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The study of the relationship between the local behavior of
periodic functions and convergence or summability properties
of Fourier series is a very classical problem in Analysis.
There are essentially three main aspects:

1 Conclude convergence or summability of the series from
local behavior (Abelian problem)

2 Extract local information about functions from convergence
or summability (usually a Tauberian problem)

3 Beyond the Abel-Tauber problem: Obtain precise
characterizations of point behavior in terms of certain
summability properties of the series

We will discuss some new results in the direction of the third
problem.
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Fatou’s Theorem
Loomis Converse to Fatou’s Theorem
A Classical Theorem of Hardy-Littlewood

Fatou’s Theorem (1906)

Fatou’s theorem states that if f ∈ L1[−π, π] with Fourier series

a0

2
+
∞∑

n=1

an cos nθ + bn sin nθ ,

and its primitive is differentiable at the point θ = θ0, i.e.,

lim
θ→θ0

1
θ − θ0

∫ θ

θ0

f (t)dt = γ ,

then

lim
r→1−

(
a0

2
+
∞∑

n=1

(an cos nθ0 + bn sin nθ0)rn

)
= γ .
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Abel Summability

Definition
A numerical series

∑∞
n=0 cn is called Abel summable to γ if

lim
r→1−

∞∑
n=1

cnrn = γ .

One then writes
∑∞

n=0 cn = γ (A).

With this notation, the conclusion of Fatou’s theorem becomes

a0

2
+
∞∑

n=1

an cos nθ0 + bn sin nθ0 = γ (A) .
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Harmonic Representations and Fatou’s Theorem

For z = reiθ,

U(reiθ) =
a0

2
+
∞∑

n=1

(an cos nθ0 + bn sin nθ0)rn ,

then, U(z) is harmonic on |z| < 1. Since the primitive of f is
differentiable almost everywhere with derivative f (θ0), Fatou’s
theorem tells us:

Corollary

If f ∈ L1[−π, π], then we have almost everywhere

f (θ0) = lim
r→1−

U(reiθ0) .
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Loomis Converse to Fatou’s Theorem (1943)

Loomis gave a converse to Fatou theorem in 1943.

Theorem
If f is a positive function and its Fourier series

a0

2
+
∞∑

n=1

an cos nθ0 + bn sin nθ0 = γ (A) , (1)

then the symmetric derivative of the primitive of f exits and
equals γ, i.e.,

lim
θ→0

1
2θ

∫ θ0+θ

θ0−θ
f (t)dt = γ . (2)

Conversely, (2) implies (1).
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A Theorem of Hardy and Littlewood
Cesàro summability

One says that a series is (C, κ) summable to γ and writes

∞∑
n=0

cn = γ (C, κ) ,

if

lim
n→∞

κ!

nκ

n∑
m=0

(
m + κ

κ

)
cn−m = γ .

The latter is equivalent, by a theorem of M. Riesz (1911), to

lim
x→∞

∑
0≤n<x

cn

(
1− n

x

)κ
= γ .
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A Theorem of Hardy and Littlewood 1918–1926

By using Tauberian arguments, they were able to show:

Theorem
Let f be positive. A necessary and sufficient condition for

lim
θ→0

1
2θ

∫ θ0+θ

θ0−θ
f (t)dt = γ ,

is that for each κ > 0 its Fourier series satisfies

a0

2
+
∞∑

n=1

an cos nθ0 + bn sin nθ0 = γ (C, κ) ,
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Conjugate Series

Let f ∈ D′(R), a periodic distribution with Fourier series

f (θ) =
a0

2
+
∞∑

n=1

an cos nθ + bn sin nθ ,

the conjugate series is defined as

f̃ (θ) =
∞∑

n=1

an sin nθ − bn cos nθ

it gives a well defined distribution.
Remark Even if f ∈ L1[−π, π], f̃ is not a function. One can show
the existence of f such that the conjugate distribution f̃ is not
integrable on any finite interval.
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Conjugate series and Conjugate Harmonics

Set

V (reiθ) =
∞∑

n=1

(an sin nθ − bn cos nθ)rn ,

the harmonic representation of f̃ (θ).
One can easily show that V is harmonic conjugate to

U(reiθ) =
a0

2
+
∞∑

n=1

(an cos nθ + bn sin nθ) rn .

