Pointwise Fourier Inversion Formula for Tempered Distributions

Jasson Vindas

jvindas@math.lsu.edu

Louisiana State University

Mathematikkolloquien
Institut für Mathematik, Universität Innsbruck
November 22, 2006

The aim of this talk is to present a pointwise inversion formula for the Fourier Transform of Tempered Distributions.

The aim of this talk is to present a pointwise inversion formula for the Fourier Transform of Tempered Distributions.

We make sense out of the Formula

$$f(x_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(t)e^{-itx_0}dt$$

The aim of this talk is to present a pointwise inversion formula for the Fourier Transform of Tempered Distributions.

We make sense out of the Formula

$$f(x_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(t)e^{-itx_0}dt$$

• What does f at x_0 mean?

The aim of this talk is to present a pointwise inversion formula for the Fourier Transform of Tempered Distributions.

We make sense out of the Formula

$$f(x_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(t)e^{-itx_0}dt$$

• What does f at x_0 mean? It means the value of a distribution at a point in the Lojasiewicz sense.

The aim of this talk is to present a pointwise inversion formula for the Fourier Transform of Tempered Distributions.

We make sense out of the Formula

$$f(x_0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(t)e^{-itx_0}dt$$

- What does f at x_0 mean? It means the value of a distribution at a point in the Lojasiewicz sense.
- What is the meaning of $\int_{-\infty}^{\infty} \hat{f}(t)e^{-itx_0}dt$?

• \mathcal{D} and \mathcal{S} denote the space of smooth compactly supported functions and the space of smooth rapidly decreasing functions.

- D and S denote the space of smooth compactly supported functions and the space of smooth rapidly decreasing functions.
- \mathcal{D}' and \mathcal{S}' the space of distribution and the space of tempered distributions.

- D and S denote the space of smooth compactly supported functions and the space of smooth rapidly decreasing functions.
- \mathcal{D}' and \mathcal{S}' the space of distribution and the space of tempered distributions.
- All of our functions and distributions are over the real line.

- D and S denote the space of smooth compactly supported functions and the space of smooth rapidly decreasing functions.
- \mathcal{D}' and \mathcal{S}' the space of distribution and the space of tempered distributions.
- All of our functions and distributions are over the real line.
- The Fourier transform in S is defined as

$$\mathcal{F}(\phi)(x) = \int_{-\infty}^{\infty} \phi(t)e^{ixt}dt.$$

- D and S denote the space of smooth compactly supported functions and the space of smooth rapidly decreasing functions.
- \mathcal{D}' and \mathcal{S}' the space of distribution and the space of tempered distributions.
- All of our functions and distributions are over the real line.
- The Fourier transform in S is defined as

$$\mathcal{F}(\phi)(x) = \int_{-\infty}^{\infty} \phi(t)e^{ixt}dt.$$

• We use the notations \hat{f} , $\mathcal{F}\left\{f\right\}$ and $\mathcal{F}^{-1}\left\{f\right\}$

- D and S denote the space of smooth compactly supported functions and the space of smooth rapidly decreasing functions.
- \mathcal{D}' and \mathcal{S}' the space of distribution and the space of tempered distributions.
- All of our functions and distributions are over the real line.
- The Fourier transform in S is defined as

$$\mathcal{F}(\phi)(x) = \int_{-\infty}^{\infty} \phi(t)e^{ixt}dt.$$

- We use the notations \hat{f} , $\mathcal{F}\left\{f\right\}$ and $\mathcal{F}^{-1}\left\{f\right\}$
- The evaluation of f at a test function ϕ is denoted by

$$\langle f(x), \phi(x) \rangle$$

Lojasiewicz defined the value of a distribution $f \in \mathcal{D}'$ at the point x_0 as the limit

$$f(x_0) = \lim_{\varepsilon \to 0} f(x_0 + \varepsilon x),$$

if the limit exists in the weak topology of $\mathcal{D}'(\mathbb{R})$.

Lojasiewicz defined the value of a distribution $f \in \mathcal{D}'$ at the point x_0 as the limit

$$f(x_0) = \lim_{\varepsilon \to 0} f(x_0 + \varepsilon x),$$

if the limit exists in the weak topology of $\mathcal{D}'(\mathbb{R})$. In terms of test functions, it means that for all $\phi \in \mathcal{D}$

$$\lim_{\epsilon \to 0} \frac{1}{\epsilon} \left\langle f(x), \phi\left(\frac{x - x_0}{\epsilon}\right) \right\rangle = f(x_0) \int_{-\infty}^{\infty} \phi(x) dx.$$

