The Prime Number Theorem for Beurling's Generalized Primes. New Cases

Jasson Vindas

jvindas@cage.Ugent.be

Department of Mathematics Ghent University

Dedicated to the 60th Birthday of S. Pilipović Generalized Functions - Special Edition Novi Sad, June 5, 2010

Introduction

Abstract prime number theorems The main theorem: Extension of Beurling's theorem A Tauberian theorem for local pseudo-function boundary behavior Comments on the proof Other related results

The prime number theorem

The prime number theorem

The prime number theorem (PNT) states that

$$\pi(x) \sim \frac{x}{\log x} , \quad x \to \infty ,$$

where

$$\pi(x) = \sum_{p \text{ prime, } p < x} 1$$
 .

We will consider in this talk generalizations of the PNT for Beurling's generalized numbers

Introduction

Abstract prime number theorems The main theorem: Extension of Beurling's theorem A Tauberian theorem for local pseudo-function boundary behavior Comments on the proof Other related results

The prime number theorem

Outline

- Abstract prime number theorems
 - Landau's PNT
 - Beurling's problem
- 2 The main theorem: Extension of Beurling's theorem
- 3 A Tauberian theorem for local pseudo-function boundary behavior
- 4 Comments on the proof
 - S-asymptotics
 - Boundary behavior of zeta function
- Other related results

Landau's PNT Beurling's problem

Landau's theorem

In 1903, Landau essentially showed the following theorem.

- Let 1 < p₁ ≤ p₂,... be a non-decreasing sequence tending to infinity.
- Arrange all possible products of the *p_j* in a non-decreasing sequence 1 < *n*₁ ≤ *n*₂,..., where every *n_k* is repeated as many times as represented by *p^{α1}_{ν1} p^{α2}_{ν2}... p^{αm}_{νm}* with *ν_j* < *ν_{j+1}*.
- Denote $N(x) = \sum_{n_k < x} 1$ and $\pi(x) = \sum_{p_k < x} 1$.

Theorem (Landau, 1903)

If $N(x) = ax + O(x^{\theta})$, $x \to \infty$, where a > 0 and $\theta < 1$, then

$$\pi(x) \sim \frac{x}{\log x} , \quad x \to \infty .$$

Landau's PNT Beurling's problem

Landau's theorem

In 1903, Landau essentially showed the following theorem.

- Let 1 < p₁ ≤ p₂,... be a non-decreasing sequence tending to infinity.
- Arrange all possible products of the *p_j* in a non-decreasing sequence 1 < *n*₁ ≤ *n*₂,..., where every *n_k* is repeated as many times as represented by *p^{α1}_{ν1} p^{α2}_{ν2}... p^{αm}_{νm}* with *ν_i* < *ν_{i+1}*.

• Denote
$$N(x) = \sum_{n_k < x} 1$$
 and $\pi(x) = \sum_{p_k < x} 1$.

Theorem (Landau, 1903)

If $N(x) = ax + O(x^{\theta})$, $x \to \infty$, where a > 0 and $\theta < 1$, then

$$\pi(x) \sim \frac{x}{\log x} , \quad x \to \infty .$$

Landau's PNT Beurling's problem

Landau's theorem

In 1903, Landau essentially showed the following theorem.

- Let 1 < p₁ ≤ p₂,... be a non-decreasing sequence tending to infinity.
- Arrange all possible products of the *p_j* in a non-decreasing sequence 1 < *n*₁ ≤ *n*₂,..., where every *n_k* is repeated as many times as represented by *p^{α1}_{ν1} p^{α2}_{ν2}... p^{αm}_{νm}* with *ν_j* < *ν_{j+1}*.

• Denote
$$N(x) = \sum_{n_k < x} 1$$
 and $\pi(x) = \sum_{p_k < x} 1$.

