–124.
His proofs seem to contain major gaps.
Abdullah even claims in

Proc. Amer. Math. Soc. 110 (1990), 177–185.
that O′C,op(KW) is always ultrabornological when the family
of weights is of the form

wN(x) = eω(N|x |)

with ω a positive increasing convex function tending to∞.
It follows from our recent results that Abdullah’s claim is
false. (E.g. when ω is not polynomially bounded.)
On the other hand, we showed Zielezny’s claim was true.
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Goals

Show the full topological identity D′L1,b = D′L1,op and extend
it to weighted D′L1 spaces.
Unified approach for D′L1 and O′C , or more generally,
convolutor spaces for Gelfand-Shilov spaces KW .
Analyze completeness of weighted inductive limits of
spaces of smooth functions (In particular first direct proof
of completeness of OC).
To this end, we study structural and topological properties
of a general class of weighted L1 convolutor spaces.
Our arguments are based on the mapping properties of the
short-time Fourier transform. Inspired by:

C. Bargetz, N. Ortner, Characterization of L. Schwartz’ convolutor and multiplier spaces O′
C and

OM by the short-time Fourier transform, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math.
RACSAM 108 (2014), 833–847.

S. Kostadinova, S. Pilipović, K. Saneva, J. Vindas, The short-time Fourier transform of distributions
of exponential type and Tauberian theorems for S-asymptotics, FILOMAT 30 (2016), 3047–3061.

We also use ideas from abstract theory of (LF )-spaces.
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The short-time Fourier transform (STFT)

Tx f := f ( · − x) and Mξf := e2πiξt f (t) for x , ξ ∈ Rd .
The STFT of f ∈ L2(Rd ) w.r.t. a window function
ψ ∈ L2(Rd )\{0} is defined as

Vψf (x , ξ) := (f ,MξTxψ)L2 =

∫
Rd

f (t)ψ(t − x)e−2πiξtdt .

The mapping Vψ : L2(Rd )→ L2(R2d ) is continuous.
The adjoint of Vψ is given by the weak integral

V ∗ψF =

∫ ∫
R2d

F (x , ξ)MξTxψdxdξ, F ∈ L2(R2d ).

Inversion formula
1
‖ψ‖2L2

V ∗ψ ◦ Vψ = idL2(Rd ) .
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ψ ∈ L2(Rd )\{0} is defined as
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The STFT on D′(Rd)

Let ψ ∈ D(Rd )\{0}. Vψ and V ∗ψ can be extended to
continuous mappings on D′(Rd ):

Vψ : D′(Rd )→ D′(Rd
x )⊗̂S ′(Rd

ξ ), Vψf (x , ξ) := 〈f ,MξTxψ〉.

and

V ∗ψ : D′(Rd
x )⊗̂S ′(Rd

ξ )→ D′(Rd ), 〈V ∗ψF , ϕ〉 := 〈F ,Vψϕ〉.

Inversion formula
1
‖ψ‖2L2

V ∗ψ ◦ Vψ = idD′(Rd ) .
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General strategy

Suppose that E1,E2 ⊂ D′(Rd ) (with continuous inclusion)
and one wants to show that E1 = E2 .
Find F ⊂ D′(Rd

x )⊗̂S ′(Rd
ξ ) such that

Vψ : Ei → F and V ∗ψ : F → Ei

are well-defined mappings for i = 1,2.
The inversion formula immediately yields that E1 = E2 !
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General strategy

Suppose that E1,E2 ⊂ D′(Rd ) (with continuous inclusion)
and one wants to show that E1 = E2 topologically.
Find F ⊂ D′(Rd

x )⊗̂S ′(Rd
ξ ) such that

Vψ : Ei → F and V ∗ψ : F → Ei

are well-defined continuous mappings for i = 1,2.
The inversion formula immediately yields that E1 = E2
topologically!
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Example: The equality D′L1,b = D′L1,op

Define Cpol(Rd ) as the space consisting of all ϕ ∈ C(Rd )
such that there is N ∈ N for which

sup
x∈Rd

|ϕ(x)|
(1 + |x |)N <∞.

Cpol(Rd ) is an (LB)-space.

Theorem

Let ψ ∈ D(Rd )\{0} and let τ = b or op. Then,

Vψ : D′L1,τ → L1(Rd
x )⊗̂εCpol(Rd

ξ )

and
V ∗ψ : L1(Rd

x )⊗̂εCpol(Rd
ξ )→ D′L1,τ

are well-defined continuous mappings. Hence, D′L1,b = D′L1,op.
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Weighted inductive limits of smooth functions

LetW = (wN)N be an increasing sequence of continuous
functions.
Define BwN as the space consisting of all ϕ ∈ C∞(Rd ) such
that

sup
x∈Rd

|∂αϕ(x)|
wN(x)

<∞, ∀α ∈ Nd .