Lojasiewicz defined the value of a distribution $f \in \mathcal{D}'$ at the point x_0 as the limit

$$f(x_0) = \lim_{\varepsilon \to 0} f(x_0 + \varepsilon x),$$

if the limit exists in the weak topology of $\mathcal{D}'(\mathbb{R})$. In terms of test functions, it means that for all $\phi \in \mathcal{D}$

$$\lim_{\varepsilon \to 0} \frac{1}{\epsilon} \left\langle f(x), \phi\left(\frac{x - x_0}{\epsilon}\right) \right\rangle = f(x_0) \int_{-\infty}^{\infty} \phi(x) dx.$$

• **Notation:** If $f \in \mathcal{D}'$ has a value γ at x_0 , we say that $f(x_0) = \gamma$ in \mathcal{D}' . The meaning of $f(x_0) = \gamma$ in \mathcal{S}' , ..., must be clear.

Lojasiewicz defined the value of a distribution $f \in \mathcal{D}'$ at the point x_0 as the limit

$$f(x_0) = \lim_{\varepsilon \to 0} f(x_0 + \varepsilon x),$$

if the limit exists in the weak topology of $\mathcal{D}'(\mathbb{R})$. In terms of test functions, it means that for all $\phi \in \mathcal{D}$

$$\lim_{\varepsilon \to 0} \frac{1}{\epsilon} \left\langle f(x), \phi\left(\frac{x - x_0}{\epsilon}\right) \right\rangle = f(x_0) \int_{-\infty}^{\infty} \phi(x) dx.$$

- **Notation:** If $f \in \mathcal{D}'$ has a value γ at x_0 , we say that $f(x_0) = \gamma$ in \mathcal{D}' . The meaning of $f(x_0) = \gamma$ in \mathcal{S}' , ..., must be clear.
- Remark: R.Estrada has shown that if $f \in \mathcal{S}'$, then $f(x_0) = \gamma$ in \mathcal{D}' implies $f(x_0) = \gamma$ in \mathcal{S}' .

Characterization of Distributional Point Values

Lojasiewicz showed that $f(x_0) = \gamma$ is equivalent to the existence of $n \in \mathbb{N}$, and a primitive of order n of f which is continuous in a neighborhood of x_0 and satisfies

$$\lim_{x \to x_0} \frac{n! F(x)}{(x - x_0)^n} = \gamma.$$

Characterization of Distributional Point Values

Lojasiewicz showed that $f(x_0) = \gamma$ is equivalent to the existence of $n \in \mathbb{N}$, and a primitive of order n of f which is continuous in a neighborhood of x_0 and satisfies

$$\lim_{x \to x_0} \frac{n! F(x)}{(x - x_0)^n} = \gamma.$$

Remark: If μ is a measure the above formula reads as

$$\lim_{x \to x_0} \frac{n}{(x - x_0)^n} \int_{x_0}^x (x - t)^{n-1} d\mu(t) = \gamma.$$

Characterization of Distributional Point Values

Lojasiewicz showed that $f(x_0) = \gamma$ is equivalent to the existence of $n \in \mathbb{N}$, and a primitive of order n of f which is continuous in a neighborhood of x_0 and satisfies

$$\lim_{x \to x_0} \frac{n! F(x)}{(x - x_0)^n} = \gamma.$$

Remark: If μ is a measure the above formula reads as

$$\lim_{x \to x_0} \frac{n}{(x - x_0)^n} \int_{x_0}^x (x - t)^{n-1} d\mu(t) = \gamma.$$

In particular if f is locally integrable and x_0 is a Lebesgue point of f, then f has a distributional point value at x_0

Abel Summability

We say that $\sum a_n$ is Abel summable to γ , and write

$$\sum_{n=0}^{\infty} a_n = \gamma \ (A)$$

if

$$\lim_{r \to 1^-} \sum_{n=0}^{\infty} a_n r^n = \gamma$$

Remark: We can also define Abel summability with respect to a positive increasing sequence $\{\lambda_n\}$ by replacing the term r^n by r^{λ_n} in such case we write

$$\sum a_n = \gamma \ (A, \lambda_n)$$

Cesaro limits and Cesaro summability

We say that

$$\lim_{n \to \infty} a_n = \gamma (C, 1)$$

if

$$\lim_{n \to \infty} \frac{a_0 + a_1 + \dots + a_n}{n+1} = \gamma.$$

Cesaro limits and Cesaro summability

We say that

$$\lim_{n \to \infty} a_n = \gamma (C, 1)$$

if

$$\lim_{n \to \infty} \frac{a_0 + a_1 + \dots + a_n}{n+1} = \gamma.$$

Remark: $\sum a_n = \gamma \ (C,1)$ means that the limit of the partial sums is equal to γ in the (C,1) sense.

