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Scaling weak-asymptotic properties of distributions
Measures and the φ−transform

A General Integral

In this lecture we study local properties of distributions in terms
of the boundary properties of transforms:

M f
ϕ(x , y) = (f ∗ ϕy )(x), (x , y) ∈ Rn × R+, (1)

where ϕy (t) = y−nϕ(t/y). Specifically, we aim:
1 To present characterizations of scaling (weak-)asymptotic

properties of distributions in terms of (1).
2 To give characterizations of positive measures in terms of

extreme angular boundary values of non-wavelet
transforms.

3 To discuss how these ideas have recently led to the
construction of a new integral for functions of one variable
that is more general than that of Denjoy-Perron-Henstock.

First part reports on work with Pilipović, while the second one with Estrada.
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Introduction

Distributions are not pointwisely defined objects. How can one
study their behavior at individual points?
Two views of the problem:

1 Local regularity. Fix a global space of functions: a
distribution is said to be regular at a point if it coincides
near the point with an element of the global space.

2 Pointwise regularity. In several contexts, one is interested
in finer pointwise measurements that allow one to
distinguish special features in an irregular background.
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Introduction

Representative example:
∞∑

n=1

sin(πn2t)
n2 . (2)

Its point behavior depends on Diophantine approximations of
the point: it radically changes from point to point.

Jaffard and Meyer showed that (2), and other functions, can be
fully understood via a refined analysis of scaling and oscillating
properties of distributions. Key notion: 2-microlocal spaces.

Zavialov (1973) introduced a natural measure of scaling
properties. Closely related to 2-microlocal spaces.

Oscillation is also deeply involved in a new theory of integration!
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Outline

1 Scaling weak-asymptotic properties of distributions
Weak-asymptotics and Pointwise weak Hölder spaces
Characterizations: Tauberian theorems
Application: Pointwise analysis of Riemann type
distributions

2 Measures and the φ−transform
Characterizations of positive measures

3 A General Integral
Motivation: from Denjoy to Łojasiewicz
Properties of the distributional integral
Examples
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General Notation

S0(Rn) ⊂ S(Rn) is defined by

ϕ ∈ S0(Rn) ⇔
∫

Rn
tmϕ(t)dt = 0, ∀m ∈ Nn.

L always denotes a Karamata slowly varying function at
the origin

lim
ε→0+

L(aε)

L(ε)
= 1, ∀a > 0.

For test functions, ϕ̌y (t) = y−nϕ(−t/y).
Distributions will be noted by f, g, . . . , while functions by
f ,g, . . . .
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Weak-asymptotics and Pointwise weak Hölder spaces
Characterizations: Tauberian theorems
Application: Pointwise analysis of Riemann type distributions

Weak-asymptotics (by scaling)

Definition

Let f ∈ S ′(Rn). We write (as ε→ 0+):

f(x0 + εt) = O(εαL(ε)) in S ′(Rn) if ∀ϕ ∈ S(Rn)

〈f (x0 + εt) , ϕ(t)〉 = (f ∗ ϕ̌ε)(x0) = O(εαL(ε)). (3)

f(x0 + εt) = O(εαL(ε)) in S ′0(Rn) if (3) is just assumed to hold
∀ϕ ∈ S0(Rn)

f(x0 + εt) ∼ εαL(ε)g(t) in S ′(Rn) if

lim
ε→0+

1
εαL(ε)

f(x0 + εt) = g(t) in S ′(Rn).
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Weak-asymptotics and Pointwise weak Hölder spaces
Characterizations: Tauberian theorems
Application: Pointwise analysis of Riemann type distributions

Examples

Meyer defined the weak scaling exponent of f ∈ S ′(Rn) at
x0 ∈ Rn as the supremum over all α such that

f(x0 + εt) = O(εα) in S ′0(R).

Typical example: t−1/2 sin(t−1), its weak scaling exponent
is∞.
Let x0 ∈ Rn. We say that f has Łojasiewicz point value
γ ∈ C at x0, and write f(x0) = γ, distributionally, if

lim
ε→0+

f(x0 + εt) = γ in S ′(Rn),

i.e.,

lim
ε→0+

〈f(x0 + εt), ϕ(t)〉 = γ

∫
Rn
ϕ(t)dt , ∀ϕ ∈ S(Rn).
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Weak-asymptotics and Pointwise weak Hölder spaces
Characterizations: Tauberian theorems
Application: Pointwise analysis of Riemann type distributions

Examples
Łojasiewicz point values

Łojasiewicz concept is an average notion. For instance, if
f ∈ S(R), one can show that f(x0) = γ, distributionally, if and
only if there exist k ∈ N and a continuous function F such that
F(k) = f, near x0, and

F (x) = γ
(x − x0)k

k !
+ o(|x − x0|k ), x → x0.