BwN is a Fréchet space.
The space ḂwN is defined as the closure of D(Rd ) in BwN .
ḂwN is a Fréchet space.
Define

BW :=
⋃

N∈N
BwN and ḂW :=

⋃
N∈N
ḂwN .

BW and ḂW are (LF )-spaces.
Example: If wN(x) = (1 + |x |)N , then ḂW = BW = OC .

J. Vindas Convolutor spaces



Weighted inductive limits of smooth functions

LetW = (wN)N be an increasing sequence of continuous
functions.
Define BwN as the space consisting of all ϕ ∈ C∞(Rd ) such
that

sup
x∈Rd

|∂αϕ(x)|
wN(x)

<∞, ∀α ∈ Nd .

BwN is a Fréchet space.
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Completeness of BW and ḂW

Assume thatW = (wN)N satisfies

∀N ∃M ≥ N ∃C > 0 ∀x ∈ Rd : sup
y∈[−1,1]d

wN(x+y) ≤ CwM(x).

Theorem (Debrouwere and V., 2018)
TFAE:

ḂW is complete.

BW is complete.

W satisfies the condition (Ω), i.e.

∀N ∃M ≥ N ∀K ≥ M ∃θ ∈ (0,1)∃C > 0 ∀x ∈ Rd :

wN(x)1−θwK (x)θ ≤ CwM(x).

J. Vindas Convolutor spaces



Completeness of BW and ḂW
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Comments on the completeness of BW and ḂW

Our condition (Ω) for weight functions is closely related to Vogt’s
(Ω) that is essential in splitting theory of Fréchet spaces.

Our method is completely different from that of Grothendieck
(indirect method).

Our approach relies in concrete analysis of abstract results for
regularity properties of (LF )-spaces, with roots in Palamadov’s
homological theory.

In particular, we use: An (LF )-space is complete if and only if it
is boundedly stable and satisfies (wQ) (Vogt and Wengenroth).

Let E = lim−→N
EN be an (LF )-space.

1 E is said to be boundedly stable if for every N ∈ N and every bounded
set B in EN there is M ≥ N such that for every K ≥ M the spaces EM

and EK induce the same topology on B.
2 If (‖ · ‖N,n)n∈N is a fundamental sequence of seminorms for EN , then E

satisfies (wQ) if

∀N ∈ N ∃M ≥ N ∃n ∈ N ∀K ≥ M ∀m ∈ N ∃k ∈ N ∃C > 0∀e ∈ EN :

‖e‖M,m ≤ C(‖e‖N,n + ‖e‖K ,k ).
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Weighted L1 convolutor spaces

Define L1
W as the space consisting of all measurable

functions f on Rd such that∫
Rd

f (x)wN(x)dx <∞, ∀N ∈ N.

L1
W is a Fréchet space.

Define

O′C(D,L1
W) := {f ∈ D′(Rd ) | f ∗ ϕ ∈ L1

W for all ϕ ∈ D(Rd )}

and endow it with the initial topology w.r.t. the mapping

O′C(D,L1
W)→ Lb(D(Rd ),L1

W) : f → (ϕ→ f ∗ ϕ).
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The main result

Theorem (Debrouwere and V., 2018)

The equality (ḂW)′ = O′C(D,L1
W) always holds algebraically.

TFAE:
W satisfies the condition (Ω).
ḂW and BW are complete.
O′C(D,L1

W) is bornological.

(ḂW)′b = O′C(D,L1
W).

In such a case, the bidual of ḂW is (topologically) BW .

Suppose ∀N ∃M : lim|x|→∞ ωN(x)/ωM(x) = 0. Then
O′C,op(KW) = O′C(D,L1

W) and we have then settled when the
spaces of convolutors of Gelfand-Shilov spaces are bornological.

For weight sequences of the form
wN(x) = exp(Nω(x)) or wN(x) = exp(ω(Nx))
we have translated the condition (Ω) into precise properties of ω.
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Particular case: D′L1 weighted spaces

Let w be a positive measurable function and set

D′L1
w

= (Ḃw )′b.

Corollary

Assume that
ess sup

x∈Rd

w(x + · )
w(x)

∈ L∞loc. (1)

Then:
D′L1

w
= O′C(D,L1

w ) topologically.

D′L1
w

is bornological.

Remark

It is worth noticing: the hypothesis (1) is equivalent to L1
w being

translation-invariant.
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