Remark: We can continue taking average and we end up with the (C,k) sense

A very basic result in summability of Fourier Series

Suppose that $f \in L^1[0, 2\pi]$ and let $\{c_n\}_{n \in \mathbb{Z}}$ be its Fourier coefficients. Then if f is continuous at $x_0 \in (0, 2\pi)$, then

$$\lim_{N \to \infty} \sum_{-N}^{N} c_n e^{ix_0 n} = f(x_0) (C, 1).$$

G.Walter proved the following:

Theorem 1 Let f be a periodic distribution (and hence tempered) with Fourier Series

$$\sum_{n=0}^{\infty} c_n e^{inx}.$$

Then, $f(x_0) = \gamma$ in S' iff

$$\sum_{n=0}^{\infty} c_n e^{inx_0} = \gamma (C, k),$$

for some $k \in \mathbb{N}$.

Moreover, he also showed

Theorem 2 Let f be a periodic distribution (and hence tempered) with Fourier Series

$$\sum_{-\infty}^{\infty} c_n e^{inx}.$$

If $f(x_0) = \gamma$ in S', then for some $k \in \mathbb{N}$

$$\lim_{N \to \infty} \sum_{-N}^{N} c_n e^{inx_0} = \gamma (C, k).$$

Some remarks

Under certain assumptions on the conjugated series,
 G.Walter gave a sort of converse of this result.

Some remarks

- Under certain assumptions on the conjugated series,
 G.Walter gave a sort of converse of this result.
- If we only assume the (C,k)-summability of the symmetric partial sums, the converse is far from being true as shown by

$$2\sum_{n=1}^{\infty} \frac{\sin(nx)}{n} = -i\sum_{n\neq 0} \frac{e^{inx}}{n}.$$

at
$$x=0$$

Characterization of Point Values

R.Estrada has characterized the distributional point values of a periodic distribution in terms of the summability of its Fourier Series.

Theorem 3 Let $f \in S'$ be a periodic distribution of period 2π and let $\sum_{n=-\infty}^{\infty} a_n e^{inx}$ be its Fourier series. Let $x_0 \in \mathbb{R}$. Then

$$f(x_0) = \gamma \ in \ \mathcal{D}'$$

if and only if there exists k such that

$$\lim_{x \to \infty} \sum_{-x \le n \le ax} a_n e^{inx_0} = \gamma (C, k)$$

for each a > 0.

Needed for a generalization

The last Theorem admits a generalization to tempered distribution which "looks" like

$$f(x_0) = \lim_{x \to \infty} \int_{-x}^{ax} \hat{f}(t)e^{-itx_0}dt \ (C).$$

Cesaro behavior of Distributions

Let $f \in \mathcal{D}'$ and and $\alpha \in \mathbb{R} - \{-1, -2, -3, ...\}$, then we say that

$$f(x) = O(x^{\alpha}) (C, N) \text{ as } x \to \infty,$$

if every primitive F of order N is an ordinary function(locally integrable) for large arguments and satisfies the ordinary order relation,

$$F(x) = p(x) + O(x^{\alpha+N})$$
 as $x \to \infty$

for a suitable polynomial p of degree at most N-1

Cesaro behavior of Distributions

Let $f \in \mathcal{D}'$ and and $\alpha \in \mathbb{R} - \{-1, -2, -3, ...\}$, then we say that

$$f(x) = O(x^{\alpha}) (C, N) \text{ as } x \to \infty,$$

if there exists $N \in \mathbb{N}$ such that every primitive F of order N, is an ordinary function(locally integrable) for large arguments and satisfies the ordinary order relation,

$$F(x) = p(x) + O\left(x^{\alpha+N}\right) \text{ as } x \to \infty$$

for a suitable polynomial p of degree at most N-1. Note that if $\alpha > -1$, then the polynomial p is irrelevant.

Remarks to the Definition

• A similar definition applies to the little o symbol.

Remarks to the Definition

- A similar definition applies to the little o symbol.
- The definitions when $x \to -\infty$ are clear.

Remarks to the Definition

- A similar definition applies to the little o symbol.
- The definitions when $x \to -\infty$ are clear.
- One can define the limit at ∞ in the Cesàro sense for distribution. We say that $f \in \mathcal{D}'$ has a limit L at infinity in the Cesàro sense and write

$$\lim_{x \to \infty} f(x) = L(C),$$

if
$$f(x) = L + o(1)$$
 (C), as $x \to \infty$.