The average nature can be explained with Fourier series: If
f(t) =

∑∞
n=−∞ cneint , then f(x0) = γ, distributionally, if and only

if ∃m such that

lim
x→∞

∑
−x≤n≤ax

cneinx0 = γ (C,m), ∀a > 0.
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Weak-asymptotics and Pointwise weak Hölder spaces
Characterizations: Tauberian theorems
Application: Pointwise analysis of Riemann type distributions

Classical Pointwise Hölder spaces

Let x0 ∈ Rn and α > 0.
We say f ∈ Cα(x0) if there is a polynomial P such that

|f (x0 + h)− P(h)| ≤ C|h|α,

for small h.

Not stable under differentiation.
We look for a flexible substitute of Cα(x0).
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Weak-asymptotics and Pointwise weak Hölder spaces
Characterizations: Tauberian theorems
Application: Pointwise analysis of Riemann type distributions

Pointwise weak Hölder spaces

Definition
Let f ∈ S ′(Rn). For x0 ∈ Rn and α ∈ R, we write:

1 f ∈ Oα,L(x0) ⇔ f(x0 + εt) = O(εαL(ε)) in S ′(Rn).
2 f ∈ Cα,L

w (x0) if there is a polynomial P such that
f− P ∈ Oα,L(x0).

3 f ∈ Cα,L
∗,w (x0) ⇔ f(x0 + εt) = O(εαL(ε)) in S ′0(Rn).

If L ≡ 1, we omit it from the notation. Meyer denotes
Cα
∗,w (x0) = Γα(x0).

Connection with 2-microlocal spaces: Cα
∗,w (x0) =

⋃
s∈R Cα,s

x0
.
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Properties of these pointwise spaces

If α /∈ N, then Cα,L
w (x0) = Cα,L

∗,w (x0).

When α ∈ N, we have Cα,L
w (x0) ( Cα,L

∗,w (x0).

In fact f ∈ Cα,L
∗,w (x0) if and only if it has a weak asymptotic

expansion

f(x0 +εt) = P(εt)+εα
∑
|m|=α

tmcm(ε)+O (εαL(ε)) , in S ′(Rn)

where P is a polynomial and the functions cm satisfy

cm(aε) = cm(ε) + O(L(ε)), ∀a > 0.
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The φ− and wavelet transforms

Let f ∈ S ′(Rn). We denote Hn+1 = Rn × (0,∞).
The moments of ϕ ∈ S(Rn) are denoted by

µm(ϕ) =

∫
Rn

tmϕ(t)dt , m ∈ Nn.

φ−transform: We always assume µ0(φ) =
∫

Rn φ(t)dt = 1.

Fφf(x , y) := 〈f(x + yt), φ(t)〉 = (f ∗ φ̌y )(x), (x , y) ∈ Hn+1.

Wavelet transform: Assume ψ is a wavelet, meaning
µ0(ψ) =

∫
Rn ψ(t)dt = 0.

Wψf(x , y) :=
〈
f(x + yt), ψ̄(t)

〉
= (f ∗ ˇ̄ψy )(x), (x , y) ∈ Hn+1.
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Weak-asymptotics and Pointwise weak Hölder spaces
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Non-degenerate wavelets

Definition
Let ϕ ∈ S(Rn). It is said to be degenerate if there is a ray
through the origin along which ϕ identically vanishes. In
contrary case, the test function it is said to be non-degenerate.

Our Tauberian kernels are the non-degenerate test functions.
In Wiener Tauberian theory the Tauberian kernels are
those ϕ such that ϕ̂ do not vanish at any point.
In our theory the Tauberian kernels will be those ϕ such
that ϕ̂ does not identically vanish on any ray through the
origin.
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Weak-asymptotics and Pointwise weak Hölder spaces
Characterizations: Tauberian theorems
Application: Pointwise analysis of Riemann type distributions

Comments on the Tauberian theorems

The Tauberians to be presented improve several results of
Drozhzhinov and Zavilov, and Y. Meyer (see references at the
end).
Main improvements:

Enlargement of the Tauberian kernels. Actually, our class
of non-degenerate wavelets is the optimal one.
Analysis of critical degrees, i.e., α ∈ N.