Theorem (Landau, 1903)

If $N(x) = ax + O(x^{ heta}) \,, \ \ x o \infty \,,$ where a > 0 and heta < 1, then

$$\pi(x) \sim \frac{x}{\log x} , \quad x \to \infty .$$

Landau's PNT Beurling's problem

The main theorem: Extension of Beurling's theorem A Tauberian theorem for local pseudo-function boundary behavior Comments on the proof Other related results

Landau's theorem: Examples

• Gaussian integers $\mathbb{Z}[i] := \{a + b \ i \in \mathbb{C} : a, b \in \mathbb{Z}\}$, with Gaussian norm $|a + ib| := a^2 + b^2$. If we define $\{p_k\}_{k=1}^{\infty}$ as the sequence of norms of Gaussian primes, then the sequence $\{n_k\}_{k=1}^{\infty}$ corresponds to the sequence of norms of gaussian numbers such that |a + ib| > 1. One can show that

$$\mathsf{V}(x) = \sum_{a,b\in\mathbb{Z},\ a^2+b^2 < x} 1 = \pi x + O(\sqrt{x})$$

Consequently, the PNT holds for Gaussian primes.

Landau's PNT Beurling's problem

The main theorem: Extension of Beurling's theorem A Tauberian theorem for local pseudo-function boundary behavior Comments on the proof Other related results

Landau's theorem: Examples

• Gaussian integers $\mathbb{Z}[i] := \{a + b \ i \in \mathbb{C} : a, b \in \mathbb{Z}\}$, with Gaussian norm $|a + ib| := a^2 + b^2$. If we define $\{p_k\}_{k=1}^{\infty}$ as the sequence of norms of Gaussian primes, then the sequence $\{n_k\}_{k=1}^{\infty}$ corresponds to the sequence of norms of gaussian numbers such that |a + ib| > 1. One can show that

$$N(x) = \sum_{a,b\in\mathbb{Z},\ a^2+b^2 < x} 1 = \pi x + O(\sqrt{x})$$

Consequently, the PNT holds for Gaussian primes.

Landau's PNT Beurling's problem

The main theorem: Extension of Beurling's theorem A Tauberian theorem for local pseudo-function boundary behavior Comments on the proof Other related results

Landau's theorem: Examples

• Gaussian integers $\mathbb{Z}[i] := \{a + b \ i \in \mathbb{C} : a, b \in \mathbb{Z}\}$, with Gaussian norm $|a + ib| := a^2 + b^2$. If we define $\{p_k\}_{k=1}^{\infty}$ as the sequence of norms of Gaussian primes, then the sequence $\{n_k\}_{k=1}^{\infty}$ corresponds to the sequence of norms of gaussian numbers such that |a + ib| > 1. One can show that

$$N(x) = \sum_{a,b\in\mathbb{Z},\ a^2+b^2 < x} 1 = \pi x + O(\sqrt{x})$$

Consequently, the PNT holds for Gaussian primes.

Landau's PNT Beurling's problem

The main theorem: Extension of Beurling's theorem A Tauberian theorem for local pseudo-function boundary behavior Comments on the proof Other related results

Landau's theorem: Examples

• Gaussian integers $\mathbb{Z}[i] := \{a + b \ i \in \mathbb{C} : a, b \in \mathbb{Z}\}$, with Gaussian norm $|a + ib| := a^2 + b^2$. If we define $\{p_k\}_{k=1}^{\infty}$ as the sequence of norms of Gaussian primes, then the sequence $\{n_k\}_{k=1}^{\infty}$ corresponds to the sequence of norms of gaussian numbers such that |a + ib| > 1. One can show that

$$\mathcal{N}(x) = \sum_{a,b\in\mathbb{Z},\ a^2+b^2 < x} 1 = \pi x + \mathcal{O}(\sqrt{x})$$

Consequently, the PNT holds for Gaussian primes.

