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Summary

The aims of this talk are to give a brief introduction to the
concept of quasiasymptotic behavior of distributions and present
some new abelian results for harmonic and analytic functions on
the upper half-plane admiting distributional boundary values.
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Summary

The aims of this talk are to give a brief introduction to the
concept of quasiasymptotic behavior of distributions and present
some new abelian results for harmonic and analytic functions on
the upper half-plane admiting distributional boundary values.
Plan:

• Harmonic and analytic representations of distributions.
• Definition of quasiasymptotics at points.
• Quasiasymptotics of order less than 1, the Poisson kernel

and local boundary behavior of harmonic functions
• Quasiasymptotics of other orders and local boundary

behavior of harmonic functions.
• Abelian theorems for analytic functions.
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Notation

• All of our functions and distributions are over the real line.
• D and D′ denote the Schwartz spaces of test functions and

distributions.
• S and S ′ are the spaces of rapidly decreasing functions and

the space of tempered distributions.
• E and E ′ denote the space of all smooth functions and its

dual, the space of compactly supported distributions.
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Notation

• All of our functions and distributions are over the real line.
• D and D′ denote the Schwartz spaces of test functions and

distributions.
• S and S ′ are the spaces of rapidly decreasing functions and

the space of tempered distributions.
• E and E ′ denote the space of all smooth functions and its

dual, the space of compactly supported distributions.
• The Fourier transform in S is defined as

φ̂(x) =

∫

∞

−∞

φ(t)eixtdt.

• The evaluation of a distribution f at a test function φ will be
denoted by

〈f(x), φ(x)〉 .
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Analytic representations of distributions

Let f ∈ D′, we say that f is the distributional jump of an analytic
function F , analytic for ℑm z 6= 0, across the real axis if

lim
y→0+

F (x + iy) − F (x − iy) = f(x),

in the weak topology of D′, meaning that ∀φ ∈ D′

lim
y→0+

∫

(F (x + iy) − F (x − iy))φ(x)dx = 〈f(x), φ(x)〉 .
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Analytic representations of distributions

Let f ∈ D′, we say that f is the distributional jump of an analytic
function F , analytic for ℑm z 6= 0, across the real axis if

lim
y→0+

F (x + iy) − F (x − iy) = f(x),

in the weak topology of D′, meaning that ∀φ ∈ D′

lim
y→0+

∫

(F (x + iy) − F (x − iy))φ(x)dx = 〈f(x), φ(x)〉 .

• Every distribution admits a representation as the jump of an
analytic function.
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Analytic representations of distributions

Let f ∈ D′, we say that f is the distributional jump of an analytic
function F , analytic for ℑm z 6= 0, across the real axis if

lim
y→0+

F (x + iy) − F (x − iy) = f(x),

in the weak topology of D′, meaning that ∀φ ∈ D′

lim
y→0+

∫

(F (x + iy) − F (x − iy))φ(x)dx = 〈f(x), φ(x)〉 .

• Every distribution admits a representation as the jump of an
analytic function.

• Any two analytic representation differ by an entire function.
So, we can see distributions as hyperfunctions.
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Analytic representations and Cauchy transform

Let f ∈ E ′, that is, f has compact support. Then we can find an
analytic representation by using the Cauchy transform,

F (z) =
1

2πi

〈

f(x),
1

x − z

〉
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Analytic representations and Cauchy transform

Let f ∈ E ′, that is, f has compact support. Then we can find an
analytic representation by using the Cauchy transform,

F (z) =
1

2πi

〈

f(x),
1

x − z

〉

Example: For the delta distribution, we have that

F (z) = −
1

2πiz
.

More generally, the Cauchy transform of the distribution δ(k−1) is

F (z) = (−1)k
k!

2πizk
.

Local boundary behavior of harmonic and analytic functions: Abelian theorems for quasiasymptotics – p. 10/39



Analytic representations the Fourier transform

Let f be a tempered distribution, then we can find an analyitic
representation of f by using the Fourier transform

F (z) =











1

2π

〈

f̂−(t), e−izt
〉

, ℑm z > 0 ,

−
1

2π

〈

f̂+(t), e−izt
〉

, ℑm z < 0 ,

where f̂ = f̂− + f̂+ and suppf̂− ⊆ (−∞, 0] and suppf̂+ ⊆ [0,∞).
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Harmonic and analytic representations on ℑm z > 0

Let f be a distribution, we say that a harmonic function U(z),
harmonic on ℑm z > 0 is a harmonic representation of f on the
upper half-plane if

lim
y→0+

U(x + iy) = f(x).