Therefore, f (θ) + i f̃ (θ) is the boundary value of an analytic
function from the unit disk.
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Another Classical Result: Abel Summability of
Conjugate Series

Version of Fatou theorem for the conjugate series: Let now
f ∈ L1[−π, π] if

lim
θ→θ0

1
θ − θ0

∫ θ

θ0

f (t)dt = γ ,

and the principal value integral exists, i.e.,

β = − 1
2π

p.v.
∫ π

−π
f (t + θ0) cot

(
t
2

)
dt ,

then the conjugate series is Abel summable to β,
∞∑

n=1

an sin nθ0 − bn cos nθ0 = β (A) .
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Problem of Simultaneous Abel Summability
for Fourier and Conjugate Series

Assuming

a0

2
+
∞∑

n=1

an cos nθ0 + bn sin nθ0 = γ (A) .

and
∞∑

n=1

an sin nθ0 − bn cos nθ0 = β (A) .

We aim:
Obtain local information of the distribution (Tauberian
issue).
Characterize this situation of simultaneous Abel
summability within certain classes of functions and
distributions.
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Average Point Values of Functions

We shall say that f ∈ L1
loc has an average point value of order k

at θ = θ0 if

lim
θ→θ0

k
(θ − θ0)k

∫ θ

θ0

f (t)(θ − t)k−1dt = γ .

We write for this f (θ0) = γ (C, k).
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Łojasiewicz Point Values

Let now f ∈ D′(R). We say that f (θ0) = γ, distributionally, if
there exist a non-negative integer k and a function F such that
F (k) = f near θ0 and

lim
θ→θ0

k !F (θ)

(θ − θ0)k = γ . (3)

Then, γ is the value of f at θ = θ0.
If (3) holds we say that the point value is of order k and we
may write again f (θ0) = γ (C, k).
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Distributional Boundedness at a Point

Let f ∈ D′(R). We say that f is distributionally bounded at
θ = θ0 if there exist a non-negative integer k and a function F
such that F (k) = f near θ0 and

F (θ) = O(|θ − θ0|k ).

Distributional boundedness is often a Tauberian
hypothesis.
If f is locally integrable this is equivalent to have∫ θ

θ0

f (t)(θ − t)k−1dt = O(|θ − θ0|k ) .
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A Tauberian Theorem
Functions Bounded from Below

A Tauberian Theorem

The main tool studying simultaneous Abel summability is the
following Tauberian result:

Theorem
Let f be a 2π-periodic distribution. Suppose that

a0

2
+
∞∑

n=1

(an cos nθ0 + bn sin nθ0) = γ (A) ,

and
∞∑

n=1

(an sin nθ0 − bn cos nθ0) = β (A) .

If either f or f̃ is distributionally bounded at θ = θ0, then
f (θ0) = γ and f̃ (θ0) = β, distributionally.
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Simultaneous (A) Summability and Functions
Bounded from Below

Theorem Let f ∈ L1[−π, π] be bounded from below (or above)
in some neighborhood of θ = θ0. The following are equivalent:

a0

2
+
∞∑

n=1

(an cos nθ0 + bn sin nθ0) = γ (A)

∞∑
n=1

(an sin nθ0 − bn cos nθ0) = β (A)

Both series are (C, κ) summable for any κ > 0.
The point values f (θ0) = γ (C,1) and f̃ (θ0) = β (C,3)

Furthermore,

γ = lim
θ→θ0

1
θ − θ0

∫ θ

θ0

f (t)dt ; β = − 1
2π

p.v.
∫ π

−π
f (t+θ0) cot

(
t
2

)
dt
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More general results are also valid for distributions and positive
measures. This talk is based on a joint work with R. Estrada:

On the Point Behavior of Fourier Series and Conjugate Series,
Zeitschrift fur Analysis und Ihre Anwendungen (2010), to
appear soon
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