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The prime number theorem

The prime number theorem (PNT) states that

π(x) ∼ x
log x

, x →∞ ,

where
π(x) =

∑
p prime, p<x

1 .

We will consider in this talk generalizations of the PNT for
Beurling’s generalized integers
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Landau’s theorem

In 1903, Landau essentially showed the following theorem.
Let 1 < p1 ≤ p2, . . . be a non-decreasing sequence
tending to infinity.
Arrange all possible products of the pj in a non-decreasing
sequence 1 < n1 ≤ n2, . . . , where every nk is repeated as
many times as represented by pα1

ν1 pα2
ν2 . . .p

αm
νm with νj < νj+1.

Denote N(x) =
∑

nk <x 1 and π(x) =
∑

pk <x 1.

Theorem (Landau, 1903)

If N(x) = ax + O(xθ) , x →∞ , where a > 0 and θ < 1, then

π(x) ∼ x
log x

, x →∞ .
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Landau’s theorem: Examples

Gaussian integers Z[i] := {a + b i ∈ C : a,b ∈ Z}, with
Gaussian norm |a + ib| := a2 + b2. If we define {pk}∞k=1 as
the sequence of norms of Gaussian primes, then the
sequence {nk}∞k=1 corresponds to the sequence of norms
of gaussian numbers such that |a + ib| > 1. One can show
that

N(x) =
∑

a,b∈Z, a2+b2<x

1 = πx + O(
√

x)

Consequently, the PNT holds for Gaussian primes.
Laudau actually showed that if the {pk}∞k=1 corresponds to
the norms of the distinct primes ideal of the ring of integers
in an algebraic number field, then π(x) ∼ x/ log x .
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Beurling’s problem

In 1937, Beurling raised the question: Find conditions over N
which ensure the validity of the PNT, i.e., π(x) ∼ x/ log x .

Theorem (Beurling, 1937)

if
N(x) = ax + O

(
x

logγ x

)
,

where a > 0 and γ > 3/2, then the PNT holds.

Theorem (Diamond, 1970)
Beurling’s condition is sharp, namely, the PNT does not
necessarily hold if γ = 3/2.
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Extension of Beurling theorem

We were able to relax the hypothesis of Beurling’s theorem.

Theorem (2010, exdending Beurling, 1937)

Suppose there exist constants a > 0 and γ > 3/2 such that

N(x) = ax + O
(

x
logγ x

)
(C) , x →∞ ,

Then the prime number theorem still holds.

The hypothesis means that there exists some m ∈ N such that:∫ x

0

N(t)− at
t

(
1− t

x

)m

dt = O
(

x
logγ x

)
, x →∞ .
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Few words about Cesàro asymptotics

We say a function f (x) = O(xβ/ logα x) (C,m), β > −1, if

1
x

∫ x

0
f (t)

(
1− t

x

)m−1

dt = O
(

xβ

logα x

)
.

The above expression is the m-times iterated primitive of f
divided by xm

Cesàro means have been widely used in Fourier analysis,
they allow a high degree of divergence, often cancelled by
oscillation.

Examples: (0 < α < 1)
ex sin ex = O(x−α) (C,1).∑
0≤k≤x

(−1)k = 1/2 + O(x−α) (C,1).
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Main theorem
Cesàro asymptotics

For

N(x) = ax + O
(

x
logγ x

)
(C,m)

however, one can show that

N(x) ∼ ax = ax + o(x)
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Ikehara’s Tauberian theorem
A Tauberian theorem for local pseudo-function boundary behavior

Functions related to generalized primes

The zeta function is the analytic function (under our hypothesis)

ζ(s) =
∞∑

k=1

1
ns

k
, <e s > 1 .

For ordinary integers it reduces to the Riemann zeta function.
One has an Euler product representation

ζ(s) =
∞∏

k=1

1

1−
(

1
pk

)s , <e s > 1 .
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Functions related to generalized primes

Define the von Mangoldt function

Λ(nk ) =

{
log pj , if nk = pm

j ,

0 , otherwise .

The Chebyshev function is

ψ(x) =
∑

pm
k <x

log pk =
∑
nk <x

Λ(nk ) .

On can show the PNT is equivalent to ψ(x) ∼ x . We also have
the identity

∞∑
k=1

Λ(nk )

ns
k

= −ζ
′(s)

ζ(s)
, <e s > 1 .
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Ikehara’s Tauberian theorem

One of quickest ways to the PNT (for ordinary primes) is via the
following Tauberian theorem:

Theorem (Ikehara, 1931, extending Landau, 1908)

Let F (s) =
∑∞

n=1 cn/ns be convergent for <e s > 1. Assume
additionally that cn ≥ 0. If there exists a constant β such that

G(s) =
∞∑

n=1

cn

ns −
β

s − 1
= F (s)− β

s − 1
, <e s > 1 , (1)

has a continuous extension to <e s = 1, then∑
1≤n<x

cn ∼ βx , x →∞ . (2)
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The PNT (for ordinary prime numbers)

Consider the Riemann zeta function ζ(s) =
∞∑

n=1

1
ns , <e s > 1.

