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The problem of moments, as its generalizations, is an important
mathematical problem which has attracted much attention for
more than a century.

It was first raised and solved by Stieltjes for positive measures.

Problem (Stieltjes, 1894)
Find conditions over {an}1n=0 which ensure the existence of
solutions µ to the infinity system of equations

an =

Z 1

0
xndµ(x), n = 0, 1, 2, . . . ,

where µ is a positive measure.

We will discuss several generalizations of this problem.
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The classical Stieltjes moment problem

Stieltjes found a necessary and sufficient condition for the
existence of solutions. Define the sequence of matrices

�n =

0

BBB@

a0 a1 . . . an
a1 a2 . . . an+1
...

...
. . .

...
an an+1 . . . a2n

1

CCCA
and �(1)

n =

0

BBB@

a1 a2 . . . an+1
a2 a3 . . . an+2
...

...
. . .

...
an+1 an+2 . . . a2n+1

1

CCCA

Theorem (Stieltjes, 1894-1895)
The Stieltjes moment problem

an =

Z 1

0
xndµ(x), n = 0, 1, 2, . . . ,

has solution if and only if

det(�n) > 0 and det(�(1)
n ) > 0, n = 0, 1, 2, . . . .
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Ideas connected with the Stieltjes moment problem

Stieltjes’ influential papers led to many important ideas:
The theory of Stieltjes integrals

an =

Z 1

0
xndF (x), F % .

The Stieltjes transform, <e z /2 (�1, 0],

S(z) =
Z 1

0

dF (x)
x + z

⇠
1X

n=0

(�1)nan

zn+1 .

Continued fraction approximations.
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Modern approach goes back to Marcel Riesz (1921).
Carleman (1923-1926): connections with the theory of
quasi-analytic functions.

Other moment problems:
Hamburger (1920):

an =

Z 1

�1
xndF (x), n = 0, 1, 2, . . . .

Hausdorff (1923):

an =

Z c

b
xndF (x), n = 0, 1, 2, . . . .

For results on classical moment problems see the book by
Shohat and Tamarkin (The problem of moments, 1943).
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Moment problems for arbitrary sequences

Theorem (Boas and Pólya, independently, 1939)
Given an arbitrary sequence {an}1n=0, there is always a function
of bounded variation F such that

an =

Z 1

0
xndF (x), n = 0, 1, 2, . . . .

A. Durán achieved a major improvement to this result:

Theorem (A. Durán, 1989)
Every Stieltjes moment problem

an =

Z 1

0
xn�(x)dx , n = 0, 1, 2, . . . ,

admits a solution � 2 S(0,1), namely, � 2 S(R) with
supp� ✓ [0,1).
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Stieltjes moment problems for arbitrary sequences

A. Durán’s proof: Laguerre expansions, Hankel transform.
A. L. Durán and Estrada found a simple proof (1994):

an =

Z 1

0
xn�(x)dx , n = 0, 1, 2, . . . , (1)

iff b�(n)(0) = (�i)nan. Then, the Borel-Ritt theorem ...
Chung-Chung-Kim (2003) exploited the method to show
that (1) has solutions � 2 S�(0,1), � > 1.
Lastra and Sanz (2009) have considered ultradifferentiable
classes S{Mp}(0,1).
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Abstract moment problem

We want to replace

an =

Z 1

0
xn�(x)dx , n = 0, 1, 2, . . . ,

by the infinite system of linear equations

an = hfn,�i, n = 0, 1, 2, . . . , (2)

where the sought solution � is an element of a (topological!)
vector space E and fn 2 E 0.

Problem
Conditions over E and {fn}1n=0 such that every generalized
moment problem (3) has a solution � 2 E.
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Particular cases

The Borel problem:

an = �(n)(0), n = 0, 1, 2, . . . .

Here E = C1(R) and fn = (�1)n�(n), elements of E 0(R).
The Borel-Ritt problem. Given a sector S : ↵ < arg z < �,
|z| < r . Find an analytic function � on S such that on any
subsector S1 : ↵1 < arg z < �1 one has

�(z) ⇠
1X

n=0

anzn, z ! 0+.

Entire functions with prescribed values. Let {!n}1n=0 a
sequence of complex numbers. Find � entire such that

�(!n) = an.
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Particular case: General Stieltjes moment problems
for rapidly decreasing smooth functions

Direct generalization of Pólya-Boas-Durán problem,

an =

Z 1

0
xn�(x)dx , n = 0, 1, 2, . . . ,

where � 2 S(0,1).
Distribution moment problem:

an = hfn,�i, n = 0, 1, 2, . . . , (3)

where fn 2 S 0[0,1) (= fn 2 S 0(R) with supp fn ✓ [0,1)).
Again we seek solutions � 2 S(0,1).
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Particular cases

1 Continuous generalized moment problem

an =

Z 1

0
fn(x)�(x)dx , n = 0, 1, 2, . . . .