Extensions (not presented here):
There are corresponding versions for asymptotics at infinity
The results are valids for distributions with values in
Banach spaces, and more generally in DFS spaces.
The vector-valued case is very important in applications to
local and global regularity of distributions.
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Characterization of Cα,L
∗,w(x0)

Let ψ be non-degenerate with moments µm(ψ) = 0, ∀ |m| ≤ [α].

Theorem
The following are equivalent:

f ∈ Cα,L
∗,w (x0)

There exists k ∈ N such that

lim sup
ε→0+

sup
|x |2+y2=1, y>0

yk

εαL(ε)
|Wψf (x0 + εx , εy)| <∞.

The number k may be arbitrarily large!
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Characterization of Oα,L(x0)

Let φ have
∫

Rn φ(t)dt = µ0(φ) = 1.

Theorem
The following are equivalent:

f ∈ Oα,L(x0).
There exists k ∈ N such that

lim sup
ε→0+

sup
|x |2+y2=1, y>0

yk
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Weak-asymptotic behavior
Tauberian theorem for the φ−transform

Theorem

f(x0 + εt) ∼ εαL(ε)g(t) in S ′(Rn) if and only if

lim
ε→0+

1
εαL(ε)

Fφf(x0 + εx , εy) = Fx,y , ∀(x , y) ∈ Sn ∩Hn+1,

and the Tauberian condition: ∃k ∈ N such that

lim sup
ε→0+

sup
|x|2+y2=1, y>0

yk

εαL(ε)
|Fφf (x0 + εx , εy)| <∞.

In such a case, g is completely determined by Fφg(x , y) = Fx,y .

Sn is the unit sphere in Hn+1. As usual µ0(φ) = 1.
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Scaling weak-asymptotic properties of distributions
Measures and the φ−transform

A General Integral

Weak-asymptotics and Pointwise weak Hölder spaces
Characterizations: Tauberian theorems
Application: Pointwise analysis of Riemann type distributions

Weak-asymptotic behavior
Tauberian theorem for the wavelet transform

What do the following conditions tell us about pointwise behavior?

lim
ε→0+

1
εαL(ε)

Wψf(x0 + εx , εy) = Wx,y , ∀(x , y) ∈ Sn ∩Hn+1 (4)

lim sup
ε→0+

sup
|x|2+y2=1, y>0

yk

εαL(ε)
|Wψf (x0 + εx , εy)| <∞ (5)

Assume ψ is non-degenerate with µm(ψ) = 0, |m| ≤ [α].

Theorem

If α /∈ N. Condition (4) and (5) are necessary and sufficient for the
existence of g and a polynomial P such that

f(x0 + εt)− P(εt) ∼ εαL(ε)g(t) S ′(Rn).

g homogeneous and completely determined byWψg(x , y) = Wx,y .
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A General Integral

Weak-asymptotics and Pointwise weak Hölder spaces
Characterizations: Tauberian theorems
Application: Pointwise analysis of Riemann type distributions

Weak-asymptotic behavior
Tauberian theorem for the wavelet transform (continuation)

Theorem
If α ∈ N. Condition (4) and (5) are necessary and sufficient for
the existence of g, a polynomial P, and continuous functions cm
such that (in S ′(Rn))

f(x0 + εt) = P(εt) + εαL(ε)g(t) + εα
∑
|m|=α

tmcm(ε) + o (εαL(ε)) .

g determined byWψg(x , y) = Wx ,y up to homogeneous
polynomials of degree α.
The cm satisfy for some constants βm ∈ C

cm(aε) = cm(ε) + βmL(ε) log a + o(L(ε)), ∀a > 0.
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Weak-asymptotics and Pointwise weak Hölder spaces
Characterizations: Tauberian theorems
Application: Pointwise analysis of Riemann type distributions

Riemann type distributions

Using our Tauberian theorems, we fully described the pointwise
weak properties of the family of Riemann distributions

Rβ(t) =
∞∑

n=1

eiπn2t

n2β ∈ S
′(R), β ∈ C,

at points of Q.
We split Q into two disjoint subsets S0 and S1 where

S0 =

{
2ν + 1

2j
: ν, j ∈ Z

}
∪
{

2j
2ν + 1

: ν, j ∈ Z
}

and

S1 =

{
2ν + 1
2j + 1

: ν, j ∈ Z
}
.
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A General Integral