• Every distribution admits an harmonic representation.
• If f admits an analytic representation F on the upper

semiplane we write as usual f(x) = F (x + i0).
• An analytic function has distributional boundary values if

and only if locally satisfies an estimate F (z) = O(y−k).
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Harmonic and analytic representations on ℑm z > 0

Let f be a distribution, we say that a harmonic function U(z),
harmonic on ℑm z > 0 is a harmonic representation of f on the
upper half-plane if

lim
y→0+

U(x + iy) = f(x).

• Every distribution admits an harmonic representation.
• If f admits an analytic representation F on the upper

semiplane we write as usual f(x) = F (x + i0).
• An analytic function has distributional boundary values if

and only if locally satisfies an estimate F (z) = O(y−k).

• If f(x) = F (x + i0) − F (x − i0) then U(z) = F (z) − F (z̄) for
ℑm z > 0 is a harmonic representation of f .
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Harmonic representations and the Poisson kernel

The Poisson kernel for the upper half-plane is defined as

y

π ((x − t)2 + y2)
.
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Harmonic representations and the Poisson kernel

The Poisson kernel for the upper half-plane is defined as

y

π ((x − t)2 + y2)
.

If f is a distribution with compact support, we can find an explicit
harmonic representation of f by evaluating at the Poisson kernel

U(z) =

〈

f(t),
y

π ((x − t)2 + y2)

〉

,

where z = x + yi.
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Harmonic representations and Fourier Transform

Let f be a tempered distribution. One may use the Fourier
transform to obtain harmonic representations. Let f̂± two
tempered distributions such that suppf̂− ⊆ (−∞, 0],
suppf̂+ ⊆ [0,∞) and f̂ = f̂− + f̂+, then

U(z) =
1

2π

〈

f̂−(t), e−izt
〉

+
1

2π

〈

f̂+(t), e−iz̄t
〉

is a harmonic representation of f .
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First order asymptotic separation of variables at a point

Let f ∈ D′, we study asymptotic behaviors of the form

f(x0 + ǫx) = ρ(ǫ)g(x) + o(ρ(ǫ)) ǫ → 0+,

in the weak topology of D′, where g ∈ D′ and ρ is a positive
measurable function. The above relation means that

lim
ǫ→0+

〈

f(x0 + ǫx)

ρ(ǫ)
, φ(x)

〉

= 〈g(x), φ(x)〉 ,

It can be shown that if g is assumed to be nonzero, then
ρ(ǫ) = ǫαL(ǫ), where L is a slowly varying function and g is
homogeneous distribution of degree α.

Local boundary behavior of harmonic and analytic functions: Abelian theorems for quasiasymptotics – p. 17/39



Slowly Varying Functions

Recall that real-valued measurable function defined in some
interval of the form (0, A], A > 0, is called slowly varying function
at the origin if L is positive for small arguments and

lim
ǫ→0+

L(aǫ)

L(ǫ)
= 1,

for each a > 0.
Similarly one defines slowly varying functions at infinity.
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Homogeneous distributions

In one variable, one knows explictly all homogeneous
distributions.
If α /∈ Z−, then they are linear combinations of xα

− and xα
+,

where for α > −1

〈

xα
+, φ(x)

〉

=

∫

∞

0
xαφ(x)dx,

and if α < −1, −n − 1 < α < −n, then
xα

+ = Γ(α + 1)/Γ(α + n + 1) d
dx

xα+n
+ . One defines xα

− = (−x)α+.
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Homogeneous distributions

In one variable, one knows explictly all homogeneous
distributions.
If α /∈ Z−, then they are linear combinations of xα

− and xα
+,

where for α > −1

〈

xα
+, φ(x)

〉

=

∫

∞

0
xαφ(x)dx,

and if α < −1, −n − 1 < α < −n, then
xα

+ = Γ(α + 1)/Γ(α + n + 1) d
dx

xα+n
+ . One defines xα

− = (−x)α+.
If α = −k, k ∈ Z+, then they are linear combinations of δk−1(x)

and x−k.
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Homogeneous distributions

In one variable, one knows explictly all homogeneous
distributions.
If α /∈ Z−, then they are linear combinations of xα