2 Discrete problem: Let (Bk ,n)(k ,n)2N2 be an infinite matrix

an =
1X

k=1

Bk ,n�(k), n = 0, 1, 2, . . . ,

or, more generally, 0 < �n ! 1,

an =
1X

k=1

Bk ,n�(�k ), n = 0, 1, 2, . . . .

3 Let {Fn}1n=0 be a sequence of functions of local bounded
variation (having at most polynomial growth)

an =

Z 1

0
�(x)dFn(x), n = 0, 1, 2, . . . .
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Back to the abstract moment problem

We now consider the abstract moment problem, {fn}1n=0 ⇢ E 0,

an = hfn,�i, n = 0, 1, 2, . . . . (4)

where E is B-complete (also called Pták). This means that a
linear subspace of E 0 is weak⇤ closed iff its intersection with
every equicontinous set is weak⇤ closed.

Theorem
Let E be B-complete. Then every moment problem (4) admits a
solution � 2 E if and only if

1 f0, f1, f2, . . . , fn, . . . are linear independent.
2 For any equicontinuous subset A ⇢ E 0, the intersection

A \ span{fn : n 2 N}

is contained in a finite dimensional subspace.
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Abstract moment problem in Fréchet spaces

We rediscovered the following result, originally due to Eidelheit
(1936).

Corollary
Let E = proj lim Ej be a Fréchet space, where each Ej is a
Banach space, and Ej+1 ! Ej is dense. Every arbitrary
abstract moment problem

hfn,�i = an, n 2 N,

has a solution � 2 E if and only if
1 f0, f1, f2, . . . , fn, . . . , are linearly independent.
2 span{fn : n 2 N} \ E 0

j is finite dimensional, 8j 2 N.
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Applications

For the Borel problem:

an = �(n)(0) = h(�1)n�(n),�i, n = 0, 1, 2, . . . ,

one takes E = C1(R) = proj lim Cj [�j , j]. Since all
elements of the dual of Cj [�j , j] are derivatives of order
 j + 1 of measures, the last result implies that every Borel
problem has solution.
A similar argument shows that every Borel-Ritt problem
has a solution.
Employing the Köthe-Silva-Grothendieck representation
theorem for analytic functionals and the previous theorem,
one can show: Every sampling problem

�(!n) = an

has an entire solution � if and only if |!n| ! 1.
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Distribution moment problem. Cesàro asymptotics

Let f 2 S 0[0,1) and ↵ > �1. We write

f (x) = O(x↵) (C,m), x ! 1

if f (�m), the primitive of order m of f , is continuous on [0,1) and

f (�m)(x) = O(x↵+m), x ! 1,

in the ordinary sense.

Here f is the convolution of f with xm�1
+ /(m � 1)!, so that if f is

locally integrable

1
x

Z x

0
f (t)

✓
1 � t

x

◆m�1
dt = O(x↵)
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General Stieltjes moment problem for sequences of
distributions

Let {fn}1n=0 be a sequence of distributions with supp fn ✓ [0,1).

Theorem
Every generalized Stieltjes moment problem

an = hfn,�i, n = 0, 1, 2, . . . ,

has a solution � 2 S(0,1) if:
1 f1, f2, f3 . . . , fn, . . . , are linearly independent.
2 span{fn : n 2 N} \ span{�(j):jN} = {0} .
3 There is an increasing sequence of integers

�
mj
 1

j=0 such
that for every j and ↵ > 0 there exists ⌫j,↵ such that if N � ⌫

1X

n=0

bnfn(x) = O(x↵)(C,mj) =) b⌫ = b⌫+1 = · · · = bN = 0.
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The weighted Stieltjes moment problem

Let 0  F % on [0,1) with F (x) = O(xk ) and let {↵n}n2N ⇢ C
with

lim
n!1

<e ↵n = 1.

Theorem
Every weighted Stieltjes moment problem

an =

Z 1

0
�(x)x↵ndF (x), n = 0, 1, 2 . . . ,

has a solution � 2 S(0,1) if and only if there is N
Z 1

0
xNdF (x) = 1.
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Examples

The following generalized moment problem is not always
solvable:

an =
1X

k=1

2�kkn�(k), n = 0, 1, 2, . . . .

Let {↵n}1n=0 be such that <e ↵n % 1. The following
generalized moment problems always have a solution
� 2 S(0,1).

an =
X

p prime

p↵n�(p), n = 0, 1, 2, . . . .

an =

Z 1

0
x↵n sin

✓
1

x�

◆
�(x)dx , n = 0, 1, 2, . . . , (� � 0).
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