Weak-asymptotics and Pointwise weak Hölder spaces
Characterizations: Tauberian theorems
Application: Pointwise analysis of Riemann type distributions

Generalized Riemann zeta function

Interestingly, the pointwise behavior of Rβ is intimately related
to the analytic continuation properties of the zeta-type function

ζr (z) :=
∞∑

n=1

eiπrn2

nz , <e z > 1, (6)

where r ∈ Q. If r = 0, (6) reduces to ζ0 = ζ, the familiar
Riemann zeta function.
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Case r ∈ S1 =
{

2ν+1
2j+1 : ν, j ∈ Z

}
Point behavior of Riemann distributions

Theorem
Let r ∈ S1. The following Dirichlet series is entire in z,

ζr (z) =
∞∑

n=1

eiπrn2

nz (C), z ∈ C, (7)

where the sums for <e z < 1 are taken in the Cesàro sense.

Theorem
Let r ∈ S1. Then Rβ ∈ C∞w (r) for any β ∈ C. Moreover,

Rβ (r + εt) ∼
∞∑

m=0

ζr (2β − 2m)

m!
(iεπt)m as ε→ 0+ in S ′(R).
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Case r ∈ S0
Analytic continuation of generalized Riemann zeta function

Theorem

Let r ∈ S0. Then, ζr admits an analytic continuation to C \ {1}, it has
a simple pole at z = 1 with residue pr , and the entire function

Ar (z) = ζr (z)− pr

z − 1

can be expressed as the Cesàro limit

Ar (z) = lim
x→∞

∑
1≤n<x

eiπrn2

nz − pr

∫ x

1

dξ
ξz (C).

The pr are completely determined by the transformation equations:

p0 = 1, pr+2 = pr , and p− 1
r

=

√
− i

r
pr .
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Case r ∈ S0
Point behavior of Riemann distributions

We define the generalized gamma constant as

γr := Ar (1).

Observe that in fact γ0 = γ, the familiar Euler gamma constant.

Theorem. Let r ∈ S0. We have the expansions as ε→ 0+ in S ′(R).
(i) If β ∈ C \ {1/2}, then

Rβ(r+εt) ∼
(−iπ)β−

1
2 Γ
( 1

2 − β
)
pr

2
(εt+i0)β−

1
2 +

∞∑
m=0

ζr (2β − 2m)

m!
(iεπt)m.

(ii) When β = 1/2, we have

R 1
2
(r+εt) ∼ γr +

pr

2

(
− log

(
ε |t |
π

)
+

iπ
2

sgnt − γ
)

+
∞∑

m=1

ζr (1− 2m)

m!
(iεπt)m.
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A General Integral
Characterizations of positive measures

Measures and the φ−transform

We shall present characterizations of positive measures in
terms of the φ−transform,

Fφf(x , y) = (f ∗ φ̌y )(x), (x , y) ∈ H = R× R+,

where we always assume that φ ∈ D(R) is positive and
normalized, i.e., ∫ ∞

−∞
φ(t)dt = 1.

Observation: It is easy to show that f ∈ D′(R) is a positive
measure⇔ Fφf(x , y) ≥ 0, ∀(x , y) ∈ H.

Question: It is possible to characterize positive measure by
mere knowledge of boundary extreme data of the φ−transform?

Jasson Vindas Scaling asymptotic properties of distributions



Scaling weak-asymptotic properties of distributions
Measures and the φ−transform

A General Integral
Characterizations of positive measures

Measures and the φ−transform

We shall present characterizations of positive measures in
terms of the φ−transform,

Fφf(x , y) = (f ∗ φ̌y )(x), (x , y) ∈ H = R× R+,

where we always assume that φ ∈ D(R) is positive and
normalized, i.e., ∫ ∞

−∞
φ(t)dt = 1.

Observation: It is easy to show that f ∈ D′(R) is a positive
measure⇔ Fφf(x , y) ≥ 0, ∀(x , y) ∈ H.

Question: It is possible to characterize positive measure by
mere knowledge of boundary extreme data of the φ−transform?

Jasson Vindas Scaling asymptotic properties of distributions



Scaling weak-asymptotic properties of distributions
Measures and the φ−transform

A General Integral
Characterizations of positive measures

Lower angular values of the φ−transform

If x0 ∈ R, denote by Cx0,θ the cone in H starting at x0 of angle θ,

Cx0,θ = {(x , t) ∈ H : |x − x0| ≤ (tan θ)t} .
If f ∈ D′ (R), then lower angular values of its φ−transform are

f−φ,θ (x0) = lim inf
(x ,y)→(x0,0)
(x ,t)∈Cx0,θ

Fφf (x , y) .