− and xα
+,

where for α > −1

〈

xα
+, φ(x)

〉

=

∫

∞

0
xαφ(x)dx,

and if α < −1, −n − 1 < α < −n, then
xα

+ = Γ(α + 1)/Γ(α + n + 1) d
dx

xα+n
+ . One defines xα

− = (−x)α+.
If α = −k, k ∈ Z+, then they are linear combinations of δk−1(x)

and x−k.
One also has the homogeneous distributions (x + i0)α and
(x − i0)α, which are the boundary values of the analytic function
zα from the upper and lower half-planes.
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Quasiasymptotic behaviors at a point

Let L be slowly varying. We say that f ∈ D′ has quasiasymptotic
behavior at x0 in D′ with respect to ǫαL(ǫ), α ∈ R, if for some
g ∈ D′, homogeneous distribution

f(x0 + ǫx) = ǫαL(ǫ)g(x) + o(ǫαL(ǫ)), ǫ → 0+ in D′.

Again, it means that for every φ ∈ D,

lim
ǫ→0+

〈

f(x0 + ǫx)

ǫαL(ǫ)
, φ(x)

〉

= 〈g(x), φ(x)〉 .

We also say that f has quasiasymptotic of order α at x0 with
respect to L.
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An example of quasiasymptotic behavior

We say that f ∈ D′ has a jump behavior at x = x0 if it has the
quasiasymptotic behavior

f(x0 + ǫx) = γ−H(−x) + γ+H(x) + o(1) as ǫ → 0+ .

Here H is the Heaviside function, i.e., the characteristic function
of (0,∞).

In particular if γ = γ− = γ+, we recover the usual Łojasiewicz
notion of the value of a distribution at a point, that is

f(x0 + ǫx) = γ + o(1) as ǫ → 0+ .
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The main question

Suppose that
• U(z) is harmonic or analytic for ℑm z > 0.
• U has distributional boundary values on R, say f is the

boundary distribution.
• f has a quasiasymptotic behavior at x0.
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The main question

Suppose that
• U(z) is harmonic or analytic for ℑz > 0.
• U has distributional boundary values on R, say f is the

boundary distribution.
• f has a quasiasymptotic behavior at x0.

Would it be possible to obtain the asymptotic behavior of U(z)
as z → x0?
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The main question

Suppose that
• U(z) is harmonic or analytic for ℑz > 0.
• U has distributional boundary values on R, say f is the

boundary distribution.
• f has a quasiasymptotic behavior at x0.

Would it be possible to obtain the asymptotic behavior of U(z)
as z → x0?
Answer: In most cases it is possible to obtain the angular
asymptotic behavior.
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The quasiasymptotic behavior of order less than 1

A natural question is the following suppose that f(x) has
quasiasymptotic behavior of order α with respect to L, would it
be possible to replace φ in

lim
ǫ→0+

〈

f(x0 + ǫx)

ǫαL(ǫ)
, φ(x)

〉

= 〈g(x), φ(x)〉 .

by the Poisson kernel?

This would lead directly to the asymptotic behavior of the
Poisson harmonic representation.
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The quasiasymptotic behavior of order less than 1

A natural question is the following suppose that f(x) has
quasiasymptotic behavior of order α with respect to L, would it
be possible to replace φ in

lim
ǫ→0+

〈

f(x0 + ǫx)

ǫαL(ǫ)
, φ(x)

〉

= 〈g(x), φ(x)〉 .

by the Poisson kernel?

This would lead directly to the asymptotic behavior of the
Poisson harmonic representation.

Answer: It is possible when α < 1 and f has compact support.
Since quasiasymptotic is a local property, this is enought for our
case because one can always assume that f has compact
support
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Angular behavior of harmonic functions for α < 1

Let f ∈ D′ have the quasiasymptotic behavior at x0 ∈ R in D′

f (x0 + ǫx) = ǫαL(ǫ)
(

C−xα
− + C+xα

+

)

+ o (ǫαL(ǫ)) as ǫ → 0+,

where α < 1 and α /∈ Z−. Let U be a harmonic representation of
f on ℑm z > 0 Let θ = arg(z − x0).
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Angular behavior of harmonic functions for α < 1

Let f ∈ D′ have the quasiasymptotic behavior at x0 ∈ R in D′

f (x0 + ǫx) = ǫαL(ǫ)
(

C−xα
− + C+xα

+

)