Landau's PNT Beurling's problem

The main theorem: Extension of Beurling's theorem A Tauberian theorem for local pseudo-function boundary behavior Comments on the proof Other related results

Landau's theorem: Examples

• Gaussian integers $\mathbb{Z}[i] := \{a + b \ i \in \mathbb{C} : a, b \in \mathbb{Z}\}$, with Gaussian norm $|a + ib| := a^2 + b^2$. If we define $\{p_k\}_{k=1}^{\infty}$ as the sequence of norms of Gaussian primes, then the sequence $\{n_k\}_{k=1}^{\infty}$ corresponds to the sequence of norms of gaussian numbers such that |a + ib| > 1. One can show that

$$\mathcal{N}(x) = \sum_{a,b\in\mathbb{Z},\ a^2+b^2 < x} 1 = \pi x + \mathcal{O}(\sqrt{x})$$

Consequently, the PNT holds for Gaussian primes.

 Laudau actually showed that if the {p_k}[∞]_{k=1} corresponds to the norms of the distinct prime ideals of the ring of integers in an algebraic number field, then π(x) ~ x/log x.

Landau's PNT Beurling's problem

Beurling's problem

In 1937, Beurling raised the question: Find conditions over *N* which ensure the validity of the PNT, i.e., $\pi(x) \sim x/\log x$.

Introduction

Theorem (Beurling, 1937)

if

$$N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right),$$

where a > 0 and $\gamma > 3/2$, then the PNT holds.

Theorem (Diamond, 1970)

Beurling's condition is sharp, namely, the PNT does not necessarily hold if $\gamma = 3/2$.

<ロト <回と < 三と < 三>

Landau's PNT Beurling's problem

Beurling's problem

In 1937, Beurling raised the question: Find conditions over *N* which ensure the validity of the PNT, i.e., $\pi(x) \sim x/\log x$.

Introduction

Theorem (Beurling, 1937)

if

$$N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right),$$

where a > 0 and $\gamma > 3/2$, then the PNT holds.

Theorem (Diamond, 1970)

Beurling's condition is sharp, namely, the PNT does not necessarily hold if $\gamma = 3/2$.

(日) (四) (日) (日) (日)

Landau's PNT Beurling's problem

Beurling's problem

In 1937, Beurling raised the question: Find conditions over *N* which ensure the validity of the PNT, i.e., $\pi(x) \sim x/\log x$.

Introduction

Theorem (Beurling, 1937)

if

$$N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right),$$

where a > 0 and $\gamma > 3/2$, then the PNT holds.

Theorem (Diamond, 1970)

Beurling's condition is sharp, namely, the PNT does not necessarily hold if $\gamma = 3/2$.

ヘロマ ヘロマ ヘロマ

Extension of Beurling theorem

We were able to relax the hypothesis of Beurling's theorem.

Main theorem

Theorem (2010, exdending Beurling, 1937)

Suppose there exist constants a > 0 and $\gamma > 3/2$ such that

$$N(x) = ax + O\left(rac{x}{\log^{\gamma} x}
ight) \quad ext{(C)} \ , \ \ x o \infty \ ,$$

Then the prime number theorem still holds.

The hypothesis means that there exists some $m \in \mathbb{N}$ such that:

$$\int_0^x \frac{N(t) - at}{t} \left(1 - \frac{t}{x}\right)^m \mathrm{d}t = O\left(\frac{x}{\log^\gamma x}\right), \quad x \to \infty.$$

Main theorem

Extension of Beurling theorem

We were able to relax the hypothesis of Beurling's theorem.

Theorem (2010, exdending Beurling, 1937)

Suppose there exist constants a > 0 and $\gamma > 3/2$ such that

$$N(x) = ax + O\left(rac{x}{\log^{\gamma} x}
ight) \quad ext{(C)} \ , \ \ x o \infty \ ,$$

Then the prime number theorem still holds.

The hypothesis means that there exists some $m \in \mathbb{N}$ such that:

$$\int_0^x \frac{N(t) - at}{t} \left(1 - \frac{t}{x}\right)^m \mathrm{d}t = O\left(\frac{x}{\log^\gamma x}\right) , \quad x \to \infty .$$

Pseudo-functions

- A distribution $f \in S'(\mathbb{R})$ is called a pseudo-function if $\hat{f} \in C_0(\mathbb{R})$.
- $f \in \mathcal{D}'(\mathbb{R})$ is locally a pseudofunction if for each $\phi \in \mathcal{D}(\mathbb{R})$, the distribution ϕf is a pseudo-function.

f is locally a pseudo-function if and only if the following 'Riemann-Lebesgue lemma' holds: for each ϕ with compact support

$$\lim_{|h|\to\infty}\left\langle f(t),e^{-iht}\phi(t)\right\rangle = 0$$

Corollary

If f belongs to $L^1_{loc}(\mathbb{R})$, then f is locally a pseudo-function.