For θ = 0, we obtain the lower radial values.

Theorem
Let U be an open set. Then f is a positive measure in U if and
only if its φ−transform satisfies

f−φ,θ (x) ≥ 0 ∀x ∈ U ,

for each angle θ.
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A General Integral
Characterizations of positive measures

Characterization of positive measures in terms of the
φ−transform

Questions:
Can we replaced angular values by radial ones?
Can the everywhere condition from the last theorem be
relaxed to an a.e one?

Theorem
If the lower radial values satisfy

f−φ,0 (x) ≥ 0 , almost everywhere inU ,

and for each angle and each x ∈ U there is Mx > 0 such that

f−φ,θ (x) ≥ −Mx , (8)

then f is a positive measure in U.
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A General Integral
Characterizations of positive measures

Conditions on the primitive

Question: Can the global assumption (8) be relaxed to an
nearly everywhere condition?

A distribution is said to be a Łojasiewicz distribution if their
Łojasiewicz point values exist everywhere.

Theorem

Assume that f−φ,0 (x) ≥ 0 almost everywhere in U, and that
there exists a countable set E such that there are constants
Mx > 0 such that

f−φ,θ (x) ≥ −Mx , x ∈ U \ E , ∀θ

If the primitives of f are Łojasiewicz distributions, then f is a
positive measure in U.
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Measures and the φ−transform

A General Integral

Motivation: from Denjoy to Łojasiewicz
Properties of the distributional integral
Examples

We now discuss properties of a new integral, the distributional
integral that integrates functions of one variable.

The construction of such an integral is based upon the
characterizations of measures in terms of the φ−transform.
Scaling pointwise limits and oscillations are also important.

Recall the main drawbacks of the Riemann integral:
1 The class of Riemann integrable functions is too small.
2 Lack of convergence theorems.
3 The fundamental theorem of calculus∫ x

a
f (t)dt = F (x)

where F ′(t) = f (t), for all t , is not always valid.
Lebesgue integral solves the first and second problem.
Unfortunately, it does not solve the third one.
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A General Integral

Motivation: from Denjoy to Łojasiewicz
Properties of the distributional integral
Examples

Denjoy integral

In 1912 Denjoy constructed an integral with the properties:
It is more general than the Lebesgue integral .
The fundamental theorem of calculus is always valid.

For example, Denjoy integral integrates∫ 1

0

1
x

sin
(

1
x2

)
dx

which is not possible with Lebesgue theory. Other equivalent
integrals appeared thereafter (Lusin, Perron,
Kurzweil-Henstock).
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A General Integral

Motivation: from Denjoy to Łojasiewicz
Properties of the distributional integral
Examples

Peano differentials

In 1935 Denjoy went beyond integration of first order derivates
and studied the problem of integration of higher order
differential coefficients.
Let F be continuous on [a,b], we say that F has a Peano nth

derivative at x ∈ (a,b) if there are n numbers F1(x), . . . ,Fn(x)
such that

F (x + h) = F (x) + F1(x)h + · · ·+ Fn(x)
hn

n!
+ o(hn) , as h→ 0 .

We call each Fj(x) its Peano j th derivative at x .

If n > 1 and this holds at every point, then F ′(x) exists
everywhere, but this does not even imply that F ∈ C1[a,b].

Jasson Vindas Scaling asymptotic properties of distributions



Scaling weak-asymptotic properties of distributions
Measures and the φ−transform

A General Integral

Motivation: from Denjoy to Łojasiewicz
Properties of the distributional integral
Examples

Peano differentials

In 1935 Denjoy went beyond integration of first order derivates
and studied the problem of integration of higher order
differential coefficients.
Let F be continuous on [a,b], we say that F has a Peano nth

derivative at x ∈ (a,b) if there are n numbers F1(x), . . . ,Fn(x)
such that

F (x + h) = F (x) + F1(x)h + · · ·+ Fn(x)
hn

n!
+ o(hn) , as h→ 0 .

We call each Fj(x) its Peano j th derivative at x .

If n > 1 and this holds at every point, then F ′(x) exists
everywhere, but this does not even imply that F ∈ C1[a,b].