ζ(s)− 1
s − 1

admits an analytic continuation to a

neighborhood of <e s = 1
ζ(1 + it), t 6= 1, is free of zeros

It follows that
∞∑

n=1

Λ(n)

ns − 1
s − 1

= −ζ
′(s)

ζ(s)
− 1

s − 1

admits a (analytic) continuous extension to <e s = 1.
Consequently, ∑

1≤n<x

Λ(n) = ψ(x) ∼ x .
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Comments on Landau and Beurling PNTs

In the case of Landau’s hypothesis: N(x) = ax + O(xθ)

(1) The function ζ(s)− a
s − 1

admits an analytic continuation to

a neighborhood of <e s = 1
(2) ζ(1 + it), t 6= 1, is free of zeros
(3) So, a variant of Ikehara theorem yields, as before, the PNT

For Beurling’s hypothesis: N(x) = ax + O(x/ logγ x)

(1’) If γ > 2, the function ζ(s)− a
s − 1

admits a continuously

differentiable extension to <e s = 1 (not true for
3/2 < γ ≤ 2 )

(2 ) ζ(1 + it), t 6= 1, is free of zeros (whenever γ > 3/2)
(3’) A variant of Ikehara theorem only works when γ > 2
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Tempered distributions

S(R) denotes the space of rapidly decresiang test
functions, i.e.,

‖φ‖j := sup
x∈R,k≤j

(1 + |x |)j
∣∣∣φ(k)(x)

∣∣∣ <∞ , for each j ∈ N ,

with the Fréchet space topology defined by the above
seminorms.
Fourier transform, φ̂(t) =

∫∞
−∞ e−itxφ(x) dx , is an

isomorphism.
The space S ′(R) is its dual,the Fourier transform is defined
by 〈

f̂ , φ
〉

=
〈

f , φ̂
〉
.
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Pseudo-functions

A distribution f ∈ S ′(R) is called a pseudo-function if f̂ ∈ C0(R).
It is called a local pseudofunction if for each φ ∈ S(R) with
compact support, the distribution φf is a pseudo-function.
f is locally a pseudo-function if and only if the following
‘Riemann-Lebesgue lemma’ holds: for each φ with compact
support

lim
|h|→∞

〈
f (t),e−ihtφ(t)

〉
= 0

Corollary

If f belongs to C(R), or more generally L1
loc(R), then f is locally

a pseudo-function.
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Local pseudo-function boundary behavior

Let G(s) be analytic on <e s > α. We say that G has local
pseudo-function boundary behavior on the line <e s = α if it
has distributional boundary values in such a line, namely

lim
σ→α+

∫ ∞

−∞
G(σ+it)φ(t)dt = 〈f , φ〉 , φ ∈ S(R) with compact support ,

and the boundary distribution f ∈ S ′(R) is locally a
pseudo-function.
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A Tauberian theorem
for local pseudo-function boundary behavior

Theorem

Let {λk}∞k=1 be such that 0 < λk ↗∞.
Assume {ck}∞k=1 satisfies: ck ≥ 0 and

∑
λk <x ck = O(x).

If there exists β such that

G(s) =
∞∑

k=1

ck

λs
k
− β

s − 1
, <e s > 1 , (3)

has local pseudo-function boundary behavior on <e s = 1, then∑
λk <x

ck ∼ βx , x →∞ . (4)
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Under N(x) = ax + O(x/ logγ x) (C)

Using ‘generalized distributional asymptotics’, we translated the
Cesàro estimate into:

For γ > 1, ζ(s)− a
s − 1

has continuous extension to

<e s = 1.
For γ > 3/2

(s − 1)ζ(s) is free of zeros on <e s = 1.

−ζ
′(s)

ζ(s)
− 1

s − 1
has local pseudo-function boundary

behavior on the line <e s = 1
A Chebyshev upper estimate:

∑
nk <x Λ(n) = ψ(x) = O(x)

So, the last Tauberian theorem implies the PNT (γ > 3/2)
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Other related results (γ > 3/2)

Theorem
Our theorem is a proper extension of Beurling’s PNT, namely,
there is a set of generalized numbers satisfying the Cesàro
estimate but not Beurling’s one.

Theorem
Let µ be the Möbius function. Then,

∞∑
k=1

µ(nk )

nk
= 0 and lim

x→∞

1
x

∑
nk <x

µ(nk ) = 0 .
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