Parametric Behavior

The Cesàro behavior of a distribution f at infinity is related to the parametric behavior of $f(\lambda x)$ as $\lambda \to \infty$ (To be interpreted in the weak sense, i.e evaluating at test functions)

Parametric Behavior

The Cesaro behavior of a distribution f at infinity is related to the parametric behavior of $f(\lambda x)$ as $\lambda \to \infty$ (To be interpreted in the weak sense, i.e evaluating at test functions) In fact, one can show that if $\alpha > -1$, then $f(x) = O\left(x^{\alpha}\right)$ (C) as $x \to \infty$ and $f(x) = O\left(|x|^{\alpha}\right)$ (C) as $x \to -\infty$ if and only if

$$f(\lambda x) = O(\lambda^{\alpha}) \ as \ \lambda \to \infty$$

Special values of distributional evaluations

Definition 1 Let $g \in \mathcal{D}'$, and $k \in \mathbb{N}$. We say that the evaluation $\langle g(x), \phi(x) \rangle$ exists in the e.v. Cesàro sense, and write

(1) e.v.
$$\langle g(x), \phi(x) \rangle = \gamma (C, k)$$
,

if for some primitive G of $g\phi$ and $\forall a>0$ we have

$$\lim_{x \to \infty} (G(ax) - G(-x)) = \gamma (C, k).$$

If g is locally integrable then we write (1) as

e.v.
$$\int_{-\infty}^{\infty} g(x) \phi(x) dx = \gamma (C, k).$$

Remark: In this definition the evaluation of g at ϕ does not have to be defined, we only require that $g\phi$ is well defined.

Suppose that $\{\lambda_n\}$ is positive increasing sequence. If $g \in \mathcal{S}'$ is given by $g(x) = \sum_{n=0}^{\infty} a_n \delta(x - \lambda_n)$, then

e.v
$$\left\langle \sum_{n=0}^{\infty} a_n \delta(x - \lambda_n), 1 \right\rangle = \gamma(C, k)$$

Suppose that $\{\lambda_n\}$ is positive increasing sequence. If $g \in \mathcal{S}'$ is given by $g(x) = \sum_{n=0}^{\infty} a_n \delta(x - \lambda_n)$, then

e.v
$$\left\langle \sum_{n=0}^{\infty} a_n \delta(x - \lambda_n), 1 \right\rangle = \gamma(C, k)$$

if and only if

$$\lim_{x \to \infty} \sum_{\lambda_n \le x} a_n \left(1 - \frac{\lambda_n}{x} \right)^k = \gamma.$$

Suppose that $\{\lambda_n\}$ is positive increasing sequence. If $g \in \mathcal{S}'$ is given by $g(x) = \sum_{n=0}^{\infty} a_n \delta(x - \lambda_n)$, then

e.v
$$\left\langle \sum_{n=0}^{\infty} a_n \delta(x - \lambda_n), 1 \right\rangle = \gamma(C, k)$$

if and only if

$$\lim_{x \to \infty} \sum_{\lambda_n \le x} a_n \left(1 - \frac{\lambda_n}{x} \right)^k = \gamma.$$

if and only if

$$\sum a_n = \gamma \ (R, \lambda_n, k)$$

Pointwise Inversion Formula

Now, we characterize the point values of a distribution in S' by using Fourier transforms.

Theorem 4 Let $f \in S'$. We have $f(x_0) = \gamma$ in S' if and only if there exists a $k \in \mathbb{N}$ such that

$$\frac{1}{2\pi} \text{e.v.} \left\langle \hat{f}(t), e^{-ix_0 t} \right\rangle = \gamma (C, k),$$

which in case \hat{f} is locally integrable means that

$$\frac{1}{2\pi} \text{e.v.} \int_{-\infty}^{\infty} \hat{f}(t)e^{-ix_0t} dt = \gamma (C, k).$$

Consequences

Estrada Theorem on Fourier Series follows at one by looking at the form of the Fourier transforms of periodic distributions. Moreover,

Theorem 5 Let $\{\lambda_n\}_{n=0}^{\infty}$ be an increasing sequence of positive real numbers. Let

(2)
$$f(x) = \sum_{n=-\infty}^{\infty} a_n e^{isgn(n)\lambda_n x} in \mathcal{S}'.$$

Then, $f(x_0) = \gamma \ in \ \mathcal{D}'$, if and only if there exists $k \in \mathbb{N}$ such that

$$\lim_{x \to \infty} \sum_{-x \le n \le ax} a_n e^{isgn(n)\lambda_n x_0} = \gamma \left(\mathbf{R}, \lambda_n, k \right),$$

for each a > 0.

Consequences

The inversion formula can be specialized as follows.