Jasson Vindas Scaling asymptotic properties of distributions



Scaling weak-asymptotic properties of distributions
Measures and the φ−transform

A General Integral

Motivation: from Denjoy to Łojasiewicz
Properties of the distributional integral
Examples

Peano differentials

In 1935 Denjoy went beyond integration of first order derivates
and studied the problem of integration of higher order
differential coefficients.
Let F be continuous on [a,b], we say that F has a Peano nth

derivative at x ∈ (a,b) if there are n numbers F1(x), . . . ,Fn(x)
such that

F (x + h) = F (x) + F1(x)h + · · ·+ Fn(x)
hn

n!
+ o(hn) , as h→ 0 .

We call each Fj(x) its Peano j th derivative at x .

If n > 1 and this holds at every point, then F ′(x) exists
everywhere, but this does not even imply that F ∈ C1[a,b].

Jasson Vindas Scaling asymptotic properties of distributions



Scaling weak-asymptotic properties of distributions
Measures and the φ−transform

A General Integral

Motivation: from Denjoy to Łojasiewicz
Properties of the distributional integral
Examples

Denjoy higher order integration problem

Suppose that F has a Peano nth derivative ∀x ∈ (a,b). Denjoy
asked:

1 If Fn(x) = 0 for all x ∈ [a,b], is F a polynomial of degree at
most n − 1?

2 Is it possible to reconstruct F , in a constructive manner,
from the values Fn(x)?

Denjoy solved these two problems with an extremely difficult
“totalization procedure” (involving transfinite induction).

In 1957, Łojasiewicz found, using distribution theory, a
more transparent solution to the first problem. His gave a
solution by identifying a new class of functions with
distributions: the so-called Łojasiewicz functions.
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Examples

Properties of the distributional integral

We have contructed an integral, the distributional integral, that
enjoys the following properties:

Distributionally integrable functions are true functions:
measurable and finite almost everywhere.
The integrals of functions that are equal (a.e) coincide.
Any Denjoy-Perron-Henstock integrable function, in
particular Lebesgue integrable, is distributionally
integrable, and the two integrals coincide within this class
of functions.
The distributional integral integrates higher order
differential coefficients, and thus solves Denjoy’s second
problem in a constructive manner.
Any Łojasiewicz function is distributionally integrable.
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Properties of the distributional integral

It enjoys all useful properties of the standard integrals,
including:

Convergence theorems.
Integration by parts and substitution formulas.
Mean value theorems.
Suitable general versions of the fundamental theorem of
calculus.

If β > 0, it integrates unbounded functions such as

1
|x |γ

sin

(
1
|x |β

)
for all γ ∈ R

not Denjoy-Perron-Henstock integrable if β + 1 ≤ γ.
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Properties of the distributional integral

It identifies in a precise fashion a new class of functions
with distributions.

If f is distributionally integrable over compacts, it can be
identified with a distribution f in a natural way:

〈f (x) , ψ (x)〉 = (dist)

∫ ∞
−∞

f (x)ψ (x) dx , ψ ∈ D(R).

The distribution f has Łojasiewicz point values almost
everywhere and the function f is recovered by

f (x) = f (x) (a.e.)
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Given {cn}∞n=1, define the function

f (x) =


0 , if x ≤ 0 or x ≥ 1 ,

cn , if 1
n+1 ≤ x < 1

n .
(9)

Let an = cn

(
1
n −

1
n+1

)
, so that∫ 1

x
f (t)dt =

∑
n≤x−1

an + c[1/x ]

(
1

[1/x ]
− x

)
, x ∈ (0,1).

Then f is, on the interval [0,1],
Lebesgue integrable if and only if

∑∞
n=1 |an| <∞.

Denjoy-Perron-Henstock integrable if and only if the series
is convergent.
Distributionally integrable if and only if

∑∞
n=1 an is Cesàro

summable.
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(Continuation of last example)

In case
∑∞

n=1 an is Cesàro summable, we have∫ 1

0
f (x) dx =

∞∑
n=1

an (C) .

For example, if cn = (−1)n n(n + 1), so that an = (−1)n, we
obtain ∫ 1

0
f (x) dx = −1/2

and this function is not Denjoy-Perron-Henstock integrable.
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Example

Consider the functions sα(x) := |x |α sin (1/x) for α ∈ C. Near
x = 0:

If −1 < <eα, then it is Lebesgue integrable.
If −2 < <eα ≤ −2, then it is not Lebesgue integrable but
Denjoy-Perron-Henstock integrable.
If <eα ≤ −2, it is not Denjoy-Perron-Henstock integrable,
but distributional integrable.

The family of distributions sα, where sα ↔ sα, is analytic in α.
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