Pseudo-functions

- A distribution $f \in S'(\mathbb{R})$ is called a pseudo-function if $\hat{f} \in C_0(\mathbb{R})$.
- *f* ∈ D'(ℝ) is locally a pseudofunction if for each φ ∈ D(ℝ), the distribution φ*f* is a pseudo-function.

f is locally a pseudo-function if and only if the following 'Riemann-Lebesgue lemma' holds: for each ϕ with compact support

$$\lim_{|h|\to\infty}\left\langle f(t),e^{-iht}\phi(t)\right\rangle=0$$

Corollary

If f belongs to $L^1_{loc}(\mathbb{R})$, then f is locally a pseudo-function.

Pseudo-functions

- A distribution $f \in S'(\mathbb{R})$ is called a pseudo-function if $\hat{f} \in C_0(\mathbb{R})$.
- *f* ∈ D'(ℝ) is locally a pseudofunction if for each φ ∈ D(ℝ), the distribution φ*f* is a pseudo-function.

f is locally a pseudo-function if and only if the following 'Riemann-Lebesgue lemma' holds: for each ϕ with compact support

$$\lim_{|h|\to\infty}\left\langle f(t),e^{-iht}\phi(t)\right\rangle=0$$

Corollary

If f belongs to $L^1_{loc}(\mathbb{R})$, then f is locally a pseudo-function.

Local pseudo-function boundary behavior

Let G(s) be analytic on $\Re e s > \alpha$. We say that G has local pseudo-function boundary behavior on the line $\Re e s = \alpha$ if it has distributional boundary values in such a line, namely,

$$\lim_{\sigma o lpha^+} \int_{-\infty}^\infty {oldsymbol{G}}(\sigma+it) \phi(t) \mathrm{d}t = \langle f, \phi
angle \,\,, \quad \phi \in \mathcal{D}(\mathbb{R}) \,\,,$$

and the boundary distribution $f \in S'(\mathbb{R})$ is locally a pseudo-function.

A Tauberian theorem for local pseudo-function boundary behavior

Theorem

Let $\{\lambda_k\}_{k=1}^{\infty}$ be such that $0 < \lambda_k \nearrow \infty$. Assume $\{c_k\}_{k=1}^{\infty}$ satisfies: $c_k \ge 0$ and $\sum_{\lambda_k < x} c_k = O(x)$. If there exists β such that

$$G(s) = \sum_{k=1}^{\infty} \frac{c_k}{\lambda_k^s} - \frac{\beta}{s-1} , \quad \Re e \, s > 1 , \qquad (1)$$

has local pseudo-function boundary behavior on $\Re e s = 1$, then

$$\sum_{\lambda_k < x} c_k \sim \beta x , \quad x \to \infty .$$
 (2)

Functions related to generalized primes

The zeta function is the analytic function (under our hypothesis)

$$\zeta(\boldsymbol{s}) = \sum_{k=1}^{\infty} \frac{1}{n_k^s} , \quad \Re \boldsymbol{e} \, \boldsymbol{s} > 1 \; .$$

For ordinary integers it reduces to the Riemann zeta function. One has an Euler product representation

$$\zeta(s) = \prod_{k=1}^{\infty} rac{1}{1 - \left(rac{1}{p_k}
ight)^s} \;, \quad \Re e \, s > 1 \;.$$

Functions related to generalized primes

The zeta function is the analytic function (under our hypothesis)

$$\zeta(\boldsymbol{s}) = \sum_{k=1}^{\infty} \frac{1}{n_k^s} , \quad \Re \boldsymbol{e} \, \boldsymbol{s} > 1 \; .$$