+ o (ǫαL(ǫ)) as ǫ → 0+,

where α < 1 and α /∈ Z−. Let U be a harmonic representation of
f on ℑm z > 0 Let θ = arg(z − x0).
Then

U(z) = |z − x0|
α L (|z − x0|)

sin απ
(C− sin αθ + C+ sin α (π − θ))

+o (|z − x0|
α L (|z − x0|)) ,

as z → x0 on η ≤ θ ≤ π − η.
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Example

If f has a value at x0 in the sense of Łojasiewicz, say f(x0) = γ,
then for any harmonic representation U

lim
z→x0

U(z) = γ angularly.
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Angular behavior for α ∈ Z−

Let f ∈ D′ have the quasiasymptotic

f(x0 + ǫx) =
L(ǫ)

ǫk

(

γδ(k−1)(x) + βx−k
)

+ o

(

L(ǫ)

ǫk

)

as ǫ → 0+

in D′. Then if U is a harmonic representation of f on ℑm z > 0, it
has the angular asymptotic behavior

U(z) = L (|z − x0|)

(

(−1)k(k − 1)!γ

π
ℑm

(

1

z − x0

)

+ βℜe

(

1

z − x0

))

+o

(

L(|z − x0|)

|z − x0|
k

)

as z → x0 on any sector η < arg(z − x0) < π − η, where
0 < η ≤ π

2 .
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Angular behavior of harmonic functions for α > 1

Let f ∈ D′ have the quasiasymtotic behavior

f(x0 + ǫx) = ǫαL(ǫ)
(

C−xα
− + C+xα

+

)

+ o (ǫαL(ǫ)) as ǫ → 0+,

in D′. Suppose U is a harmonic representation of f on
ℑm z > 0. Then if α > 1, α /∈ Z, there are constants a1, . . . , an,
n < α, such that U has the angular asymptotic behavior

U(z) =
n
∑

j=1

aj |z − x0|
j sin jθ + C− |z − x0|

α L (|z − x0|)
sin αθ

sin απ

+C+ |z − x0|
α L (|z − x0|)

sin α(π − θ)

sin απ
+o (|z − x0|

α L (|z − x0|)) ,

as z → x0 on sectors of the form η < θ < π − η, here
θ = arg(z − x0).
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Angular behavior for α > 1

• In this case the results were obtained by asymptotic
properties of the Fourier transform and Fourier harmonic
representations.

• It is possible to obtain partial results when α ∈ Z+.
◦ For even integers, we only obtain the radial behavior.
◦ On the other hand, for odd integers one gets the radial

behavior of the conjugate harmonic.
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Local boundary behavior of analytic functions

Let f ∈ D′ have the quasiasymptotic behavior in D′

f(x0 + ǫx) = ǫαL(ǫ)g(x) + o (ǫαL(ǫ)) as ǫ → 0+.

Suppose that f(x) = F (x + i0), for F analytic on ℑm z > 0.
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Local boundary behavior of analytic functions

Let f ∈ D′ have the quasiasymptotic behavior in D′

f(x0 + ǫx) = ǫαL(ǫ)g(x) + o (ǫαL(ǫ)) as ǫ → 0+.

Suppose that f(x) = F (x + i0), for F analytic on ℑm z > 0.

Then there is a constant such that g(x) = C(x + i0)α.
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Local boundary behavior of analytic functions

Let f ∈ D′ have the quasiasymptotic behavior in D′

f(x0 + ǫx) = ǫαL(ǫ)g(x) + o (ǫαL(ǫ)) as ǫ → 0+.

Suppose that f(x) = F (x + i0), for F analytic on ℑm z > 0.

Then there is a constant such that g(x) = C(x + i0)α.

Moreover,
F (z) ∼ CL (|z − x0|) (z − x0)

α

as z → x0 on any sector η < arg(z − x0) < η − π.
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References on harmonic and analytic representations

• H. Bremermann, Distributions, Complex Variables and
Fourier Transforms, Addison-Wesley, Reading,
Massachusetts, 1965.
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Operators I, Springer-Verlag, Berlin, 1983.

• R. Estrada, A Distributional Version of the Ferenc-Lukács
Theorem, Sarajevo J. Math. 1 (13)(2005), 75–92.

Local boundary behavior of harmonic and analytic functions: Abelian theorems for quasiasymptotics – p. 38/39



References on quasiasymptotics
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