Theorem 6 Let $f \in \mathcal{S}'$. Suppose that $supp \ \hat{f} \subseteq [0,\infty)$. We have $f(x_0) = \gamma$ in \mathcal{S}' if and only if there exists a $k \in \mathbb{N}$ such that every k-primitive of $e^{-ixx_0}\hat{f}$ is locally integrable and

$$(e^{-ixx_0}\hat{f}) * x_+^k = \gamma x^k + o(x^k) \ as \ x \longrightarrow \infty.$$

Suppose that

$$f(x) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{n,m} e^{-ig(n,m)x},$$

then, $f(x_0) = \gamma$ in S' iff there is a k such that

$$\lim_{x \to \infty} \sum_{g(n,m) \le x} a_{n,m} \left(1 - \frac{g(n,m)}{x} \right)^k = \gamma.$$

Order of Point Values

Definition 2 We say that $f(x_0) = \gamma$ in \mathcal{D}' has order k, if k is the minimum integer such that there exists a primitive of order k of f, F, such that F is locally integrable in a neighborhood of x_0 and F satisfies

$$\lim_{x \to x_0} \frac{n! F(x)}{(x - x_0)^n} = \gamma.$$

Remark:Lojasiewicz had defined the order of the point value in a different way, but I propose this new definition to be consistent with the following Theorems.

Order of inversion Formula

Theorem 7 Let $f \in \mathcal{S}'$. Suppose that there exists a $m \in \mathbb{N}$, such that every m-primitive h of f, i.e., $h^{(m)} = f$, is locally integrable and $h(x) = O\left(|x|^{m-1}\right)$. Let m_0 be the smallest natural number with this property. If f has a distributional point value γ at x_0 , whose order is n, then

$$\frac{1}{2\pi}e.v.\left\langle \hat{f}(x), e^{-ix_0x} \right\rangle = \gamma (C, k+1),$$

where $k = max \{m_0, n\}$.

Two Remarkable Cases

Define

$$\phi_a^{\beta}(t) = (1+t)^{\beta} \chi_{[-1,0]}(t) + \left(1 - \frac{t}{a}\right)^{\beta} \chi_{[0,a]}(t).$$

Two Remarkable Cases

Theorem 8 Let f be a distribution with compact support and order n. Suppose that $f(x_0) = \gamma$ in \mathcal{D}' with order k. Let $\beta > max\{k, n+1\}$. Then for each a > 0

$$\lim_{x \to \infty} \frac{1}{2\pi} \int_{-x}^{ax} \hat{f}(t)e^{-ix_0t}dt = \gamma (C, \beta)$$

or which is the same

$$\lim_{x \to \infty} \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_a^{\beta} \left(\frac{t}{x}\right) \hat{f}(t) e^{-ix_0 t} dt = \gamma,$$

Moreover, these relations hold uniformly for a in compact subsets of $(0, \infty)$.

Two Remarkable Cases

Theorem 9 Let f be a 2π -periodic distribution of order n, with Fourier series $\sum_{-\infty}^{\infty} c_n e^{ixn}$. If $f(x_0) = \gamma$ in \mathcal{D}' with order k. Let $\beta > max\{k, n+1\}$. Then for each a > 0,

$$\lim_{x \to \infty} \sum_{-x \le n \le ax} c_n e^{ix_0 n} = \gamma (C, \beta),$$

or equivalently

$$\lim_{x \to \infty} \sum_{-x \le n \le ax} \phi_a^\beta \left(\frac{n}{x}\right) c_n e^{ix_0 n} = \gamma.$$

Moreover, these relations hold uniformly for a in compact subsets of $(0, \infty)$.

A special case of interest

Theorem 10 Suppose that $f \in \mathcal{S}'$ is such that $supp \hat{f}$ is bounded at the left. If $f(x_0) = \gamma$ in \mathcal{D}' with order k, and f is the derivative of order k of a locally integrable function which is $O(x^{k-1})$, then

$$\left(t_+^k * \left(\hat{f}(t)e^{-ix_0t}\right)\right)$$

is locally integrable and for every $\beta > k$,

$$\left(t_+^{\beta} * \left(\hat{f}(t)e^{-ix_0t}\right)\right)(x) = 2\pi\gamma x^{\beta} + o\left(x^{\beta}\right) \ as \ x \to \infty.$$

Order of Point Value

Theorem 11 Let $f \in S'$. Suppose that

$$\frac{1}{2\pi}e.v.\left\langle \hat{f}(x), e^{-ixx_0} \right\rangle = \gamma (C, k);$$

then, $f(x_0) = \gamma$ in S' f is the derivative of order k+1 of a locally integrable function and the order of $f(x_0)$ is less or equal to k+2.