For ordinary integers it reduces to the Riemann zeta function. One has an Euler product representation

$$\zeta(\boldsymbol{s}) = \prod_{k=1}^{\infty} \frac{1}{1 - \left(\frac{1}{p_k}\right)^{\boldsymbol{s}}}, \quad \Re \boldsymbol{e}\, \boldsymbol{s} > 1 \; .$$

Functions related to generalized primes

Define the von Mangoldt function

$$\Lambda(n_k) = egin{cases} \log p_j \,, & ext{if } n_k = p_j^m \,, \ 0 \,, & ext{otherwise }. \end{cases}$$

The Chebyshev function is

$$\psi(x) = \sum_{p_k^m < x} \log p_k = \sum_{n_k < x} \Lambda(n_k) \ .$$

On can show the PNT is equivalent to $\psi(x) \sim x$. We also have the identity

$$\sum_{k=1}^{\infty} \frac{\Lambda(n_k)}{n_k^s} = -\frac{\zeta'(s)}{\zeta(s)} , \quad \Re e \, s > 1 .$$

Functions related to generalized primes

Define the von Mangoldt function

$$\Lambda(n_k) = egin{cases} \log p_j \,, & ext{if } n_k = p_j^m \,, \ 0 \,, & ext{otherwise }. \end{cases}$$

The Chebyshev function is

$$\psi(x) = \sum_{p_k^m < x} \log p_k = \sum_{n_k < x} \Lambda(n_k) .$$

On can show the PNT is equivalent to $\psi(x) \sim x$. We also have the identity

$$\sum_{k=1}^{\infty} \frac{\Lambda(n_k)}{n_k^s} = -\frac{\zeta'(s)}{\zeta(s)} , \quad \Re e \, s > 1 .$$

Functions related to generalized primes

Define the von Mangoldt function

-

$$\Lambda(n_k) = egin{cases} \log p_j \,, & ext{if } n_k = p_j^m \,, \ 0 \,, & ext{otherwise }. \end{cases}$$

The Chebyshev function is

$$\psi(x) = \sum_{p_k^m < x} \log p_k = \sum_{n_k < x} \Lambda(n_k) .$$

On can show the PNT is equivalent to $\psi(x) \sim x$. We also have the identity

$$\sum_{k=1}^{\infty} \frac{\Lambda(n_k)}{n_k^s} = -\frac{\zeta'(s)}{\zeta(s)} , \quad \Re e \, s > 1 .$$

S-asymptotics Boundary behavior of zeta function

S-asymptotics

Let $\mathcal{A}(\mathbb{R})$ be a topological vector space of functions.

Definition (Pilipović-Stanković)

 $f \in \mathcal{A}'(\mathbb{R})$ has S-asymptotic behavior with respect to ρ if

 $\langle f(x+h),\phi(x)
angle = (fst\check\phi)(h)\sim
ho(h)\left\langle g(x),\phi(x)
ight
angle, \ \ \phi\in\mathcal{A}(\mathbb{R}).$

We write in short: $f(x + h) \sim \rho(h)g(x), h \to \infty$ in $\mathcal{A}'(\mathbb{R})$.

 $f \in \mathcal{A}'(\mathbb{R})$ is S-asymptotic bounded with respect to ρ if

 $\langle f(x+h), \phi(x) \rangle = O(\rho(h)), \ \phi \in \mathcal{A}(\mathbb{R}).$

We write in short: $f(x + h) = O(\rho(h)), h \to \infty$ in $\mathcal{A}'(\mathbb{R})$.

S-asymptotics Boundary behavior of zeta function

S-asymptotics

Let $\mathcal{A}(\mathbb{R})$ be a topological vector space of functions.

Definition (Pilipović-Stanković)

 $f \in \mathcal{A}'(\mathbb{R})$ has S-asymptotic behavior with respect to ρ if

$$\langle f(x+h),\phi(x)
angle = (fst\check\phi)(h)\sim
ho(h)\left\langle g(x),\phi(x)
ight
angle, \ \ \phi\in\mathcal{A}(\mathbb{R}).$$

We write in short: $f(x + h) \sim \rho(h)g(x), h \to \infty$ in $\mathcal{A}'(\mathbb{R})$.

 $f \in \mathcal{A}'(\mathbb{R})$ is S-asymptotic bounded with respect to ρ if

$$\langle f(x+h), \phi(x) \rangle = O(\rho(h)), \ \phi \in \mathcal{A}(\mathbb{R}).$$

We write in short: $f(x + h) = O(\rho(h)), h \to \infty$ in $\mathcal{A}'(\mathbb{R})$.

S-asymptotics Boundary behavior of zeta function

S-asymptotics and the zeta function

• Special distribution: $\sum_{k=1}^{\infty} \frac{1}{n_k} \delta(x - \log n_k)$

• Observe: $\mathcal{L} \{ v; s \} = \langle v(x), e^{-sx} \rangle = \zeta(s+1)$

The condition

$$N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right)$$
 (C)

is equivalent to

$$v(x+h) = aH(x+h) + O\left(rac{1}{h^{\gamma}}
ight), \ |h| o \infty, \ ext{in } \mathcal{S}'(\mathbb{R})$$

ヘロト ヘ戸ト ヘヨト ヘヨト

S-asymptotics Boundary behavior of zeta function

S-asymptotics and the zeta function

• Special distribution:
$$\sum_{k=1}^{\infty} \frac{1}{n_k} \delta(x - \log n_k)$$

• Observe:
$$\mathcal{L} \{ v; s \} = \langle v(x), e^{-sx} \rangle = \zeta(s+1)$$

The condition

$$N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right)$$
 (C)

is equivalent to

$$v(x+h) = aH(x+h) + O\left(rac{1}{h^{\gamma}}
ight), \ |h| o \infty, \ ext{in } \mathcal{S}'(\mathbb{R})$$

ヘロア 人間 アメヨア 人口 ア

э

S-asymptotics Boundary behavior of zeta function

S-asymptotics and the zeta function

• Special distribution:
$$\sum_{k=1}^{\infty} \frac{1}{n_k} \delta(x - \log n_k)$$

• Observe:
$$\mathcal{L} \{ v; s \} = \langle v(x), e^{-sx} \rangle = \zeta(s+1)$$

The condition

$$N(x) = ax + O\left(\frac{x}{\log^{\gamma} x}\right)$$
 (C)

is equivalent to

$$v(x+h) = aH(x+h) + O\left(rac{1}{h^{\gamma}}
ight), \ |h| o \infty, \ ext{ in } \mathcal{S}'(\mathbb{R})$$

★ Ξ → ★ Ξ → ...

э

S-asymptotics Boundary behavior of zeta function

Under $N(x) = ax + O(x/\log^{\gamma} x)$ (C)

Using 'generalized distributional asymptotics', we translated the Cesàro estimate into:

- For $\gamma > 1$, $\zeta(s) \frac{a}{s-1}$ has continuous extension to $\Re e s = 1$.
- For $\gamma > 3/2$
 - $(s-1)\zeta(s)$ is free of zeros on $\Re e s = 1$.
 - $-\frac{\zeta'(s)}{\zeta(s)} \frac{1}{s-1}$ has local pseudo-function boundary behavior on the line $\Re e s = 1$
 - A Chebyshev upper estimate: $\sum_{n_k < x} \Lambda(n) = \psi(x) = O(x)$
 - So, the Tauberian theorem implies the PNT ($\gamma > 3/2$)

ヘロア 人間 アメヨア 人口 ア

S-asymptotics Boundary behavior of zeta function

$$Jnder N(x) = ax + O(x/\log^{\gamma} x)$$
 (C)

Using 'generalized distributional asymptotics', we translated the Cesàro estimate into:

- For $\gamma > 1$, $\zeta(s) \frac{a}{s-1}$ has continuous extension to $\Re e s = 1$.
- For γ > 3/2
 - $(s-1)\zeta(s)$ is free of zeros on $\Re e s = 1$.
 - $-\frac{\zeta'(s)}{\zeta(s)} \frac{1}{s-1}$ has local pseudo-function boundary behavior on the line $\Re e s = 1$
 - A Chebyshev upper estimate: $\sum_{n_k < x} \Lambda(n) = \psi(x) = O(x)$
 - So, the Tauberian theorem implies the PNT ($\gamma > 3/2$)

・ロト ・ 雪 ト ・ ヨ ト ・

S-asymptotics Boundary behavior of zeta function

$$Jnder N(x) = ax + O(x/\log^{\gamma} x)$$
 (C)

Using 'generalized distributional asymptotics', we translated the Cesàro estimate into:

- For $\gamma > 1$, $\zeta(s) \frac{a}{s-1}$ has continuous extension to $\Re e s = 1$.
- For γ > 3/2
 - $(s-1)\zeta(s)$ is free of zeros on $\Re e s = 1$.
 - $-\frac{\zeta'(s)}{\zeta(s)} \frac{1}{s-1}$ has local pseudo-function boundary behavior on the line $\Re e s = 1$
 - A Chebyshev upper estimate: $\sum_{n_k < x} \Lambda(n) = \psi(x) = O(x)$
 - So, the Tauberian theorem implies the PNT ($\gamma > 3/2$)

・ロト ・ 雪 ト ・ ヨ ト ・

S-asymptotics Boundary behavior of zeta function

$$Jnder N(x) = ax + O(x/\log^{\gamma} x)$$
 (C)

Using 'generalized distributional asymptotics', we translated the Cesàro estimate into:

- For $\gamma > 1$, $\zeta(s) \frac{a}{s-1}$ has continuous extension to $\Re e s = 1$.
- For γ > 3/2
 - (s 1)ζ(s) is free of zeros on ℜe s = 1.
 -ζ'(s)/ζ(s) 1/(s-1) has local pseudo-function boundary behavior on the line ℜe s = 1
 - A Chebyshev upper estimate: $\sum_{n_{k} < x} \Lambda(n) = \psi(x) = O(x)$
 - So, the Tauberian theorem implies the PNT ($\gamma > 3/2$)

イロト 不得 トイヨト 不良 トー

S-asymptotics Boundary behavior of zeta function

$$Jnder N(x) = ax + O(x/\log^{\gamma} x)$$
 (C)

Using 'generalized distributional asymptotics', we translated the Cesàro estimate into:

- For $\gamma > 1$, $\zeta(s) \frac{a}{s-1}$ has continuous extension to $\Re e s = 1$.
- For γ > 3/2
 - (s-1)ζ(s) is free of zeros on ℜe s = 1.
 -ζ'(s)/ζ(s) 1/(s-1) has local pseudo-function boundary behavior on the line ℜe s = 1
 - A Chebyshev upper estimate: $\sum_{n_k < x} \Lambda(n) = \psi(x) = O(x)$
 - So, the Tauberian theorem implies the PNT ($\gamma > 3/2$)

ヘロト 人間ト ヘヨト ヘヨト

Other related results ($\gamma > 3/2$)

Theorem

Our theorem is a proper extension of Beurling's PNT, namely, there is a set of generalized numbers satisfying the Cesàro estimate but not Beurling's one.

Theorem

Let μ be the Möbius function. Then,

$$\sum_{k=1}^{\infty} \frac{\mu(n_k)}{n_k} = 0 \text{ and } \lim_{x \to \infty} \frac{1}{x} \sum_{n_k < x} \mu(n_k) = 0.$$

Other related results ($\gamma > 3/2$)

Theorem

Our theorem is a proper extension of Beurling's PNT, namely, there is a set of generalized numbers satisfying the Cesàro estimate but not Beurling's one.

Theorem

Let μ be the Möbius function. Then,

$$\sum_{k=1}^{\infty} \frac{\mu(n_k)}{n_k} = 0 \text{ and } \lim_{x \to \infty} \frac{1}{x} \sum_{n_k < x} \mu(n_k) = 0.$$

프 🖌 🛪 프 🕨